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Abstract. In this paper, we consider a problem of acquiring accurate
spectrum availability information in the Cooperative Spectrum Sensing
(CSS) based Cognitive Radio Networks (CRNs), where a fusion center
collects the sensing information from all the sensing nodes within the
network, analyzes the information and determines the spectrum avail-
ability. Although Machine Learning (ML) techniques have been recently
applied to enhance the cooperative sensing performance in CRNs, they
are mostly supervised learning based techniques and need a significant
amount of labeled data, which is difficult to acquire in practice. Towards
relaxing this requirement of large labeled data of supervised learning, we
focus on Active Learning (AL), where the fusion center can query the
label of the most uncertain cooperative sensing measurements. This is
particularly relevant in CRN environments where primary user behavior
changes in a quick manner. In this regard, we briefly review the exist-
ing AL techniques and adapt them to the considered CSS based CRNs.
More importantly, we propose a novel margin based active on-line learn-
ing algorithm that selects the instance to be queried and updates the
classifier by using the Stochastic Gradient Descent (SGD) technique. In
this approach, whenever an unlabeled instance is presented, the pro-
posed AL algorithm compares the margin of instance with a threshold
to decide whether it should query a label or not. Supporting results
based on numerical simulations show that the proposed method has sig-
nificant advantages on classification and detection performances, and
time-complexity as compared to state-of-the-art techniques.

Keywords: Active learning · Cooperative spectrum sensing ·
Cognitive radio network

1 Introduction

Due to the extensive proliferation of wireless applications and services, the wire-
less data traffic increases at an alarming rate and it is estimated to increase 10
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folds in the next few years as compared to the current data traffic [1,2]. Though
this increasing demand for wireless services has made the usable radio frequency
spectrum a scarce and expensive resource, field trails for channel measurements
have illustrated that most of the time the radio spectrum is under-utilized by the
licensed users, also known as primary users (PUs) [3]. In this context, Oppor-
tunistic Spectrum Access (OSA) is envisaged as a candidate technology to miti-
gate the spectrum scarcity by improving the utilization of spectrum [4]. In inter-
weave CR networks (CRNs), the secondary users (SUs) can access the spectrum
of the PUs opportunistically when the PU transmission is detected to be idle.
Therefore, an efficient spectrum sensing mechanism is essential for the realization
of efficient OSA.

In the above context, various spectrum sensing methods have been exten-
sively discussed in the literature [5,6]. In this paper, we concentrate on energy
detection (ED), which is one of the most widely accepted method as it is by far
the cheapest and simplest option. However, due to the noise effect, the sensing
efficiency of the ED method may be significantly degraded in the lower SNR
regime [7]. Further, when the SUs are distributed in distinct locations, due to
shadowing and severe multi-path fading, the hidden PU problem may occur.
In this respect, the cooperative spectrum sensing (CSS) mechanism has been
proposed to improve the sensing reliability by jointly processing the sensing
information in a fusion center [8].

Machine learning techniques applied to CSS for CRNs have received signif-
icant research attention recently, e.g. [9–11]. In the context of interweave CR,
the spectrum sensing problem reduces to a binary classification on the channel
availability. Two major categories of learning methods to train the classifier are
supervised and unsupervised learning methods. In supervised learning, first, the
feature vectors (i.e., data) should be labeled prior to training. Next, the fea-
ture vectors and its corresponding labels are fed into the classifier for training.
Support vector machine (SVM) is one of the most popular supervised learning
methods. SVM was exploited for spectrum sensing in [9,10], showing its superior
performance as compared with the conventional ED based spectrum sensing. In
contrast to the supervised learning algorithms, unsupervised learning algorithms
do not require training (i.e., no labeled data). Examples of unsupervised learning
applied to CSS can be found in [10,11], where [11] has adopted a linear fusion
rule for CSS and utilized the linear discriminant analysis to obtain linear coef-
ficient weights, and [10] explored techniques such as Gaussian Mixture Models
(GMM) and K-means clustering.

