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Abstract. Evolutionary robotics is an approach for optimizing a robotic
control system and structure based on the bio-inspired mechanism of
adaptiogenesis. Conventional evolutionary robotics assigns a task and an
evaluation to a virtual robot and acquires an optimal control system. In
many cases, however, the robot is composed of a few rigid primitives and
the morphology imitates that of real animals, insects, and artifacts. This
paper proposes a novel approach to evolutionary robotics combining mor-
phological evolution and soft robotics to optimize the control system of
a soft robot. Our method calculates the relational dynamics among mor-
phological changes and autonomous behavior for neuro-evolution (NE)
with the development of a complex soft-bodied robot and the accom-
plishment of multiple tasks. We develop a soft-bodied robot composed of
heterogeneous materials in two stages: a development stage and a loco-
motion stage, and we optimize these robotic structures by combining
an artificial neural network (ANN) and age-fitness pareto optimization
(AFP). These body structures of the robot are determined depending on
three genetic rules and some voxels for evolving the ANN. In terms of our
experimental results, our approach enabled us to develop some adaptive
structural robots that simultaneously acquire behavior for crawling both
on the ground and underwater. Subsequently, we discovered an uninten-
tional morphology and behavior (e.g., walking, swimming, and crawling)
of the soft robot through the evolutionary process. Some of the robots
have high generalization ability with the ability to crawl to any target
in any direction by only learning a one-directional crawling task.

Keywords: Evolutionary robotics · Soft robotics · Neural network ·
Pareto optimization · Artificial life

1 Introduction

For most evolutionary robots, the controller and morphology, which is inspired
by real animals and insects, are given in advance [1–3]. The robot morphologies
include some biases by human recognition, however, these structures of animals
and insects depend on what they learn during the development, and in turn
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the structure decides how they learn. In spite of the difference between human
imagination and a real evolutionary result, these biases involuntarily associate
the morphologies with specific behavior based on human experiences. Obtaining
a more unintentional and adaptive evolutionary robot is one of the significant
challenges in the field of evolutionary robotics, and it has been studied actively
in areas such as artificial life, morphological evolution and computer graphics,
and animation [4–13].

Morphogenesis engineering fabricates a robot morphology based on the mech-
anism of self-organization in natural systems, including the development of intel-
ligence and composition of heterogeneous components. Sims demonstrated a vir-
tual robot that simultaneously evolves a neuro-controller and morphology, and
contributed hugely to the field of robotics [14]. This robot, however, was largely
problematic in that in cases in which the robot is built by simple rigid compo-
nents under simple developmental rules defined in advance, the optimal robot
would have almost the same form and would be unable to adapt to different
environments and multiple tasks. Doursat et al. proposed a way to design vir-
tual soft-bodied robots by growing fine-gained multicellular [15,16]. This study
provides two major rules – cell adhesion and cell division – into each spherical
cellular shape. A pair of two cells receives a force based on three conditions
depending on the distance between them. The results of their work showed that
the robot generated four limb-like parts in the body and it acquired the ability to
perform two tasks: rolling a rigid sphere and walking to a place located upstairs.
They provided the potential properties that each cell has a certain kind of body
part such a right limb, left hand, or short length in order to grow a structure
such as that of real creatures. Joachimczak et al. proposed artificial metamor-
phosis as a method of evolving self-reconfiguring soft-bodied robots from the
viewpoint of evolution from a tadpole to a frog [17–19]. They created a robot
with reduced human biases as much as possible in order to understand the evo-
lutionary process in real creatures, and they adopted a straightforward approach
by combining mere neuro-evolution method and propagation mechanism of vir-
tual morphogens for metamorphosis. As the main result they showed that these
robots evolved from fish-like creatures to bipedal creatures and ascertained that
the structures of some real creatures are adaptive for moving from water to land
or from land to water.

