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Abstract. Channel-charting (CC) is a machine learning technique for
learning a multi-cell radio map, which can be used for cognitive radio-
resource-management (RRM) problems. Each base-station (BS) extracts
features from the channel-state-information samples (CSI) from trans-
missions of user-equipment (UE) at different unknown locations. The
multi-path channel components are estimated and used to construct a
dissimilarity matrix between CSI samples at each BS. A fusion center
combines the dissimilarity matrices of all base-stations, performs dimen-
sional reduction based on manifold learning, constructing a Multipoint-
CC (MPCC). The MPCC is a two dimension map, where the spatial
difference between any pair of UEs closely approximates the distance
between the clustered features. MPCC provides a mapping for any given
trained UE location. To use MPCC for cognitive RRM tasks, CSI mea-
surements for new UEs would be acquired, and these UEs would be
placed on the radio map. Repeating the MPCC procedure for out-of-
sample CSI measurements is computationally expensive. For this, exten-
sions of MPCC to out-of-sample UE CSIs are investigated in this paper,
when Laplacian-Eigenmaps (LE) is used for dimensional reduction. Sim-
ulation results are used to show the merits of the proposed approach.

Keywords: Massive MIMO · Channel charting ·
Laplacian eigenmaps · Out-of-sample mapping

1 Introduction

Massive-multiple-input-multiple-output (mMIMO) technology is a promising
technology for fifth-generation (5G) cellular communications, with the poten-
tial to provide high spectral and power efficiency. In a mMIMO cell, each base-
station (BS) has a large number of antennas, which can provide a simultaneous
use of the resource (e.g., frequency and/or time slots) for multiple user equipment
(UEs) in the cell [3,4,13]. Furthermore, the high spatial resolution exploited by
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the large-scale antenna arrays used at the mMIMO BSs can be used for many
applications, such as UE positioning and environment mapping [7,8,11].

To efficiently mange a mMIMO network, and to perform cognitive networking
tasks, the network states which include the spatial distribution and trajectories of
the UEs, neighborhood relationships among the UEs, and handover boundaries
among neighboring cells need to be estimated. A novel framework called channel
charting (CC) based on the massive amounts of channel-state-information (CSI)
available at the base-stations is proposed for a single cell MIMO system in [12].
CC is based on using unsupervised machine learning techniques to create a radio
map of the cell served by the BS, which preserves the neighborhood relations of
UEs, using features that characterize the large scale fading effects of the channel.
The obtained CC can be used for local radio-resource-management (RRM) in
the cell. However, cell edge UEs may not be accurately located in the chart due
to their low signal-to-noise-ratio (SNR) at the cell edge.

In [5], a multi-point CC (MPCC) framework is proposed to support advanced
multi-cell RRM and to accurately map cell edge UEs. For improved charting
performance, features are extracted and clustered based on advanced signal pro-
cessing and machine learning techniques. Each BS generates it own dissimilarity
matrix between the users it can decode, then the dissimilarity matrices are fused
at a fusion center and then used to construct the MPCC. The trustworthiness
and continuity measures show that the proposed MPCC is capable to preserve
the neighborhood structure between UEs in the network.

To use the MPCC framework for different RRM functionalities, it is impor-
tant to generalize its capability, allowing to incorporate new data to an existing
MPCC and/or to estimate the features related to a location in the chart. As the
CSI of a UE can change rapidly in a small distance, it is important to accurately
estimate the location of an out-of-sample UE location. In this paper, the exten-
sion of MPCC to out-of-sample data points based on Laplacian Eigenmaps (LE)
is considered.

The remainder of this paper is organized as follows. In Sects. 2 and 3, the
system model and the MPCC are introduced, respectively. In Sect. 4, the problem
formulation is presented. Numerical results are presented and discussed in Sect. 5.
Finally, conclusions are drawn in Sect. 6.

