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Abstract. Convolutional neural networks have made unprecedented break-
throughs in various tasks of computer vision. Due to its complex nonlinear model
structure and the high latitude and complexity of data distribution, it has been
criticized as an unexplained “black box”. Therefore, explaining the neural net-
work model and uncovering the veil of the neural network have become the focus
of attention. This paper starts with the term “interpretability”, summarizes the
results of the interpretability of convolutional neural networks in the past three
years (2016–2018), and analyses them with interpretable methods. Firstly, the
concept of “interpretability” is introduced. Then the existing research achieve-
ments are classified and compared from four aspects, data characteristics and rule
processing, model internal spatial analysis, interpretation and prediction, and
model interpretation. Finally pointed out the possible research directions.
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1 Introduction

The concept of artificial neuron was first proposed in the 1940s. After decades of
research, Yann LeCun designed and trained LeNet-5 model — classic CNN structure,
in 1998, giving the basic component and framework structure of Convolutional Neural
Network. Later, neural networks such as AlexNet, VGGNet, GoogLeNet, ResNet,
DenseNet appeared, and they became deep and complex. These convolutional neural
networks have achieved unprecedented breakthroughs in various tasks of computer
vision, such as image classification, semantic segmentation, target detection and visual
problem answering.

Although these neural networks have been successful in various scenarios, the
entire network lacks intuitive and understandable components, making the results of
the network model difficult to interpret. In particular, the application of neural network
in the fields of medicine, financial markets, criminal justice, etc., interpretability is an
extremely important standard for model evaluation, and has become the most worrying
“black box”.
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Therefore, how to understand the interpretability of neural networks better is a
common concern of academia and industry.

2 An Overview of “Interpretability”

As for interpretability, there is no strict mathematical symbol definition and no general
(non-formula) literal definition. However, with the development of artificial intelli-
gence, it is particularly important to study the interpretability of models. In general, it is
far from enough to obtain simple prediction results for models from low-cost general
fields (such as commodity recommendation) to high-cost key fields (such as finance and
medical treatment). People began to pay attention to how the model made predictions.

The PhD student Leilani Gilpin from MIT’s Computer Science and Artificial
Intelligence Lab (CSAIL) has published a paper [1] that analyzes “interpretability” and
several related semantic approximate terms, classifies the current machine learning
model interpretability methods, and puts forward the evaluation of interpretability
methods. Gilpin informally defines “interpretability” as understanding what the model
does or has done. This paper discusses the difference between “explanation” and
“interpretability”. In a word, the model with interpretability can be interpreted by
default, but not vice versa. The proposed interpretative understanding is divided into
three types: (i) was proposed some explanation, while the key to this explanation does
not represent a model will make the decision making process, but can provide a certain
degree of reason to make a choice; (ii) was the representation of data in the network;
(iii) was the establishment of a network model that generates interpretation.

In the 2nd ICML 2017 Workshop on Human Interpretability in Machine Learning
(WHI), Google brain senior research scientist, Been Kim [2] reported on the inter-
pretability study of machine learning and provided a preliminary understanding of the
“interpretability” study of the AI model. This is a tutorial report that shows what is
interpretability, why interpretability, and what we can do on interpretability. She said,
Interpretation is the process of giving explanations To Humans. Comparing the AI
model with traditional software shows that the AI model also needs security, debugging,
principle support, iterative optimization and fairness and legality. Been Kim divided the
third question into three aspects: pre-modeling, modeling time, and post-modeling. For
example, consider data distribution before modeling, consider feature functions in
modeling process, and consider hidden layer information in model completion.

Dr. Zachary C. Lipton, of the University of California, San Diego, and assistant
professor of computer science at Carnegie Mellon University, shared a report on “The
Mythos of Model Interpretability” [3] on the ACM Queue and discussed the inter-
pretability of the supervised machine learning model. Lipton said that people have
realized the importance of interpretability for a model, especially in key areas such as
medicine, criminal justice systems, and financial markets. He believes that the results of
the interpretable analysis of the deep model from the current academia can be seen that
people generally agree with the term “interpretability”, but there is absence of a defi-
nition. In other words, the meaning of “interpretability” is unclear, so that there are
various papers that claim to be interpretable after optimizing a model or building a
model. Such an article may interpret the model based on different starting points,
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leading to such a vague situation. Lipton divided the work of “interpretability” into two
categories by analyzing the need for interpretability research. The first relates to
transparency, i.e., how does the model work? The second consists of post-hoc expla-
nations, i.e., what else can the model tell me? Finally, in order to standardize the
“interpretability” study, he proposed that the interpretability study of the model should
achieve one of the above two as a specific goal.

