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Abstract. While ultra-reliable and low latency communication
(uRLLC) is expected to cater to emerging services requiring real-time
control, such as factory automation and autonomous driving, the design
of uRLLC of stringent requirements would be very challenging. Among
novel solutions to satisfy uRLLC’s requirements, interface diversity is
widely regarded as an efficient enabler of ultra-reliable connectivity.
When mobile devices are connected to multiple base stations (BSs) of
different radio access technologies (RATs) and same data is transmit-
ted via multiple links simultaneously, the transmission reliability can
be improved. However, duplicate transmission of same data causes an
increase in the traffic loads, leading to radio resource shortage. Con-
sidering it, efficient configuration of multi-connectivity (MC) for mobile
devices is important. In this paper, the RAT selection scheme including
efficient MC configuration is proposed. By adopting distributed rein-
forcement learning (RL), each device could learn the policy for efficient
MC configuration and select appropriate RATs. Simulation results show
that 20.8% reliability improvements over the single connectivity scheme
is observed. Comparing to the method to configure MC for devices all
the time, 37.6% improvement is achieved at high traffic loads.

Keywords: RAT selection · Multi-connectivity · Machine learning ·
URLLC

1 Introduction

Upcoming 5G networks are expected to support diversified services into three
categories: enhanced mobile broadband (eMBB), massive machine-type commu-
nication (mMTC), and ultra-reliable and low latency communication (uRLLC)
[1]. Especially, it is envisaged uRLLC could open the doors emerging various
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services, such as wireless control and automation in industrial environments [2],
vehicle-to-vehicle communications, and the tactile internet, which requires to
control many objects with real-time feedback [3]. For such services, the 3GPP
aims at providing uRLLC for small data payloads (e.g., 32 bytes) with an out-
age probability of less than 10−5 at millisecond level latency. While the design of
uRLLC of stringent requirements would be very challenging, various novel solu-
tions have been proposed such as flexible frame structure design with shorter
transmission time intervals (TTIs) [4], pre-emptive scheduling [5], and diver-
sity for reliability improvement [6]. Especially, diversity is widely regarded as a
crucial and efficient enabler of ultra-reliable connectivity [7].

As the network evolves, multiple radio access technologies (RATs) are being
integrated and jointly managed, including 3GPP and IEEE families, with the
vision of heterogeneity [8]. In addition, as cells are deployed closer and more
heterogeneous, multiple links of different RATs would become available to user
equipments (UEs) at the same time. Based on such availability of multiple links,
multi-connectivity (MC) is expected to offer enough diversity and redundancy
for achieving reliability [9]. Actually, the initial goal of using MC was to improve
throughput performance by splitting its traffic and sending over multiple links,
overcoming the capacity limitations imposed by backhaul links. By adopting
packet duplication (PD) for duplicate transmission of same data [10], MC has
been additionally considered as an effective solution to satisfy the stringent reli-
ability requirement.