In the CSS problem, labeling data means knowing whether the PU is active or
not at a particular time instant. In such a case, unlabeled data is abundant (i.e.,
spectrum sensing measurements) but labeling is challenging, as it requires feed-
back from the PUs to the SUs. To address this problem, Active Learning (AL) have
been recently proposed, allowing the learning algorithms to dynamically query
instances for labeling. AL has been applied in [12,13] to learn the interference
channel between the PU and SU in an underlay CRN. In addition, the PUs behav-
ior is not static, i.e., it may change from active to inactive at any time and vice-
versa. In order to react faster to PU activity changes, in this paper, we investigate
and analyze the applicability of online AL in ED-based CSS.
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First, we consider the perceptron based online AL technique [14] (also known
as CBGZ algorithm), and we apply it to the proposed CSS problem. In this app-
roach, when the classifier receives the energy measurements from the distributed
SUs, it first predicts the availability of the channel from the energy instance, and
then utilizes a random sampling approach to decide whether the label for such
instance should be queried or not (i.e., if PU feedback is needed or not). If yes,
the classifier acquires the true label from the system and follows the standard
perceptron approach to update the classifier. Subsequently, the online passive
aggressive AL (PAAL) algorithm [15] is considered for the proposed CSS prob-
lem. This algorithm follows the similar idea of CBGZ algorithm for querying,
but utilizes an efficient PA learning strategy to update the classifier. However,
the aforementioned AL algorithms depend on the uncertainty sampling strategy
for querying, which is not accurate. To address this, we propose a margin-based
online AL algorithm with reduced threshold and Stochastic Gradient Descent
(SGD) update. In this algorithm, margin-based condition is utilized, which com-
pares the margin of incoming instance with a threshold to decide whether it
should query the class label or not. Finally, we compare and illustrate the per-
formance of all the aforementioned algorithms through numerical simulations,
and also we compare them with the conventional supervised and unsupervised
counterparts.

The rest of the paper is structured as follows. Section 2 presents the system
model. We discuss the ML and AL based frameworks for the CSS, and propose
a margin-based AL algorithm for CSS in Sect. 3. The numerical evaluations of
proposed algorithms are discussed in Sect. 4. Finally, conclusions are drawn in
Sect. 5.

2 System Model

We consider an interweave CRN, consisting of a PU, and N number of SUs where
each SU is indexed by m = 1, 2, 3, ..., N . The SUs collect energy measurements
which are sent to a fusion center which jointly analyzes them and determines the
channel availability. The PU is placed at the coordinate dPU and the mth SU
is placed at the coordinate dSU

m in the two-dimensional (2D) space. Further, all
channels are considered to experience path loss, and independent and identically
distributed (i.i.d.) Nakagami-m fading. Therefore, the channel gain hm between
the PU and the mth SU is expressed as

hm = PL(|dPU − dSU
m |)Fm (1)

where PL(r) = r−β represents the path loss respective to distance between the
PU and SU with the path loss exponent β, and Fm is the Nakagami-m fading
component.

We assume the PU activity to vary over time in a random fashion, with 0.5
of probability of being in active state. Let S denotes the state of PU. If the PU
is in active state, then S = 1, and otherwise S = 0. Thus, the availability of
channel at the tth instant is written as
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Yt =
{

+1, if S = 1
−1, if S = 0 (2)

where Yt = +1 represents the unavailability of channel and Yt = −1 represents
the availability of channel.

We assume the cooperative sensing approach as shown in Fig. 1, in which
each SU first determines the energy level of the signal transmitted by PU and
reports it to a fusion center or classifier. Further, based on the sensed energy
levels reported by all SUs, the fusion center or classifier estimates the availability
of spectrum.

Fig. 1. Learning based cooperative spectrum sensing model

In order to perform the energy detection, SUs require to compute the energy
level of primary transmitted signal for a certain period of time. The frame struc-
ture of the SU is depicted in Fig. 2. Each frame consists the deciding time τ (i.e.,
a combination of sensing time (τs), classification time (τc), and reporting time
(τr)) and a transmission duration (T − τ). Let W be the assigned bandwidth
for the signal transmission and τs be the spectrum sensing duration; then, the
energy detector senses Wτs complex samples during the sensing time. Therefore,
the ith signal sample sensed by the mth SU can be expressed as

Xm(i) = Shmy(i) + Zm(i) (3)
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Fig. 2. Frame structure of SU transmission

where y(i) denotes the transmitted signal by the PU, and Zm(i) is the thermal
noise at the mth SU. Thus, at the output of energy detector of mth SU, the total
estimated energy of received signal samples normalized by noise spectral density
can be expressed as [8]

em,l =
2
η

Wτs∑
i=1

|Xm(i)|2, m = 1, 2, .., N, and l = 1, 2, ..., L (4)

where η = E{|Zm(i)|2} is the power spectral density of noise. The complete set
of sensed energies from N SUs at a given time t can be written in vector form
as follows,

Et =
[
e1,t e2,t . . . eN,t

]T (5)

where em,t is equivalent to (4) assuming that we collect energy measurements at
each tth frame. The learning based classifier or fusion center receives Et sequen-
tially and has to make a decision on the channel availability after each reception
of energy measurements. In order to classify the incoming energy instance prop-
erly, using the AL strategies, the classifier sometimes queries the PU for true
label, where the probing output provides a one bit feedback to the classifier
given by (2). After this classification process, if the channel is identified as idle,
the information is transmitted for the remaining time of the frame.