3 Convolutional Neural Networks “Interpretability”
Research

Combining the above researches, in this paper, the “interpretability” of the convolu-
tional neural network model (hereinafter referred to as the model) is summarized into
four aspects (As shown in Fig. 1):

• Data characteristics and rule processing. Initial exploration of model data or adding
some known rules to the model (see Sect. 3.1 for details).

• Model internal space analysis. By analyzing the internal components of the model,
such as unit level, hierarchical analysis (see Sect. 3.2 for details).

• Explain the predictions. Focus on the analysis of the results of the model, that is,
post-hoc explanations (see Sect. 3.3 for details).

• Model interpretation. Based on the entire model, such as model simulation, con-
struction of interpretable systems (see Sect. 3.4 for details).

Fig. 1. Interpretable research structure diagram
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3.1 Data Characteristics and Rule Processing

Data Characteristic. [4] has proposed feature selection can help to build better
models with finer data. Removing the unrelated and redundant attributes can reduce the
complexity of the model, so that the model can be understood and explained. When
understanding a model, the first starting point is the characteristics of the original data.
[5, 6] analyzed the influence of the original data features on the model interpretability
from medical image data and material microstructure image data. [5] compared the
results of the original image scaling � 1/2, � 1/4 and � 1/8 post-resolution pairs,
indicating that the difference in the details of the two images provides an explanation
for the prediction. However, the experimental comparison can only confirm that the
detail features in the image can increase the prediction accuracy, but it is difficult to
explain the influence of the details on the model decision. [6] used CNN to extract
micro-texture features on Titanium, Steel, and Powder dataset images, and discussed
the generalization and classification features between datasets when convolutional
neural networks are used for microscopic image classification.

The selection of data features as a specific method of Model interpretation [7].
Based on the maximization of mutual information between selected features and
response variables, a function model based on learning method is established to extract
the feature subset with the largest amount of information in each given example. Then,
an importance score is assigned to a given instance prediction result for each feature,
allowing the relative importance of each feature to vary from instance to instance.

Rule Processing. Traditional machine learning is generally considered to be more
suitable for interpretation with rules, and Boolean rules are one of the simplest inter-
pretable classification models [8]. For the depth model, some optimized rule-based
methods are equally applicable.

Rule-Based Extraction. When a known model is built according to a priori rule, it is
theoretically easy to understand the model. On the contrary, the decision process of the
model can be studied by extracting rules from the model. Rule extraction can be
divided into (i) decomposition-based methods; (ii) model-agnostic methods (for
machine learning models, not discussed here). The former, for example, the DeepRED
[9] algorithm that is able to extract rules from deep neural networks. The basis of this
method is the CRED [10] that contain both continuous (real-valued) and discrete
literals. This decomposition algorithm used the decision tree to describe the behavior of
the hidden layer elements of the NN. DeepRED extracted intermediate rules for each
layer of the DNN through the CRED algorithm, then merged the previously generated
rules and generated behaviors(rules) describing the DNN through input data.

Embedding of Prior Rules. A priori rules is embedded in the NN to explaining the
model. [11] proposed a rule embedded neural network (ReNN) to cope with the
shortcomings of neural network. ReNN breaks down the “black box” of ANN into two
parts: local-based reasoning (local patterns learned from data sets) and global-based
reasoning (a priori knowledge of human long-term accumulation) (As shown in Fig. 2).
Through the local inference mode and rule analysis of the ReNN, the entire network is
better interpretable.
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3.2 Model Internal Space Analysis

The classical CNN structure given by Yann LeCun usually consists of input layer,
hidden layer and output layer. Understanding the neural network from such a model
structure requires an analysis of the roles of its components. It is divided into neural
unit, neural network layer, hierarchical neuron combinations and perturbation-based
models interpret four aspects of analysis.

