
Enhanced Resource Management for Web
Based Thin Clients Using Cross-Platform

Progressive Offline Capabilities

George Alex Stelea1(&), Maurizio Murroni2 , Vlad Popescu1 ,
Titus Balan1, and Vlad Fernoaga1

1 Transilvania University, bd Eroilor 29A, Brasov, Romania
george.stelea@unitbv.ro

2 University of Cagliari, Via San Giorgio 12/2, 09124 Cagliari, Italy

Abstract. Web based thin clients are applications delivering content from the
Internet or Intranet and accessed via the browser on the running end device.
These clients are portable and cross-device compatible and have a large spec-
trum of applications, can perform from tele-measurement tasks to management
and information centralization. The capability of web-based thin clients to
function offline is a requirement that is indispensable even today for many
companies because offline-enabled thin clients allow the users to continue
working without workflow disturbance, preventing the loss of data, even when
the connection to the Internet is missing or malfunctioning. This paper is ded-
icated to a “barrier-free” cross-platform responsive and progressive web based
thin client, presenting its architecture and development, as well as the offline
capabilities using caching techniques and its advantages in resource manage-
ment and information back-up and security.

Keywords: Web based thin client �
Cross-platform progressive offline capabilities � Enhanced resource management

1 Introduction

Thin clients are necessary when fat clients are too expensive and upscale or because
they need more computing power or energy than available from the low-end terminals
(e.g. tablets or smartphones). A web based thin client is an application program
functioning according to the client-server model [1], where all the software is running
on the server, and only the presentation is delivered on the device (e.g. GIS or tele-
measurement applications where the thin client is basically the web browser) [2]. In the
modern Web, oriented towards portables, Cloud computing and virtualization the trend
is towards thin clients. Unlike traditional desktop software, web based thin clients do
not need important installation and execution processes on the user’s machine [3].
Instead, the data processing and evaluation mainly takes place on a remote web server
[4] and only the result of the data processing is transmitted to the user’s local client
computer for display or output [5], usually via a web browser which handles the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
A. Kliks et al. (Eds.): CrownCom 2019, LNICST 291, pp. 361–372, 2019.
https://doi.org/10.1007/978-3-030-25748-4_27

http://orcid.org/0000-0002-4618-0698
http://orcid.org/0000-0003-3421-4544
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25748-4_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25748-4_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25748-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-25748-4_27

communication with the web server (via the HTTP protocol) as well as the represen-
tation of the user interface [6].

On the server or virtualized desktop, the inputs are processed and the output is sent
back to the client, who only has to display them. The current generation of terminal
servers or virtualization solutions also allows the use of hardware beyond a printer and
works with optimized methods for playback of audio or video data. Although the trend
in the age of IoT networks and mobile/smart devices today is that everyone is online
24 h a day [7], there are still many situations in which an Internet connection is
malfunctioning or temporary missing (e.g. on the go, in cellular radio communica-
tions). An offline-enabled thin client allows the user to maintain the session – con-
tinuing to work even in this case without being disturbed in his workflow and without
the loss of data.

In this paper, we present a “barrier-free” [8] cross-platform responsive and pro-
gressive web based thin client using the new JavaScript [9] and HTML5 [10] speci-
fications with the Online Application Caching API, “Service Workers” and Bootstrap
Framework, presenting its architecture, development environment and its advantages in
resource management, rich context information administration and enhanced security.
The paper is structured as follows: Sect. 2 presents the concept and the technology to
achieve the cross-platform content to terminal adaption and the aim of this practice,
Sect. 3 outlines the progressive web methodology, describing the combined possibil-
ities offered by most modern browsers with the benefits of mobile use, Sect. 4 details
the offline capabilities of the proposed solution using a caching system, retrieving and
intercepting network requests from the cache and delivering push messages, indicating
the increased maintainability and testability, while Sect. 5 describes the conclusions
and the future work to be done.