In heterogeneous networks (HetNets) of multiple base stations (BSs) from
different RATs, for each UE, the matter to decide the suitable RATs impact on
the network performance including reliability. In [11,12], the impact of the num-
ber of BSs involving multi-connectivity (called an active set) is investigated. In
[11], it is shown that dynamic management of the active set of BSs (i.e., adding,
removing, replacing based on thresholds of signal quality) can improve system
performance in terms of radio link failure (RLF) and throughput compared to
the use of fixed active set of BSs. In [12], the network load is also considered to
decide the number of BSs. The impact of the network load to the effectiveness
of multi-connectivity is investigated in [13]. With the assumption that UEs can
access all BSs of SINR (signal to interference and noise ratio) higher than the
pre-defined threshold, MC is proved more effective at the low traffic scenario
in terms of throughput and RLF performance. In [14], the dual connectivity
(DC) architecture is considered. The optimisation problem on RAT selection to
maximize the sum throughput is formulated and the pair of serving macro and
small cell for each UE is found. In [15], the utility based approach is studied
considering user‘s satisfaction as well as service provider‘s satisfaction in terms
of throughput. While the aforementioned works focus on improvement of mobil-
ity robustness or throughput performance, in [16], the reliability improvement
through DC with data duplication is demonstrated. By the simulation results,
it shows the required level of reliability and network traffic loads should be con-
sidered for each UE’s DC configuration. However, how to configure DC for each
UE is not investigated.
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Considering the literature survey, in this paper, the approach on efficient
RATs selection including MC configuration is proposed. Since the character-
istics of UEs including the location and required QoS level could be different
from each other in the network with dynamically changing traffic loads, the pro-
posed algorithm employs distributed reinforcement learning. Each UE becomes
an agent and learns the policy of RATs selection including MC configuration.
While each UE learns the offset for effective MC configuration individually,
appropriate RATs for UEs could be selected to minimizes the number of UEs in
outage. It is shown that the proposed algorithm outperforms the single connec-
tivity based RAT selection scheme by 20.8% in terms of reliability performance.
Comparing to the RATs selection scheme where MC is always configured for all
UEs, the proposed algorithm shows better performance by 37.6% by configuring
MC only for UE at cell edge region.

The organization of the paper is as follows. Section 2 describes the system
model including the architecture supporting MC. In Sect. 3, the proposed RATs
selection algorithm adopting the distributed reinforcement learning mechanism is
presented. Then, its performance is evaluated in Sect. 4. This paper is concluded
in Sect. 5.

2 System Model

We consider packet duplication (PD) exploiting the multi-connectivity (MC) fea-
ture to improve reliability performance. With MC, a UE is able to connected to
multiple BS. Since MC is an extension of dual-connectivity (DC), for simplicity,
DC is considered in this paper as shown in Fig. 1. When UEs are connected to
BSs, one BS acs as the master node (MN) to establish the control interface to
the core network and another BS becomes the secondary node (SN). The MN

Fig. 1. Packet duplication via multi-connectivity to enhance reliability.



34 H. Lee et al.

and SN are assumed to be interconnected by means of Xn interface. While DC
can be applicable only for UEs in Radio Resource Control (RRC) connected
mode, MN can initiate DC setup. The data transferred from the core network
to MN is duplicated at the packet data convergence protocol (PDCP) layer of
MN and the entire data is forwarded to SN via Xn interface. Thus, the same
data becomes to be transmitted via both MN and SN to the UE. For resource
scheduling, both MN and SN have flexibility and no restrictions are imposed at
the RLC and MAC layer. The lower layers at MN and SN work independent
of each other without coordination [10]. Such data duplication process can be
carried out as long as the UE remains into the coverage area of both nodes.

As depicted in Fig. 2, the downlink transmission of the OFDM-based hetero-
geneous cellular network with multiple UEs is considered. The system consists
of a set of BSs including macro BSs (MBSs) and small cell BSs (SBSs) and a set
of users (UEs) capable to connect to multiple networks simultaneously. While
macro BSs and small cell BSs could support different RATs, they can communi-
cate based on Xn interface for DC [9]. Based on reference signal received power
(RSRP) based cell selection, UEs measure the reference signal power from each
BS, and could be connected to either the largest one or two BSs. When UEs
are located close to the serving BS (e.g., UE1,UE2,UE4 and UE5), a strict
reliability requirement could be met with a single highly reliable link of the
strong signal power. For cell-edge UEs (e.g., UE3 ), the received strongest signal
level would not be strong enough to fulfil their QoS requirements. In this case,
multi-connectivity employing PD could be set up to improve the reliability so
that UEs can be connected to two BSs, one from macro BS and another from
small cell BS. Then, the macro BS becomes master node (MN) while small cell
BS becomes secondary node (SN).