3 Learning Based Frameworks for Spectrum Sensing

ML based frameworks have already been adapted for CSS applications in the
literature [8] and it has been shown that supervised learning algorithms are
efficient for these applications. However, in supervised learning tasks, a huge
data set with labels is required to train the ML model. The gathering of data and
labeling for it is very time-consuming and costly in these specific applications.
To address this problem, in this section, we develop online AL algorithms based
CSS schemes to predict the channel availability. First, we exploit the margin
based online AL algorithms such as CBGZ [14] and PAAL [15] and we adapt
them to fit in the proposed CSS problem. Next, we propose a reduced threshold
and SGD update based online AL algorithm for CSS.
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3.1 The CBGZ Algorithm for CSS

In an attempt to minimize the number of requested labeled queries and so
the feedback from the PU, the CBGZ algorithm makes use of an improved
Perceptron-type of algorithm, which considers a margin-based filtering rule. The
application of CBGZ in the problem at hand is as follows. After receiving the
energy measurement vector Et, the algorithm queries the PU for the label with a
probability of d/(d + |b̂|) [14], where d is a constant and b̂ represents the uncer-
tainty of the received instance, and it is computed as a margin of the received
measurement instance with respect to the present hypothesis. Next, the algo-
rithm’s prediction is compared with the feedback received by the PU and if does
not match, the standard Perceptron update process is invoked. The summary of
the CBGZ algorithm for CSS is presented in Algorithm1.

Algorithm 1. The CBGZ Algorithm for CSS
Input: d (Smoothing parameter)
Initialization: wt = 0;
for t = 1, 2, 3, ...., M do
Receive Et

Set ft = wT Et

Predict ŷ= sign(ft)
Flip a coin with P (Heads) = d

d+|b̂|
if Heads then

Receive Yt

if Yt �= ŷ then
wt+1 = wt + ηYtET

t

wt+1 = wt

end if
end if

end for

3.2 Passive Aggressive AL for CSS

In this section, we consider the PAAL algorithm for the proposed CSS problem.
As in CBGZ, this algorithm consists of two stages: (i) querying process and (ii)
classifier updating process. In the first stage, the algorithm follows the same
approach of margin-based AL.

First, the algorithm estimates the uncertainty or margin of the incoming
energy instance using the current classifier i.e., pt = wt.Et. Next, it draws a
Bernoulli random variable Zt ∈ {0, 1} with probability C/(C + |pt|) [15] to
decide whether the label should be requested or not. If Zt = 0, the class label
is not queried and the classifier is not updated. Otherwise, the class label of the
incoming energy instance is queried at the PU, and unlike the previous margin-
based AL algorithm that updates the classifier only whenever a misclassification
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occurs, the PAAL algorithm updates the classifier whenever the value of loss
function is not zero. Then, the classifier updates as wt+1 = wt + ξtYtEt, where
ξt is the step-size estimated as [15]

ξt =

⎧⎨
⎩

lt(wt)/(‖Et‖2 + 1/(2A)) ; PAA-3
min(C, lt(wt)/(‖Et‖2 ; PAA-2

lt(wt)/(‖Et‖2) ; PAA-1
(6)

The summary of the PAAL algorithm for CSS is provided in Algorithm2.

Algorithm 2. PAA algorithm for CSS
Input:A > 0 (Penalty Parameter); C > 1 (Smoothing Parameter)
Initialization: wt = 0
for t = 1, 2, 3, ...., M do
Receive Et

Predict ŷt = sign(wT Et)
Draw a Bernoulli random variable Zt ∈ {0, 1} w.p C

C+|pt|
if Zt = 1 then

Query the label Yt ∈ {−1, +1}
compute the loss lt(wt) = max(0, 1 − Ytw

T
t Et)

wt+1=wt + ξtYtEt

else
wt+1=wt

end if
end for

3.3 Proposed Margin-Based Method with Reduced Threshold and
SGD Update

Both PAAL and CBGZ algorithms utilize a computationally complex uncertain
sampling strategy for querying. Hence, in order to avoid the uncertainty sampling
step, in this section, we propose a threshold based querying strategy algorithm
for CSS. The proposed algorithm comprises of two steps: (i) selection of instance,
and (ii) Update process of the classifier. The margin of Et is computed as WT

t Et,
and that is compared with the existing threshold Ct. If the margin is lower than
the existing threshold, then the classifier wt is updated using the SGD step.
Finally, we determine the upper bound of estimation error, which is used in the
update of threshold Ct. The complete procedure is summarized as Algorithm 3.