2 Content to Terminal Adaption

The size and resolution of displays on laptops, desktops, tablets, smartphones and TV
sets can vary considerably [11]. For this reason, the appearance and operation of a web
based thin client are very dependent on the different requirements of the devices [12].
The aim of the content to terminal adaption practice is that thin clients adapt their
presentation so that they present themselves as clear and user-friendly as possible to
each viewer [13]. The criteria for the customized appearance are, in addition to the size
of the display device, also the available input methods (touch screen, mouse) or the
bandwidth of the Internet connection [14]. In order to achieve the responsive and
adaptive design of the solution we have chosen the Bootstrap Framework and CSS3
Media Queries - as shown in Figs. 1 and 2 - that allow different designs depending on
certain characteristics of the output environment.

362 G. A. Stelea et al.

In order to achieve optimal recognition using CSS for all display formats, the media
information with media queries was requested before loading the application. It was not
necessary to record the appropriate screen size for each individual device, but rather the
types of devices, media features and breakpoints. The terminal then automatically loads
the correct part of the CSS file and displays the content as the size of the screen allows.
The thin client’s user interface (UI) uses custom web services for graphical indicators,
meters, text boxes, inputs and buttons, which are also adaptable to various devices, as
shown in Fig. 3.

Fig. 1. Bootstrap Framework installation and call in the web applications <head> section.

Fig. 2. CSS3 media queries.

Enhanced Resource Management for Web Based Thin Clients 363

This is how cross-platform content to terminal adaption was implemented, and,
because there are used only standardized technologies, the software will also be
compatible with subsequent devices that would be built using this standards.

3 Management Trough Progressive Web Methodology

Using this application model we aimed to combine the possibilities offered by most
modern browsers with the benefits of mobile use [15]. The term “progressive” refers to
the fact that, from the point of view of the user experience, the thin clients progres-
sively adapts itself to the device and has many features, including speed and device
optimization, that were previously reserved only for native software. We have com-
bined, this way, the advantages of a classic thin client and of a custom desktop/mobile
application. To implement the previously described feature, standardized HTML5,
CSS3 and JavaScript was used, as shown in Fig. 4.

Fig. 3. “Thin client” solution display of a tele-measurement on a smartphone and laptop/desktop
device resolution.

Fig. 4. JavaScript asynchronous registration function.

364 G. A. Stelea et al.

In addition, we have used “Service Workers” [16] to serve through optimal caching
of the online functionalities, as presented in Fig. 5. A service worker is a pro-
grammable network proxy, allowing the network requests control from the application.
It is terminated when not in use, and restarted/executed on access and custom events.
The HTTPS protocol was used for secure communication between the web client and
the web server.

For example, the user starts the application in a browser, enters the URL of the web
server and sends the first request. The web server accepts this request and passes it to
the thin client, which initially acts like a web application. The thin client then generates
or loads the HTML source code of the requested resources, which are sent back to the
user’s browser by the web server (HTTPS response).

Due to the responsive design, the users see a software product layout adapted to its
terminal. Although the web based thin client is accessed through an URL, the users can
drag an icon to their mobile device home screen or receive push notifications and use
the application offline. Progressive enhancement technology allows for each user the
best possible user experience based on their technical capabilities.

The main advantages of using progressive enhancement on the thin client are:

– Custom Management and Updates – data and information is easy to manage and the
resources are always up-to-date thanks to the data update process offered by Service
Workers;

– Decentralized backups - a user can work in a different workplace every day without
any restrictions using local storage and local databases;

– Endpoint Management - is optimized because on the thin client is running only the
software necessary for server communication;

– Progressive - it works for every user, regardless of the browser chosen because it is
built at the base with progressive improvement principles;

Fig. 5. Browser console - service worker verification.

Enhanced Resource Management for Web Based Thin Clients 365

– Responsive - it adapts to the various screen sizes: desktop, mobile, tablet, or even
dimensions that can later become available;

– Independent of connection availability - Service Workers allow the application to
run online, in intermittent connections (with longer interrupts) or with low quality
connections.

– Secure - exposed over HTTPS protocol to prevent the connection from displaying
unwanted information or altering the contents;

– Discoverable - it is identified as an “application” thanks to the W3C manifesto and
the Service Worker registration scope that allows search engines to find them;

– Linkable - easily shared via the URL, not requiring complex installations.

4 Offline Capabilities

The engine of the offline capabilities is based on a cache manifest file as presented in
Fig. 6. The manifest file is a list of all the resources that the thin client needs to access
when there is no network connection [17]. This can be a common text file (or a JSON
file) located elsewhere on the web server.