While the channel quality is an important factor to decide MC configuration
of UEs, the network traffic load could also impact on the reliability performance.
Although MC contributes to enhancing UEs’ reliability, increase in the number
of UEs exploiting MC configuration would lead to increase in network traffic load
[16]. Configuration of MC for too many UEs will shed the light on the benefit of

Fig. 2. Downlink transmission with multiple connectivity in heterogeneous networks.
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MC. Thus, in order to decide MC configuration for UEs, the network traffic load
needs to be considered as well as UEs’ QoS requirements and channel quality.

In this paper, RATs selection based on MC configuration is investigated and
the scenario of dual-connectivity (DC) is focused. Based on RSRP values from
macro and small cell BSs, UEs’s connection can be determined as follows.

– Connect to macro BS (MBS) for rsrpM ≥ rsrpS + β
– Connect to small cell BS (SBS) for rsrpM ≤ rsrpS − β
– Connect to MBS and SBS by DC for rsrpS + β > rsrpM > rsrpS − β

Here, rsrpM and rsrpM denote RSRPs from MBS and SBS, respectively. In the
case the cell range extension (CRE) bias is given, rsrp′

M = rsrpM − CRE can
be considered instead of rsrpM . In order to provide DC configuration to UEs, a
DC offset value β is considered with RSRP values. Optimal DC offsets β could
be changed by various factors, such as the available radio resource among BSs
and by the location of UEs and BSs. Since the optimal offset values vary from
one UE to another, offset values could be defined by each UE [20].

3 RATs Selection with Reinforcement Learning

While the Reinforcement Learning (RL) mechanism uses experiences of agents
and could§learn automatically from the environment without any training data
on field, it allows an online learning. In our work, Q-learning is chosen since it
enables learning the best policy without any priori knowledge of its environment.

In RL, at time epoch t, the agent in the state st selects and performs an
action at. After the action at, it observes the environment and receives a reward
cost C for this specific action. While RL accumulates costs obtained by action,
it considers instant cost as well as cumulative costs in the future. With learning,
it is aimed to find the optimal policy for selecting an action in a given state that
minimizes the value of total cost. In Q-learning, in order to learn this policy, an
agent utilises a value-function, Q-function, Q(st, at). It is defined as follows [21]:

Q(s, a) = E

{ ∞∑
t=0

γt C(st, at) | s0 = s, a0 = a

}
, (1)

where γ, C(st, at), s0 and a0 denote a discount factor (0 ≤ γ ≤ 1), the cost of
the set of state st and action at, intial state, and initial action, respectively.

While it is really difficult to obtain the optimal policy by solving (1), RL
could be exploited to find the optimal policy by using Q-table updates. In Q-
table, each table entry, Q(st, at), is associated with a state-action pair and the
Q-learning algorithm maintains Q-table of values that represent the goodness
of taking a particular action when in a given state. It is enough to converge
this learning if all Q-values of the sets of states and actions are continued to be
updated. Q-learning realizes (1) by updating Q-table as follows.

Q(st, at) ← (1 − ρ)Q(st, at) + ρ[Ct+1 + γ min
a∈A

Q(st+1, a)], (2)
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where ρ is the learning rate of the range 0 ≤ ρ ≤ 1 indicating what extent the
learned Q-value will override the old one. When ρ = 0, the agent never learns.
When ρ = 1, the new knowledge of the most recent Q-value is only considered.
Ct+1 represents the delayed cost, which is obtained for an action at taken. As the
value of the discount factor γ in [0,1] is higher, the future cost mina∈A Q(st+1, a)
is weighted more than the delayed cost Ct+1. By updating Q-table in (2), the
agent learns the optimal policy for selection an action.

In this paper, the state, the action, and cost are defined as follows.

– State: The state of time epoch t is defined with the received power from BSs
as:

st = {rsrpM , rsrpS} where st ∈ S, (3)

where rsrpM and rsrpS denote the reference signal received power (RSRP)
from MBS and SBS, respectively. When there are multiple MBSs and SBSs,
one MBS and SBS of the strongest RSRP can be selected. To make Q-table
small and to convergence faster, two power values are quantized. S denotes
the set of all states.