2 System Model

The system under consideration is schematically shown in Fig. 1. Each BS b for
b = 1, · · · , B has M antenna elements and each UE k for k = 1, · · · ,K has a
single antenna element. For a mMIMO system, the channel vector of UE k using
a uniform-linear-array (ULA) at BS b for a coherence bandwidth can be modeled
as [5]:

h
(k)
b =

Lk∑

l=1

β
(k)
b (l)ab

(
φ
(k)
b (l)

)
, (1)

where Lk is the number of multi-path components for the wireless channel
between UE k and BS b, φ

(k)
b (l) is the direction of arrival of the lth path and
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β
(k)
b (l) is the gain of the lth path, and ab(·) is BS b steering vector. For ULA,

a(φ) can be modeled as:

a(φ) = [1, eı 2π
λ s sin(φ), · · · , eı 2π

λ (M−1)s sin(φ)]T , (2)

where λ is the carrier wave-length and s is antenna spacing. The covariance
Y

(k)
b ∈ C

M×M of the CSI h
(k)
b used to extract the features becomes

Y
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where E is the expectation operator, A
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is a matrix of array steering vectors, and S
(k)
b = diag

(
E[|β(k)

b (1)|2], · · · ,

E[|β(k)
b (Lk)|2]) is a diagonal matrix of multi-path power components. Channel

charting is based on the assumption that there is a continuous mapping from
the spatial location p(k) of UE k to the covariance CSI Y

(k)
b given as [5,12]:

Hb : Rd → C
M×M ;Hb(p(k)) = Y

(k)
b , (4)

where d is the spatial dimension.

3 MPCC

Multi-point channel charting extends CC to multiple BSs. A block diagram
representing MPCC is shown in Fig. 2. Using the estimated covariance CSI{{Y

(k)
b }K

k=1

}B

b=1
collected at B BSs form K unknown UE spatial locations

P = {pk}K
k=1, the MPCC finds a low dimension channel chart Z = {zk}K

k=1,
such that:

‖zk − zm‖ ≈ α ‖pk − pm‖ , for k,m ∈ {1, · · · ,K}, (5)

Fig. 1. Multipoint mMIMO system.
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Fig. 2. MPCC block diagram.

where α is a scaling factor. Note that neither the UEs spatial locations P nor
the locations of the BSs are known; the MPCC is computed solely based on the
covariance CSI

{{Y
(k)
b }K

k=1

}B

b=1
.

3.1 Feature Extraction and Dissimilarity Matrix

The feature vector f
(k)
b for UE k at BS b is selected based on the multi-path

components as [5]:

f
(k)
b = [λ(k)

b (1), · · · , λ
(k)
b (Lk), φ(k)

b (1), · · · , φ
(k)
b (Lk)], (6)

where λ
(k)
b (l) = E[|β(k)

b (l)|2]. The multi-path components (power and phase)
{λ

(k)
b (l)}Lk

l=1 and {φ
(k)
b (l)}Lk

l=1 of UE k at BS b are estimated from the covariance
matrix Y

(k)
b using the multiple-signal-classification (MUSIC) algorithm [10]. The

dissimilarity between two UEs (k,m) is based on identifying multi-path compo-
nents in their feature vectors that are similar. For this, the components of feature
vectors are transformed to Cartesian coordinates as [5]:

F{f
(k)
b } = [x(k)

b (1), · · · ,x
(k)
b (Lk)], (7)

where x
(k)
b (l) = [λ(k)

b (l) cos
(
φ
(k)
b (l)

)
, λ

(k)
b (l) sin

(
φ
(k)
b (l)

)
]T .

A 2D non-linear transformation N ν
b : R

2 → R
2 with a set of parameters

ν is hand-crafted based on the statistical and geometrical characteristics of the
multi-path components of all K UEs that a BS is seeing. This function is applied
to the geometrical representations of the multi-path components x

(k)
b (l). The

transformation N ν
b is used in order to make clusters of multipath components

separable.
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To cluster multipath components to clusters deemed to be similar,
the density-based-spatial-clustering-of-applications-with-noise (DBSCAN) algo-
rithm [6] is used to label the multi-path components after applying the trans-
formation N ν

b . This results in a label L(N ν
b (x(k)

b (i))
) ∈ {C1, · · · , CN} for each

multi-path component, where Cn is the label of the nth cluster. The dissim-
ilarity coefficient between a pair of UEs (k,m) then is computed taking into
consideration multi-path components of the UEs that are in the same cluster.
Dissimilarity is computed as:

db(f
(k)
b ,f

(m)
b )