Computation of Threshold (Ct): Assume w∗ is an optimal classifier with v
error rate. Here, our objective is to find the condition that for a given energy
instance, the classifier wt should provide the same prediction as the optimal
one w∗. This condition reveals if a certain energy instance is not useful to our
classifier, and thus if it can be excluded by the threshold.
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For each iteration t, consider φt is the angle of wt and w∗. For every energy
instance Et, w∗(Et) and wt(Et) predict the same sign if the margin of the instance
|wT

t Et| is greater than the angle of classifier φt. If |wT
t Et| ≤ φt, for instance

{Et : sign(ht(Et)) �= sign(h∗(Et))}. Therefore, we have to make Ct ≥ φt.
The upper bound for φt can be expressed as

P{|wT
t Et| ≤ φt} ≤ baP{Et : sign(ht(Et)) �= sign(h∗(Et))} (7)

where ba is a constant and P is the instances distribution. We have P{Et :
sign(ht(Et)) �= sign(h∗(Et))} ≤ 2v + Ert and φt ≤ bcP{|wT

t Et| ≤ φt}. Finally,
by using equations, we get φt ≤ B(2v +Ert). where B = babc. Therefore, we set
the threshold to be Ct = B(2v + Ert).

Classifer Update using SGD: SGD updates the classifier as

wt+1 = wt − εt
∂

∂w
l(wT Et, Yt) (8)

where l(wT Et) is the hinge loss. After some mathematical manipulations, we
obtain the following SGD update policy,

wt+1 =
{

wt + 1√
t
YtEt, if Ytw

T Et < 1/
√

t,

wt otherwise.
(9)

Algorithm 3. Reduced Threshold with SGD update for CSS
Input: B; v (Error)
Initialization: wt = 0; Ct = 1;
for t = 1, 2, 3, ...., M do
Receive Et

Predict sign(wT Et)
Receive Yt

if |wT Et| < Ct then
if Ytw

T Et < γ then
wt+1 = wt + 1√

t
YtEt

end if
end if

Ert = log(t)√
t

Ct+1 = B(2v + Ert)
end for

4 Numerical Evaluations

To show the benefits of the proposed scheme, in this section, we evaluate the
empirical performance of the considered online AL algorithms for CSS tasks in
CRNs and we compare them with state-of-the art ML algorithms such as SVM
and K-means in terms of miss-classification rate and time-complexity.
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4.1 Simulation Parameters

We consider a wireless network with a PU that is located at coordinates (500 m,
0) and nine SUs involving in CSS that are located in a 3-by-3 grid topology in the
area of 2000 m × 2000 m as depicted in Fig. 3. Further, we assign 5 MHz band-
width W for each transmission, each frame duration is 100 ms, sensing duration
τs is assumed as 10 ms, the PL exponent is 3, and the additive white Gaussian
noise (AWGN) is considered.

Fig. 3. Example of network model with N = 9 SUs

In the online AL algorithms, there are some other parameters such as optimal
error v and constant B in Algorithm 3, smoothing parameter C and penalty
parameter A in Algorithm 2, learning parameter η and constant d to compute
the probability of sampling in Algorithm1, which are all estimated through the
cross validation procedure. We ran the experiment over a total of 1024 frames. All
the experiments were performed and averaged over 5 independent Monte-Carlo
runs, each with a random PUs behavior resulting in a different permutation of
the energy dataset within the 1024 instances.

For the experiments related to the passive learning SVM algorithm, we used
1024 energy instances for the training and 1024 energy instances for the test-
ing. For the experiments related to the passive learning K-means algorithm, we
computed the classifier assuming 1024 non-labeled energy instances and next we
proceeded to the testing phase with 1024 different energy instances.

In the testing of online AL algorithms, all energy instances come one by one
in a sequential manner. If the incoming energy instance is identified as a most
informative, then the querying process is executed to obtain the true class label.
The latter is assumed to be provided by the PUs in the form of 1-bit feedback.
After receiving the true channel availability, that energy instance is added to
training set. The same process is continued till to the end of the experiment.