Component Analysis Based on Neural Unit. On the analysis of neural network
neurons, on the one hand, under what conditions a single neuron is activated, on the
other hand, when a neuron is activated, it expresses information. The method displays
the sensing area of the activated neuron by maximizing the activated input image and
highlights a particular portion of the neuron image used to activate the convolutional
layer through the deconvolution network.

[12, 13] both adopted the activation maximization method to analyze the infor-
mation contained in the neuron, that is, to find the optimal stimulus of each unit by
performing gradient descent to maximize the activation of the unit, mainly calculating
the input sample when the activation of the ith neuron in the jth hidden layer is
maximized. The downside is that the complex input distribution will fail. The latter
optimized it and proposed that a single neuron can detect multiple characteristics
(color, size and direction) on the original basis, while the existing maximum activation
method only considers one of them. Therefore, the algorithm is proposed to synthesize
the multi-aspect information that each neuron can express into the sample activation
image through the activation method, which can more fully understand the function of
each neuron.

The other [14], which adds a deconvolution operation (convolution operation is
carried out on the filter with both horizontal and vertical directions reversed) on each
convolutional layer of the classification CNN to visualize the image region activated by
each neuron. In this paper, 9 images with the highest activation value are shown after
convolution of each feature image. It can be seen that each feature map is “interested”
in different images.

[15] evaluated the consistency between individual neural units and the quantified
interpretability of visual semantic concepts (color, material, structure, parts, objects and
scenes). And indicated that neural units is assigned different identifiable labels.

Fig. 2. Computational graph of ReNN(adapted from [7]).
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Hierarchical-Based Component Analysis. The formula y ¼ h x � xþ bð Þ for each
layer of the neural network is the transformation of the input vector x to the output
vector y. Where, x � x represents lifting dimension, scaling and rotation, b represents
translation, and the function h xð Þ represents distortion, namely the transformation of
linear and non-linear matrix space is completed. The graphical explanation can be seen
here [16, 17]. From the perspective of classification neural network, a hyperplane is
found in the space after the linear transformation of the original space through the
nodes in each layer and the nonlinear transformation of the activation function. This is
explained by a operation from each layer of the neural network.

As for the expression of each layer of the neural network, [18] proposed that each
layer of the classification neural network recognized the distribution of each category in
the two data sets of ImageNet-CNN and Places-CNN, as well as the detection of an
object by a single neuron. [19] illustrated the transferability of neural networks,
quantifies the comparison between the universality and specificity of each layer of deep
convolutional networks, and two factors affecting its portability are found: fragile
coadaptation of middle layers and specialization of higher layers.

Component Analysis Based on Hierarchical Unit Combination. Instead of studying
individual neurons or the concept of layers in a neural network, exploring linear
combinations of hierarchical units brings new perspectives.

On the basis of theory, [20, 21] proposed different concepts. The former mapped
semantic concepts to vectors based on the corresponding filter response. Analysis
model internal filter proof: (i) In most cases, need more than one filter to code a
concept; (ii) Not a single filter specific to a concept; (iii) For single filter activation,
filter embedding can better represent the meaning of the representation and its rela-
tionship with other concepts. The latter proposed two counter-intuitive properties of
deep neural network. [21] found that it is the space, rather than the individual units, that
contains the semantic information in the high layers of neural networks. This provides a
new point of view with the general understanding of neural networks. At the same time,
this paper also proposed the existence of adversarial example in neural networks.

Subsequently, [22] introduced the concept activation vector(CAV), and represented
that the model interpretation is formally expressed as a set of model state space vector
Em and a set of unknown human understandable concepts Eh. The model interpre-
tation can be expressed as a mapping relationship g:Em ! Eh. As a way of conversion
between Em and Eh, a set of human understandable input data examples are defined as
concepts. The relative importance of concepts to classification is quantitatively ana-
lyzed to explain the neural network. [23] proposed each neuron in DNN is interpreted
as an activation vector whose value is the scalar output generated by it on the input
data. By collecting two groups of neurons and then outputting the alignment feature, it
can be seen that the potential representations acquired by the two networks have similar
characteristics. The advantages of this method are: one is to compare the representa-
tions learned by the two neural networks, and the other is to explain the representations
of DNN hidden layer learning.