=

{
||x(k)

b (i∗) − x
(m)
b (j∗)||2 if L(N ν

b (x(k)
b (i∗))

)
= L(N ν

b (x(m)
b (j∗))

)
,

||x(k)
b (1) − x

(m)
b (1)||2, otherwise,

(8)

where [i∗, j∗] = argmin
i,j

(
λ
(k)
b (i), λ(m)

b (j)
)
. The dissimilarity matrix Db ∈

R
K×K then has the elements Db(k,m) = db(f

(k)
b ,f

(m)
b ) for k,m = 1, · · · ,K.

The benefits of having multiple spatially distributed BSs can be utilized by
merging the BS-specific dissimilarity matrices {Db}B

b=1 into a global dissimilarity
matrix D, where the (k,m)th element D(k,m) can be computed as:

D(k,m) =
1

∑B
b=1 ωb(k,m)

B∑

b=1

ωb(k,m)Db(k,m), (9)

where ωb(k,m) is a weighting factor computed as ωb(k,m) = min(γ(k)
b , γ

(m)
b )2

and γ
(k)
b is the SNR of the wireless link between UE k and BS b.

4 Out-of-Sample Extension

For a given dissimilarity matrix, different dimension reduction techniques (i.e.,
linear, non-linear, convex and non-convex optimization approaches) have been
proposed in the literature. The performance of a given technique is problem
dependent, as discussed in [9]. The single cell CC problem has been solved using
the principle-component-analysis (PCA), Sammon’s-mapping (SM) and Autoen-
coder reduction techniques in [12], whereas the MPCC is solved using SM, Lapla-
cian Eigenmaps (LE) and t-distributed-stochastic-neighbor-embedding (t-SNE)
in [5]. In this paper, LE is considered, and extended for the out-of-sample MPCC
problem.

LE is a computationally efficient non-linear dimensionality reduction algo-
rithm based on the graph Laplacian, that preserves neighborhood properties and
clustering connections [1]. LE constructs a graph from neighborhood information
of the dissimilarity matrix. The LE problem can be formulated as [1]:

min
X

trace
(
XT LX

)
, (10a)

s.t. XT SX = IK , (10b)
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Algorithm 1. The LE for MPCC.
1: Given: the dissimilarity matrix D.
2: Construct: the adjacency matrix, two approaches can be considered:

– The ε-neighborhood, nodes k and m are connected by an edge if D(k, m) ≤ ε.
– Nodes k and m are connected by an edge if m is among the N nearest neighbors

of k or k is among the N nearest neighbors of m.
3: Choosing: the weight matrix W with [W ]k,m = W (k, m) with two approaches

can be considered:
– Using the heat kernel with temperature T ; if nodes k and m are connected,

W (k, m) = e− D2(n,m)
T , otherwise W (k, m) = 0.

– Simple approach, if nodes k and m are connected, W (k, m) = 1, otherwise
W (k, m) = 0.

4: Compute: the Laplacian Matrix L = S − W , where S is the degree matrix
(diagonal matrix) with S(k, k) =

∑K
i=1 W (k, i),

5: Compute: the eigenvalues λi for i = 0, · · · , K − 1 and eigenvectors vi for i =
0, · · · , K − 1 for the generalized eigenvector problem: Lv = λSv,

6: Order: the eigenvectors v0, v1, · · · , vK−1 according to their eigenvalues, with 0 =
λ0 < λ1 ≤ λ2 ≤ · · · ≤ λK−1.

7: Return: the position of the kth UE on the MPCC as: z(k) = [v1(k), v2(k)] for
d = 2.

where trace is the trace function, IK is the identity matrix of order K, X =
[x(1)T , · · · ,x(K)T ]T represents the optimization variables in a matrix form,
L is the Laplacian matrix and S is the degree matrix as detailed below. The
solution of (10) can be obtained in a closed form as the solution of a generalized
eigenvector problem [1].