In online mode the thin client reads the list of URLs from the manifest file,
downloads the resources, caches them locally, and automatically keeps the local copies
up to date as they change. If the resources are accessed without a network connection,
the thin client automatically uses the local copies.

The Caching API is made of:

– the Web Storage Specification: includes an API for client-side storage of session-
specific data and an API for storing session-spanning data;

– the Web SQL Database: a client-side JavaScript database;
– Web Workers: to execute parallel “background” processes in the client.

Fig. 6. JSON cache manifest file.

366 G. A. Stelea et al.

When the resource is recalled, the thin client checks to see if the manifest has
changed. If so, all the necessary resources will be downloaded again. The cache will be
updated only if the files that are registered with it have changed. To trigger an update,
the contents of the manifest file must be changed. In Fig. 7 is presented the updated
manifest in the browser console:

To increase maintainability and testability, of the resources the thin client under
consideration was built to separate the markup and JavaScript code using the Model-
View-ViewModel (MVVM), also known as Model View Presenter. The MVVM
pattern splits the application into three parts Model, View and ViewModel [18] as
shown below in Fig. 8.

Fig. 7. Browser console – thin client manifest file.

Fig. 8. Model-View-ViewModel pattern.

Enhanced Resource Management for Web Based Thin Clients 367

An important feature of a ViewModel is that it does not know the View. The bridge
between the two concepts is realized via data binding, fields in the View are bounded to
properties of the ViewModel. The same applies to events that occur in the View, such
as clicks on buttons and operations in the ViewModel. The data binding mechanism
handles both the updating of GUI (Graphical User Interface) [19] elements in the View,
as the associated properties in the ViewModel change, and the transfer of user changes
from the View to the ViewModel.

With the help of a Service Worker, the web application was configured to use
priority cached assets, allowing for a specific user experience online even before
loading more data from the network [20].

Technically, Service Workers provide a network proxy implemented with Java-
Script script in the web browser to manage Web/HTTP requests from a program,
interposing themselves between the network connection and the terminal providing the
content. In this way cache mechanisms can be used efficiently and allow error-free
behavior during long periods of offline use.

The architecture of the proposed web based thin client is presented, in Fig. 9.

A web-enabled smart device is accessing the URLs, then the application Service
Worker downloads the resources, caches them locally, and automatically keeps the
local copies up to date as they change. When the resource is recalled, a request event is
triggered to see if the manifest has changed. The cache will not be updated if only files
that are registered with it have changed. The Cross-platform content to terminal
adaption is generated using Bootstrap Framework, HTML5, jQuery, JavaScript and
CSS3 Media Queries with the Model-View-ViewModel pattern.

The thin client subsequently carries out all the tasks that are assigned to it inde-
pendently. Offline accessibility is managed by the Service Worker, which once
installed in the navigation browser intercepts network requests and performs appro-
priate actions depending on whether the network is available or not.

Fig. 9. Proposed architecture.

368 G. A. Stelea et al.

This feature allows the user to access the resources even without connection and
also to improve the Quality of Experience (QoE) and Quality of Service (QoS). Even if
there is a connection, some files will not need to be uploaded from the server since they
have already been stored locally.

In order that JavaScript can be executed, it has always been a prerequisite that the
resource was opened in a browser - using this method, on the other hand, allows a
JavaScript file to be executed even if the associated resource is not open at all.

The script also has the option of loading new content in the background - for
example, a previous executed measurement result. If the data are accessed at a later
time, the content will be already available, as a back-up.

In addition, the thin client only works over secure HTTPS connections [21]. This
has security reasons in the first place, but it was also build in a farsighted mode,
because it’s likely that new standards will impose that resources to sensitive features or
hardware will only run over HTTPS connections in the future [22].

As previously mentioned, the JavaScript file is detached from the actual web
application, and runs in the background - invisible to the visitor - and it is registered by
the thin client in the first online access of the resources. This is done through the
Service Worker API’s “register()” method, as shown in Fig. 10.