Internal Space Analysis Based on Perturbation. The perturbation in the neural
network is not to delete or modify the model structure, but to input the processed test
samples and then observe the prediction results of the neural network. The specific
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processing methods include occlusion experiment, noise study and adversarial sample
study. [14] studied which region of the image has the largest effect, the experiment used
a gray square to cover different positions of objects and then monitored the output of
the classifier. The results are consistent with the results of human cognitive knowledge,
that is, the key position in line with human knowledge will have a greater impact. [24]
studied the effects of noises on the interpretation of neural networks. The deep Taylor
decomposition is used to show the interpretation results of different interpretation rules
in response to noise. [25] found out which part of the image has the greatest influence
on its output score when disturbed, so as to understand the search position of the
algorithm. [26] proposed a new scoring formula on the basis of antagonistic samples
and characteristic scores. Based on the adversarial example, seeking the minimum data
perturbation of model input can identify the important input characteristics and the
minimum allowable data perturbation by looking for the maximum data perturbation
that does not change the output. Among them, occlusion experiment is the most
consistent with human cognition, but it has a strong artificial purpose. Some noise
studies have achieved good results. Although the results of adversarial sample exper-
iment are eye-catching, there are some deficiencies for human understanding.

[27] proposed LIME(Local Interpretable Model-agnostic Explanation), a novel
explanation technique that explains the predictions of any classifier in an interpretable
and faithful manner, by learning an interpretable model locally around the prediction.
Observing the predictive behavior of the model by perturbing the input samples (ac-
tually a sampling method), and then assigning weights based on the distances of the
perturbed data points from the original data, based on which they learn an interpretable
model and prediction results. The essence of perturbation is that these around distur-
bances must be understandable by humans.

3.3 Explain to Predict

This part focus on the results of the model, such as analyzing the reason why an image
is classified into a certain category from a CNN, which is explained by the two aspects
of feature and visualization. And, feature interpretation is divided into feature impor-
tance and feature text interpretation.

Feature Importance. The interpretation of feature importance is to evaluate the fea-
tures concerned by the model, and then measure the importance of the features with
scores. Compared with the perturbation-based method above, it is easier because each
perturbation requires a forward propagation of the network, which is computationally
inefficient.

DeepLIFT (Deep Learning Important FeaTures) [28], an algorithm for recursive
predictive interpretation of depth models that assigns importance scores to inputs for a
given output. The difference is that DeepLIFT uses backpropagation to calculate the
scores, so they can be efficiently obtained by a single reverse network propagation.
LRP (Layer-Wise Relevance Propagation) [29] achieved pixel-level decomposition,
using a single pixel to evaluate the impact of sample images in a kernel classifier and
neural network, and visualize it. This method is equivalent to performing a DeepLIF
operation, activating all input reference values (DeepLIFT will set a reference value for
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each input) to zero. [30] proposed the use of Shapley value to quantify the importance
of characteristics of a given input, and proposed a sample-based method and “kernel
SHAP” to approximate Shapley value. The commonality of the above methods is to use
a local additional model to approximate the local model, and its inadequacy is also
localized.

The difficulty with the importance of features is that it is difficult to evaluate them
with experience. To compensate for this shortcoming, [31] proposed an integrated
gradient approach. And two basic axioms that the attribution method should satisfy—
sensitivity and implementation invariance. Integrated gradient is a new attribute
method guided by these axioms. This method does not require any network tools, and
can be easily calculated by a few calls to gradient operations.

For the deficiency of localization, [7] proposed the L2X (Learning to Explain)
method, which learns the feature selection function different from the local approxi-
mation method of the previous function in the global scope, and takes the instantiated
feature selection as the method of model interpretation. In particular, the importance
score of each feature of an instance is given to indicate which features are the key for
the model to predict on this instance.

Feature Text Interpretation. [32] focused on the description and interpretation of the
recognition features, for example, when the neural network identifies a bird, it will give
“this is a bird, because its beak is recognized” instead of “filter ith is activated at the
highest level in the model”. Such an explanation would be more useful to non-
professionals with no knowledge of modern computer vision. The paper proposes that
such interpretations must meet two criteria: they must be class sensitive and accurately
describe specific image instances (Table 1).

Summary of the properties of different methods. “Training” indicates whether a
method requires training on an unlabeled data set. “Efficiency” qualitatively evaluates
the computational time during single interpretation. “Locality” indicates whether a
method is locally additive. “Model-agnostic” indicates whether a method is generic to
black-box models (adapted from [7]).