– Action: The action of time epoch t is defined as:

at = bi where bi ∈ A (4)

where bi denotes the DC configuration offset value β and A is the set of all
possible offset values (i.e., all possible actions).

– Cost: The cost of time epoch t is defined as:

ct = n, (5)

where n denotes the number of UEs in outage.

Each UE monitors the level of RSRP from BSs and selects one MBS and SBS
of the strongest signal power. In other words, each UE observes its state. The
received power value is quantized to manage Q-table size small and to con-
vergence faster and each UE compares these quantized signal powers with its
Q-table’s states. If the UE cannot find the received powers from its Q-table,
the new state of received powers is added to Q-table. Among those sets whose
received powers are equal to the received powers, UEs can choose an action at

based on ε-greedy exploration and exploitation policy [21]. In ε-greedy policy,
at every decision epoch, a UE in state st explores with probability ε(st), and
stored Q-values is exploited with probability 1 − ε(st) as follows.

at =
{

mina∈A Qt(st+1, a) , probability 1 − ε(st)
rand(a) , probability ε(st).

(6)

The exploration rate ε(st) is defined by using λ(st, at) which is the number
of visits of state-action pair (st, at), as follows.

ε(st) =
1

log
( ∑

at∈A λ(st, at) + 3
) . (7)
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In (7), ε(st) in (0, 1) has a logarithmic decay. This approach aims to control
the frequency of exploration so that the best-known action is taken at most of the
times. Exploring is not stopped to enhance the long-term learning performance,
but rather decreased gradually over time. For convergence, the learning rate
ρ(st, at) is set by using λ(st, at) as follows.

ρ(st, at) =
1√

λ(st, at) + 3
. (8)

According to above definition, each UE decides the appropriate offset value
for MC configuration that minimize the number of UEs in outage. Then, each
UE is connected to selected RATs by comparing RSRPs from BSs with the MC
configuration offset. After BSs allocate resource to UEs, BSs calculate the num-
ber of UEs in outage UEs and send information to UEs. For resource allocation,
resource block (RB), the block of subcarriers, is considered as the basic radio
resource unit [9] and it is assumed that one RB is allocated to each UE.
After resource allocation, BSs send the information on the number of UEs in
outage to UEs, and each UE updates Q-value based on (2).

The procedures of the proposed algorithm are explained in Algorithm1.
While Step 1 to 10 and 13 are conducted by the UE side, Step 11 and 12 are
carried out by the BS side. Repeating the above steps makes Q-table values of
all sets of states and actions converge, and then agents can make right actions.

Result: β, the offset value for MC configuration for each UE

Initialisation: Q-table with a very high number;

Learning procedure: while Q-table converges do
1. UE selects the MBS and SBS of the strongest signal power;
2. UE compares the (quantized) received powers with Q-table’s states;
if no equal received powers on Q-table then

3. UE adds new received powers to its own Q-table;
end
4. Calculate ε(st) and generate a random number δ in [0,1];
if δ ≤ 1 − ε(st) then

5. UE chooses one value that has the lowest Q-value;
else

6. UE chooses one value randomly;
end
7. UE uses chosen offset value β as an action;
8. UE compares rsrpM and rsrpS added by β;
10. UE decides RATs to be connected;
11. BSs allocate RBs to each UE;
12. BSs calculate the number of outage UEs and pass it to UEs;
13. Each UE updates the chosen set’s Q-value based on (2).

end

Algorithm 1: The proposed RAT selection algorithm
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4 Performance Evaluation

We evaluate the performance of the proposed RAT selection algorithm via sim-
ulation. Table 1 shows the initial configuration parameters. In order to compare
the performance of the proposed algorithm, two reference schemes are consid-
ered: (1) single connectivity based RAT selection (labeled ‘SC’) where one BS of
the strongest RSRP is selected, and (2) dual connectivity based RATs selection
(labeled ‘DC-Always’) where DC is always configured to all UEs. The average
number of UEs in outage is considered as the performance indicator. Considering
the practical scenario, traffiic of short message size [18] and path loss model for
open production space is chosen [19]. Furthermore, as interval of DC configu-
ration offset, we use 2 dB for Q-learning to make Q-table small. The maximum
value of the offset is set to 32 dB, thus the actions have 17 levels.