The Service Worker also runs only in its own thread, does not allow direct
manipulation of the parent’s DOM (Document Object Model) [23], and has the
message-based interface [24]. It acts as a controller, proxy or interceptor: it has its own
cache and can switch between every outgoing network request [25]. The offline
capability is realized by an automatic preconfigured decision if an answer can be
requested from the cache or forward the request to the network.

5 Conclusions and Future Work

The novelty and the biggest advantage of the presented web based thin client solution
over classic clients is the easier operation, with effectively reduced overhead, only
running the software needed to access centrally operated applications. It can operate

Fig. 10. Service worker API’s - JavaScript “register()” method.

Enhanced Resource Management for Web Based Thin Clients 369

consistently regardless of the applications that are actually being used, in accordance
with the balanced Edge Computing/Cloud Computing paradigm. This also allows a
very simple resource management of centralized or decentralized control systems and
has a large spectrum of potential applications, being able to perform from tele-
measurement tasks to management and rich context information centralization. The
web based cross-platform thin client enhanced with content to terminal adaption does
not need to be installed on the device - this has enormous advantages, as most of the
equipment is quickly reaching the limits of storage space. Since the presented solution
does not need to be installed, the operators are also independent of commercial soft-
ware stores that would take shares for marketing. Because it is developed with stan-
dardized technologies, also a big asset it that it has an increased security and reduced
computing power needs because the thin client does not imply third party plugins or
additional dependencies which increase the risks of security breaches and often require
additional resource allocation.

The architecture of our solution was presented together with the development
environment and its advantages, being oriented towards achieving a decoupling of
developments in the still relatively young market of mobile devices - thus, it is also
likely to run on future devices. In addition, concurrent access is achieved, as an almost
unlimited number of thin clients can be managed by simply assigning configurations.
Quickly turning resource events and handlers on and off results in a significant service
advantage for the end user, especially for remote clients and lengthy installations.

The capability of the web-based thin client solution to function offline is a main
advantage, especially for companies with users who occasionally have a bad Internet
connection - this is an elementary aspect because in this scenario the software con-
sistently adopts an offline first approach. Push notifications are also available, allowing
users the same access to their personal interface, configuration, directories, and
installed programs, regardless of which physical thin client workstation they log on to.
The endpoint management is optimized because on the thin client is running only the
software necessary for server communication.

Future work will be devoted to enhancing the proposed solution, helping the user to
work in a different workplace every day without any restrictions, using local storage
and local databases, creating also the back-up systems in a distributed environment.

Acknowledgement. This paper has been supported by the Autonomous Region of Sardinia-
Italy (Piano Sulcis Research Grant SULCIS-821101).

References

1. Oluwatosin, H.S.: Client-server model. IOSR J. Comput. Eng. 16(1), 67–71 (2014). p-ISSN
2278-8727

2. Kim, J., Baratto, R.A., Nieh, J.: pTHINC: a thin-client architecture for mobile wireless web.
In: Proceedings of the 15th International Conference on World Wide Web (WWW 2006),
pp. 143–152. ACM, New York (2006)

370 G. A. Stelea et al.

3. Tian, Y., Song, B., Huh, E.: Towards the development of personal cloud computing for
mobile thin-clients. In: 2011 International Conference on Information Science and
Applications, Jeju Island, pp. 1–5 (2011)

4. Al-Hammouri, A., Al-Ali, Z., Al-Duwairi, B.: ReCAP: a distributed CAPTCHA service at
the edge of the network to handle server overload. Trans. Emerg. Telecommun. Technol. 29
(4), e3187 (2017)

5. Stelea, G.A., Fernoaga, V., Gavrila, C., Robu, D.: Web-service based thin client for tele-
measurement. Int. Sci. Conf. eLearn. Softw. Educ. 2, 128–134 (2018)

6. Pohja, M.: Comparison of common XML-based web user interface languages. J. Web Eng. 9
(2), 95–115 (2010)

7. Charland, A., Leroux, B.: Mobile application development: web vs native. Commun. ACM
54(5), 49–53 (2011)

8. Mahmood, A., Casetti, C., Chiasserini, C.F., Giaccone, P., Harri, J.: Efficient caching
through stateful SDN in named data networking. Trans. Emerg. Telecommun. Technol. 29
(1), e3271 (2010)

9. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of
JavaScript programs. SIGPLAN Not. 45(6), 1–12 (2010)

10. Vaughan-Nichols, S.J.: Will HTML 5 restandardize the web? J. Comput. 43(4), 13–15
(2010). https://doi.org/10.1109/MC.20

11. Orsini, G., Bade, D., Lamersdorf, W.: CloudAware: empowering context-aware self-
adaptation for mobile applications. Trans. Emerg. Telecommun. Technol. 29(4), e3210
(2017)

12. Rajesh, N.A.: Responsive web design. Int. J. Eng. Comput. Sci. 4(3)
13. Robu, D., Fernoaga, V., Stelea, G.A., Sandu, F.: Tele-measurement with virtual instrumen-

tation using web-services. Des. Technol. Electron. Packag. (SIITME) 23, 387–394 (2017)
14. Baturay, M.H., Birtane, M.: Responsive web design: a new type of design for web-based

instructional content. Procedia – Soc. Behav. Sci 106, 2275–2279 (2013). ISSN 1877-0428
15. Joorabchi, M.E., Mesbah, A., Kruchten, P.: Real challenges in mobile app development. In:

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement,
pp. 2851–2864 (2013)

16. Smutny, P.: Mobile development tools and cross-platform solutions. In: Proceedings of the
13th International Carpathian Control Conference (ICCC), pp. 653–656 (2012). https://doi.
org/10.1109/carpathiancc.2012.6228727

17. Maddah-Alim, M.A., Niesen, U.: Fundamental limits of caching. IEEE Trans. Inf. Theory
60, 2856–2867 (2014). https://doi.org/10.1109/TIT.2014.2306938

18. Leff, A., Rayfield, J.T.: Web-application development using the Model/View/Controller
design pattern. In: Proceedings Fifth IEEE International Enterprise Distributed Object
Computing Conference, pp. 118–127 (2001). https://doi.org/10.1109/edoc.2001.950428

19. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (GUI) testing:
systematic mapping and repository. J. Inf. Softw. Technol. 55(10), 1679–1694 (2013). ISSN
0950-5849

20. Bhamare, D., Samaka, M., Erbad, A., Jain, R., Gupta, L.: Exploring microservices for
enhancing internet QoS. Trans. Emerg. Telecommun. Technol. 29, e3445 (2018)

21. Clark, J., Oorschot, P.C.: SoK: SSL and HTTPS: revisiting past challenges and evaluating
certificate trust model enhancements, pp. 511–525 (2013)

22. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most
dangerous code in the world: validating SSL certificates in non-browser software. In: CCS
2012, pp. 38–49. ACM, New York (2012)

Enhanced Resource Management for Web Based Thin Clients 371

http://dx.doi.org/10.1109/MC.20
http://dx.doi.org/10.1109/carpathiancc.2012.6228727
http://dx.doi.org/10.1109/carpathiancc.2012.6228727
http://dx.doi.org/10.1109/TIT.2014.2306938
http://dx.doi.org/10.1109/edoc.2001.950428

23. Jensen, S.H., Madsen, M., Moller, A.: Modeling the HTML DOM and browser API in static
analysis of JavaScript web applications. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering,
pp. 59–69 (2013). https://doi.org/10.1145/2025113.2025125

24. Arnbak, A., Asghari, H., Van Eeten, M., Van Eijk, N.: Graphical user interface (GUI) testing:
systematic mapping and repository. Commun. ACM 57(10), 47–55 (2013). https://doi.org/
10.1145/2660574

25. Leu, J., Chen, C., Hsu, K.: Improving heterogeneous SOA-based IoT message stability by
shortest processing time scheduling. IEEE Trans. Serv. Comput. 7(4), 575–585 (2014)

372 G. A. Stelea et al.

http://dx.doi.org/10.1145/2025113.2025125
http://dx.doi.org/10.1145/2660574
http://dx.doi.org/10.1145/2660574

	Enhanced Resource Management for Web Based Thin Clients Using Cross-Platform Progressive Offline Capabilities
	Abstract
	1 Introduction
	2 Content to Terminal Adaption
	3 Management Trough Progressive Web Methodology
	4 Offline Capabilities
	5 Conclusions and Future Work
	Acknowledgement
	References