[33] interpreted the output results of the model by generating counterfactual
explanations of text types afterwards. The counterfactual interpretation here refers to a
description of a characteristic fact that distinguishes Category A from Category B, for
example, “This is not a scarlet tanager because it has no black wings.”

Table 1. Feature importance methods comparison

Method Train Efficiency Locality Model-agnostic

LIME [27] No Low Yes Yes
DeepLIFT [28] No High Yes No
LRP [29] No High Yes No
SHAP [30] No Low Yes Yes
Integrated gradient [31] No High No Yes
L2X [7] Yes High No Yes
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Visualization. Further research into the interpretability of neural networks has shown
that Deep Visualization is a good way to understand neural networks, and leads to the
direction of Deep Visualization. These methods are mainly composite images, which
can be divided into two directions: gradient-based method and network-based activa-
tion method.

Gradient-Based Approach. The Gradient Explanation of the input x is Egrad xð Þ ¼ @S
@x.

The gradient quantifies the extent to which a change in each input will change the
predicted value S xð Þ in its neighborhood. By iterating the gradient of the objective
function and updating the random input x, the original image can be reconstructed
in reverse [34] or the image that maximizes the score for a certain category can be
realized [35].

[36, 37] proposed DeConvNet and [38] proposed Guided Backpropagation(GBP)
based on the gradient method where negative gradient entries are set to zero while
back-propagating through a ReLU unit to generate a clearer visualization.

[31] combined the axioms of previous research to guide a new approach, called
Integrated Gradients (IG). With summing over scaled versions of the input solves

gradient saturation. IG for an input x is defined as EIG xð Þ ¼ x� xð Þ � R1

0

@Sðxþ a x�xð Þ
@x da,

where is a “baseline input” that represents the absence of a feature in the original
input x.

[35, 38] demonstrated that the gradient could be used for extracting a saliency map
of an image. However, they also tend to be noisy, covering many irrelevant pixels and
missing many relevant ones. SmoothGrad [39] achieved the denoising effect by adding
noise to the image, then sampling the similar image, and average the sensitivity map of
the sampled image. Take an input x and average the resulting sensitivity maps E,
ESG xð Þ ¼ 1

N

PN
i¼1 E xþN 0; r2ð Þð Þ, where N 0; r2ð Þ represents Gaussian noise with

standard deviation r.
Above classifier-dependent saliency maps can be utilized to analyze the inner

workings of a specific network. [40] proposed a saliency map extraction method that
does not rely on a classifier, which can find the portion of the image that any classifier
can use.

Methods Based on Network Activation. Activation maximization is the search for an
image that maximizes the activation of a specific neuron (also known as a “unit,”
“feature,” or “feature detector”) to reveal the neural response what it has learned (the
features it has detected) in DNN. This technique can be performed for output neurons,
such as neurons that classify image types [35], or for each hidden neuron in DNN [12,
41, 42], to explain the representation of neuron activation during prediction [34, 43].

Another set of visual activation methods not only focus on single neuron activation,
but also take into account the global information of the image.

[31, 39, 44, 45] Integrated Gradient, SmoothGrad, CAM, GradCAM, each method
show that the correlation between highly activated region (the area where neurons are
highly activated) and highly sensitive region (the area where changes have the greatest
influence on the output).
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These methods provide useful insights into deep neural networks, but they also
have some shortcomings. Based on gradient method, artifacts caused by discontinuity
of gradient in the process of back propagation; Based on the network activation
method, when the filter response is displayed in the deeper sensory field, the enlarged
activation diagram may lose the details obviously. [28, 46] proposed methods to
alleviate the problem of introducing artifacts. There is no good solution to the problem
of missing details in the enlargement of the activation diagram.

Semantic-Based Feature Representation. [47] proposed the Network Dissection
framework, a method for accurately calculating the receptive field regions of neural
activation in feature maps. The Network Dissection effectively partitions the input
image into multiple parts with various semantic definitions (accurate estimates of
receptive fields) that match six semantic concepts (such as scenes, targets, parts,
materials, textures, and colors). The semantics directly represent the meaning of the
features to improve the interpretability of neurons. [20] proposed the Net2Vec frame-
work, in which semantic concepts are mapped to vector embeddings based on corre-
sponding filter responses. Through this method, the article can better describe the
semantics of the filter and its relationship with other semantics. However, the common
shortcoming of both is that the interpretation of network components (neurons, filters) is
limited by semantic concept annotations, and the annotation of new concepts is costly.