4.2 Results and Discussions

Figure 4 illustrates the performance of SVM, K-means and online AL based
CSS schemes in terms of mis-classification rate. From the results, it is observed
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that the CSS schemes based online AL algorithms outperform the conventional
SVM and K-means based CSS schemes. This is due to fact that whenever the
misclassification occurs, the considered online AL algorithms update the classifier
according to the margin of the incoming energy instance. This classifier updating
process helps to reduce the further classification errors. Also, we notice from
the results in Fig. 4 that the CSS scheme based on the proposed online AL
algorithm with reduced threshold and SGD update outperforms the online PAAL
algorithms and the state-of-the art CBGZ AL algorithm based CSS schemes. The
proposed algorithm constantly shows almost 10 % of lower misclassification rate
compared to PAAL algorithms and more than 15 % of lower misclassification
rate compared to CBGZ algorithm.
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Fig. 4. Evaluation of CSS schemes based on on-line AL methods and conventional ML
methods.

We also provide the detailed comparison of the supervised, unsupervised
and online AL algorithms in Tables 1 and 2. As can be seen form Table 1, both
the supervised and unsupervised algorithms SVM and K-means are interest-
ingly illustrating the almost same performance using the size of 1024 data sam-
ples for training and for the classifier computation, respectively. However, the
time-complexity of K-means algorithm is very high as compared to the SVM
algorithm. Also, from Table 2, it is observed that the proposed RT+SGD AL
algorithm shows better performance compared to other AL algorithms in terms
of both misclassification and run time.

In Fig. 5, we show the performance of the proposed online AL based CSS
schemes in terms of probability of detection when 2 × 2 SUs (i.e., 4 SUs) and
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Table 1. Percentage of misclassifications and time complexity

AL algorithms Percentage of
misclassifications

Run time (s)

SVM 25.9 0.0531

K-means 27.1 0.0953

Table 2. Percentage of misclassifications and time complexity of online AL algorithms

AL algorithms Percentage of
misclassifications

Run time (s)

CBGZ 27.4 0.0423

PAA-3 25.7 0.0311

PAA-2 25.2 0.0301

PAA-1 24.1 0.0295

SGD+RT 7.5 0.0046

3 × 3 SUs (i.e., 9 SUs) cooperate in CSS. From the obtained results, we observe
that the proposed online AL algorithm with reduced threshold and SGD update
(SGD+RT) algorithm outperforms the other AL algorithms with almost 3 % of
detection rate. Also, in Table 3, we provide the percentage of misclassification
and the time duration to identify the busy or idle PU channel state using the
AL classifiers with 4 and 9 SUs in cooperation for CSS. We also observe from
the results that with 9 cooperating SUs, the detection rate of the AL based
algorithms improves by increasing the number of instances, as expected. For
example, after 200 energy instances the proposed CSS scheme based on the
SGD+RT algorithm achieves almost +7 % of detection rate with 9 number of
SUs cooperation as compared to 4 number of SUs cooperation.

Table 3. Percentage of misclassifications and time complexity of 2 × 2 and 3 × 3 SUs
cooperation

AL algorithms Percentage of misclassifications Run time (s)

2 × 2 3 × 3 2 × 2 3 × 3

CBGZ 32.7 27.4 0.0411 0.0423

PAA-1 26.4 24.1 0.0290 0.0295

SGD+RT 13.3 7.5 0.0038 0.0046

We show the performance comparison of AL algorithms based CSS schemes
in terms of probability of false alarm (Pfa) in Fig. 6. From the results, it is
observed that the proposed RT+SGD algorithm shows the less false alarm rate
as compared to the other two algorithms.
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5 Conclusions

In this paper, we have formulated online AL algorithms for CSS. In particu-
lar, first, we have utilized the state-of-the-art CBGZ algorithm and the PAAL
algorithm, wherein uncertainty sampling with some probability was utilized as
a query strategy. To overcome the complexity of the aforementioned sampling
strategy, we proposed a margin-based online AL algorithm with reduced thresh-
old and SGD update for CSS, wherein the margin of incoming energy instance
was compared with a threshold to decide whether the class label needs to be
queried or not. After querying the sample, SGD was used to update the classifier.
Finally, we have provided a comparison and analysis of the performance of differ-
ent online AL algorithms in terms of probability of detection, mis-classifications,
and time complexity. The proposed online AL algorithm with reduced threshold
and SGD update has achieved the highest detection rate, the lowest misclassi-
fication and run time as compared to the state-of-the art CBGZ AL algorithm
and PAAL algorithms.
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