The MPCC is obtained by computing the eigenvectors of the LE as described
in Algorithm 1. Since the MPCC is constructed by processing the data of all UEs
from all BSs, it is computationally expensive to repeat the MPCC process if an
out-of-sample data item is available, and needs to be inserted into the chart. If
the original MPCC is based on a sufficient number of samples, it is expected
that the out-of-sample data will not change the MPCC positions.

Here, we address out-of-sample extension of MPCC in this sense, aiming to
estimate the location of the new sample on the MPCC, to be used for RRM
functions, such as hand-over prediction. It is worth mentioning that an out-of-
sample data item needs to be processed using the same non-linear transformation
N ν

b at each BS b for b = 1, · · · , B and then, the cluster labeling based on the
original data has to be applied for each multi-path component.

In [2], a generalized framework for out-of-sample extension is proposed for
several algorithms, providing that these algorithms can be seen as learning eigen-
functions of a data dependent kernel. The out-of-sample mapping can be formu-
lated as an optimization problem, where the objective is to find a normalized
kernel function that minimizes the mean squared-error. The normalized kernel
vector is used as a weight vector to find the out-of-sample mapping. Using this
on MPCC is called E-MPCC. For LE, the normalized kernel functions (weights)
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Algorithm 2. The E-MPCC for UE j, j /∈ {1, · · · ,K}.

1: Given: ν of N ν
b , Ŵ ∈ R

K×K , and the corresponding eigenvectors v̂1, and v̂2 for
d = 2.

2: Estimate: the multi-path components {f
(j)
b }B

b=1 for j /∈ {1, · · · , K}.

3: Compute the dissimilarity coefficient db(f
(j)
b , f

(m)
b ), m = 1, · · · , K of the out-of-

sample UE j for j /∈ {1, · · · , K} at B base-stations.
4: Compute the dissimilarity fusion vector for the out-of-sample UE j.
5: Compute the weight vector Ŵ j = [Ŵ (j, 1), · · · , Ŵ (j, K)].
6: Map the position z(j) on the MPPC using (12).

are computed as [2]:

Ŵ (k, i) =
1
K

W (k, i)√
Ex[W (k, x)]Ey[W (i, y)]

, k, i ∈ {1, · · · ,K}, (11)

where the expectation is taking with respect to the original data set. The E-
MPCC position of an out-of-sample data z(j) for j /∈ {1, · · · ,K} can be com-
puted as:

z(j) =

[
K∑

k=1

Ŵ (j, k)v̂1(k),
K∑

k=1

Ŵ (j, k)v̂2(k)

]
, (12)

where the weight Ŵ (j, i) for j /∈ {1, · · · ,K} is computed based on the dissimi-
larity of the location with respect to the points in the original set, and the eigen-
vectors v̂1 and v̂2 are computed based on the normalized weighting matrix Ŵ .

5 Simulation Results

An urban outdoor multi-cell mmWave scenario is considered as discussed in [5].
The system parameters are shown in Table 1. A ray tracing channel model is used
to generate multi-path channels. We generate K UE locations on the streets of a
Manhattan grid. The CSI of the UEs are estimated at multiple BSs. The number
of nearest neighbors N are selected as 5% of UEs. The number of new samples J
for which out-of-sample extension is applied is 10% of the total number of UEs.

Two scenarios are considered. In Scenario I, the MPCC is generated based
on the channel features of K UE locations, and then J UE locations are removed
randomly. The proposed E-MPCC is used for mapping the J locations to the
chart. In scenario II, J UE locations are selected randomly and the MPCC is
generated based on the channel features of K − J UE locations. The proposed
E-MPCC is used for mapping the J locations to the chart.

An example instance for MPCC/-EMPCC of Scenarios I&II for different
settings is shown in Fig. 3. Clearly, the depicted chart shows that the J out-of-
sample locations are accurately mapped by E-MPCC. For settings 1 (Set. 1),
the parameters are K = 500, J = 100 and B = 4, and for settings 2 (Set. 2),
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Table 1. Simulation parameters [5].

Parameter Value Parameter Value

Carrier frequency 28GHz Bandwidth 256MHz

UE Tx power 23 dBm BS noise power −86 dBm

OFDM subcarriers 256

Table 2. CT and TW performance measures.