For the deficiencies of the above methods, [48, 49] proposed an unsupervised
method, that is, without the annotation concept part. [48] presented a graphical
explanatory diagram that reveals the hidden semantic features in pre-trained CNNs. In
the explanatory graph, each node represents a part pattern, and each edge encodes co-
activation relationships and spatial relationships between patterns. [49] proposed a
decision tree for coding potential decision patterns stored in a fully connected layer.
The decision tree quantitatively interprets the logic of each CNN prediction, that is,
given an input image, the decision tree tells people which object parts activate which
filters for the prediction and how much they contribute to the prediction score. The
decision tree can be used to explain the basic principles of each CNN prediction at the
semantic level, which object parts are used by CNN for prediction.

3.4 Model Interpretation

Explain the model from the perspective of the entire model. The main methods are:
simulation model and establishment of an interpretable model system.

Model processing. One is to simulate the model by constructing a simple human-
understandable model to simulate the decision function of the depth model, so that the
results of the simple model are close to the original model results to achieve the
purpose of interpretation. [50] proposed Model Compression method to simulate a
shallow network training shallow network, and obtain a single-layer neural network
model. This new shallow model can achieve the same effect as the depth model. [51]
also uses the method of compressing the model, but it is trimmed according to the filter
importance index in the CNN model to achieve the effect of compression. The filter
importance index is defined as the classification accuracy reduction (CAR) of the
network after pruning that filter.
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The other is through model decomposition, which is usually using decision trees
that are well interpretable in machine learning as a tool. Both the DeepRED [9] and
CRED [10] algorithms in the Rule Processing Section decompose the DNN model into
decision tree models to obtain interpretable rules.

Interpretable model system. Building an interpretable model, [52] proposed a
method to modify traditional CNN into an interpretable CNN to clarify the knowledge
representation in high conv-layers of CNNs. In an interpretable CNN, each filter in a
high conv-layer represents a particular object portion. And it automatically assigns each
filter in a high conv-layer to the object portion during the learning process. The explicit
knowledge representations in CNN can help people understand the logic within CNN.

[53] proposed the learning of qualitatively interpretable models for object detection
based on the R-CNN. This method utilize a top-down hierarchical and compositional
grammar model embedded in a directed acyclic AND-OR Graph (AOG) to explore and
unfold the space of latent part configurations of RoIs. Then proposed an AOG Parsing
operator to substitute the RoI Pooling operator widely used in R-CNN. In detection, a
bounding box is interpreted by the best parse tree derived from the AOG on-the-fly,
which is treated as the extractive rationale generated for interpreting detection.

4 Summary

Being able to understand a “black box” model is the most important issue related to
model security, model optimization, and model generalization, especially in medical,
financial and other engineering applications. Therefore, model interpretability has been
the focus of research in recent years. This paper summarizes the related work based on
the interpretability of the CNN, such as the meaning of “interpretability”, and the
classification of interpretable methods. Then, we find that the current model inter-
pretability research is divergent, and there is no unified main line. They are basically
based on their own previous studies and turned to interpret the results of these studies.
Therefore, future studies on interpretability can focus on the following points:

(1) Conceptual definition of “interpretability”

At present, there is no unified definition of “interpretability” in the academia. This
is not appropriate for the development of follow-up research. It is necessary to for-
mulate a brief explanation for “interpretability”.

(2) Visual interpretation is the focus of interpretable studies

Of the 53 references cited in this paper, 21 involved “observing” and understanding
models from the perspective of visual interpretation. This is not a denial of other work,
but it seems to be a trend, because the graphical interpretation gives the most direct
understanding.

(3) Establishing an interpretable system is the goal

At present, there are not many achievements in the research on the construction of
an interpretable system, but with the emphasis on the concept of “interpretability”,
people need a complete interpretative system to meet the needs of interpretation. Such a
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system does not merely provide a local interpretation, but an integrated end-to-end
interpretation system.
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