Firstly, we investigate the impact of the DC offset value β on the reliabil-
ity performance as depicted in Fig. 3. With two reference schemes, DC based
algorithms are studied using different DC offset values of 4,10,20, 30 dB. While
all DC based algorithms produce better performance than the algorithm ‘SC’,
it is observed that increase in a DC offset value contributes to enhancement of
the reliability performance. However, the algorithm ‘DC-Always’ is shown to be
superior. In this case, while 20 UEs uniformly distributed are assumed, BSs do
not have difficulty in allocating RBs to all UEs. Since increase of traffic loads
from DC configuration does not lead to overload BSs, configurating DC for all
UEs could enhance their reliability.

Table 1. Simulation parameters

Parameters Values

No. of MBS/SBS 1/1

Transmit power MBS: 10 dBm, SBS: 0 dBm

Carrier frequency 3.5 GHz

Channel bandwidth 5 MHz

No. RBs 25

Noise density −174 dBm/Hz

No. UEs 20–30 (uniform dist.)

UE traffic [18] 40 bytes, 1 ms of message inter-arrival time

Path loss model [19] LoS: 32.45 + 20 log10(d3D) + 20 log10(f) + Xσ, σ = 3
nLoS: 32.45 + 24.7 log10(d3D) + 20 log10(f) + Xσ, σ = 5.17
(where dref = 10m, K = dref1.5, d3D ≥ 1m)
For d2D ≤ dref , prLoS = 1

For d2D > dref , prLoS =
(
− d2D−dref

K

)

Resource allocation Round robin

DC offset value β [0, 2, ..., 32] dB
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Fig. 3. Comparison of the average number of outage UEs from algorithms, SC, DC
with various offset (4 dB, 10 dB, 20 dB, 30 dB), and DC-Always at low traffic loads

Fig. 4. Comparison of the average number of outage UEs from algorithms based on
SC, DC-Always, and the proposed algorithm adopting ML at high traffic loads

Figure 4 shows the performance of the proposed approach adopting dis-
tributed reinforcement learning with two reference schemes. While 30 UEs are
considered in this simulation, the increase in data traffic from all UE’s DC config-
uration can cause resource shortage which spoils the benefit in reliability. Thus,
the ‘DC-Always’ scheme becomes insuperior to the ‘SC’ scheme by 26.9%. In the
proposed algorithm, ‘DC-Learning’, while each UE learns the optimal policy in
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DC configuration depending on its location and the traffic loads, the algorithm
tends to configure DC for UEs effectively. Compared to the ‘SC’ scheme, the pro-
posed algorithm could achieve the gain of 20.8% in reliability. For larger number
of UEs, the gap between the performance of ‘SC’, ‘DC-Always’, ‘DC-Learning’
could become more conspicuous.

5 Conclusion

In this paper, investigation into RATs selection in a multi-RAT network support-
ing multi-connectivity is provided. Considering different characteristics of UEs,
distributed machine learning is applied so that each UE could learn the policy
to configure MC and select appropriate RATs. With the simulation results, it
is shown that the proposed approach is able to achieve better reliability per-
formance compared to the single connectivity based RAT selection. While UEs
could select MC configuration autonomously considering their characteristics
and network traffic load, the proposed algorithm is shown to be superior to the
mechanism to configure MC for all UEs all the time. In this paper, all UEs are
assumed to have the same QoS requirements. In future research, multiple UEs
of heterogeneous traffic will be considered with the resource allocation method
to satisfy different QoS requirements of heterogeneous UEs.
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