MPCC E-MPCC

CT TW CT TW

Settings 1 0.725 0.682 0.7203 0.677

Settings 2 0.755 0.701 0.758 0.701
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Fig. 3. E-MPCC and MPCC for: (a) Scenario I and Set. 1; (b) Scenario II and Set. 1;
(c) Scenario I and Set. 2 (d) Scenario II and Set. 2.
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Fig. 4. The probability of relative-error εr.

the parameters are K = 5000, J = 500 and B = 10. The performance of
the E-MPCC is evaluated using the continuity (CT) and trustworthiness (TW)
measures as shown in Table 2. For a discussion on these measures, see [12]. The
CT and TW measures of the E-MPCC are comparable of the MPCC. The CT
and TW are computed by considering 20 nearest neighbors. For MPCC, all K
UE are used to generate the chart, whereas for E-MPCC, the chart is constructed
by K − J UEs and the E-MPCC is used to position the reaming J UEs.

The probability distribution of the relative-error εr of out-of-sample locations
of E-MPCC is shown in Fig. 4. The probability that εr is less than 7% is 90%.
The small relative error is a promising indicator that E-MPCC can be used for
different RRM functionalities.

6 Conclusion

In this paper, Multipoint Channel Charting based on Laplacian Eigenmap man-
ifold reduction was extended to out-of-sample UE locations. First, a MPCC was
constructed using an original data set of UE CSIs. The multi-path components
of the new CSI sample were estimated at each BS and then processed using the
same non-linear transformation as the original set. The dissimilarity vector of the
out-of-sample UE is used to generate the weighting vector for out-of-sample map-
ping. The resulting E-MPCC algorithm is then used to map out-of-sample UEs
to the MPCC map. The trustworthiness and continuity performance measures
were used to evaluate the E-MPCC, and it was found that out-of-sample exten-
sion works in a reliable manner. The method has wide applicability in cognitive
radio resource management, where predictions of UE connectivity parameters
would be used.

In future work, the out-of-sample extension of MPCC for different dimension
reduction techniques are going to be addressed. Machine learning techniques
based on neural networks can be used to parametrize the MPCC and then used
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for out-of-sample mapping. The efficiency and accuracy of out-of-sample exten-
sions need to be evaluated for different RRM functions such as handover and
identifying cell boundaries.

Acknowledgement. This work was funded in part by the Academy of Finland (grant
319484).

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

2. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M.:
Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clus-
tering. In: Advances in Neural Information Processing Systems, pp. 177–184. MIT
Press (2004)

3. Bjornson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one
critical question. IEEE Trans. Commun. 54(2), 114–123 (2016)

4. Busari, S.A., Huq, K.M.S., Mumtaz, S., Dai, L., Rodriguez, J.: Millimeter-wave
massive MIMO communication for future wireless systems: a survey. IEEE Com-
mun. Surv. Tutor. 20(2), 836–869 (2018)

5. Deng, J., Medjkouh, S., Malm, N., Tirkkonen, O., Studer, C.: Multipoint channel
charting for wireless networks. In: Proceedings of 52nd Asilomar Conference on
Signals, Systems, and Computers, pp. 286–290, October 2018

6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise, pp. 226–231. AAAI Press
(1996)

7. Garcia, N., Wymeersch, H., Larsson, E.G., Haimovich, A.M., Coulon, M.: Direct
localization for massive MIMO. IEEE Trans. Sig. Process. 65(10), 2475–2487
(2017)

8. Guidi, F., Guerra, A., Dardari, D., Clemente, A., D’Errico, R.: Environment map-
ping with millimeter-wave massive arrays: System design and performance. In:
Proceedings of IEEE Globecom Workshops (GC Wkshps), pp. 1–6, December 2016

9. van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction:
a comparative review (2008)

10. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE
Trans. Antennas Propag. 34(3), 276–280 (1986)

11. Shahmansoori, A., Garcia, G.E., Destino, G., Seco-Granados, G., Wymeersch, H.:
Position and orientation estimation through millimeter-wave MIMO in 5G systems.
IEEE Trans. Wireless Commun. 17(3), 1822–1835 (2018)
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