The result verified the above-mentioned wonderful findings through two-
dimensional creatures; however, the research would need to focus on three-
dimensional creatures such as real creatures to obtain more advanced results.
In the field of computer graphics (CG) and physical animation, Geijtenbeek
et al. proposed an optimization method for obtaining flexible muscle-based
bipedal robots in computer simulation [20]. The approach is to optimize the
place at which the virtual muscle fibers are connected to two rigid boxes and
they obtained several musculo-skeletal robots that can perform more flexible
and animal-like motions than robots obtained via conventional approaches. The
important point in this study is that there are unexpected effective structures
for improving behavioral awkwardness to obtain a desired motion. This indicates
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that a human-designed structure will not always be effective for an assumed task.
Thus, we would need to dispose of such biases by human recognition to truly
obtain a robot with an adaptive morphology to achieve a given task because there
is no guarantee that every designed robot would have the ability to acquire such
a skill. We believe the coupled dynamics of structure development and learning
behavior of a given task would enable the construction of more complex and
unintentional structures. The complicated structure obtained through their evo-
lutionary experience of the development can be more robust and adaptive and
it might be able to shed light on a different perspective of the life structure.
Meanwhile, soft-bodied robots generally have higher robustness and adaptation
than rigid-bodied robots because these robots can deform themselves [21,22]. In
the field of evolutionary robotics, controlling the physical behavior of those soft
robots is also important and challenging because the controller of a soft robot
needs to control the body actuators considering their structural deformation
acquired from the surrounding environmental effects.

We pursue the ultimate objective of establishing a novel way to evolve more
robust and adaptive soft-bodied robots in different environments, with multiple
tasks, while the robot is simultaneously evolving its morphology and intelli-
gence. This paper discusses how to design an evolutionary strategy and sim-
ulation foundation for considering the less-biased development of soft-bodied
robots in different environments. Our simulation model considers a robot struc-
ture that consists of heterogeneous materials, which enables us to suggest an
embryogenesis mechanism based on physiology. We then compare the results of
locomotion experiments in which soft-reconfiguration soft-bodied robots evolve
on the ground and underwater to acquire the behavior to crawl around their
environments, and we analyze an adaptation for these evolved robots.

This paper makes the following contributions: First, we establish a novel way
to model a soft-bodied robot with a coupling of dynamics between morpholog-
ical development and behavioral learning by using an artificial neural network.
In particular, our work proposes a novel evolutionary strategy that develops the
structure of the robot and simultaneously evaluates multiple types of behavior
in different environments. In this way it would be able to evolve some robots
considering each environmental constraint, such that they gradually adapt their
behavior to these environments. Then, we discuss the way in which the mor-
phology evolves and what the robot learns on these constraints evaluating robot
morphologies and behavior to achieve multiple tasks in these environments.

2 Methods

2.1 Approach

In the following section we describe the essential concept of our development
system for evolving soft-bodied robots. Here, there is a gene regulatory net-
work (GRN) as a simple description of controlling such cellular behavior [23].
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Fig. 1. (Left) A robot morphology using four material voxels developed by Voxelyze.
(Right) Example of automatic design and a fabricated soft-bodied robot by Voxelyze
with silicone rubber (Color figure online)

The network dominates the extent to which the fate of every biological cell is
determined. We adopt an ANN to introduce the concept of GRN into our devel-
opmental system, and attempt to evolve the ANN through physical simulation
that has two stages – development and locomotion – for obtaining an adaptive
soft-bodied robot. We use some voxels to create robot morphology, and each
voxel has the role of an actuator such as muscle or static support such as bone
or fat in the general body composition of animals. One part of the simulation is
the development stage in which the robot receives a signal from the network and
changes its own structure with voxel material. Another part of the simulation
is the locomotion stage in which the designed robot, which is obtained at the
end of the development stage, moves around in a given environment in advance
for a fixed period, and this stage is subsequently executed after the develop-
ment stage. Our approach is not to create a central control system that manages
the dynamics of all voxels in detail in order to achieve distributed control in
the soft-bodied robot by using only local interaction among multiple actuators
without any specifications. Besides, we never determine where every voxel is
placed in advance to reduce the human bias of development as much as possible.
Namely, we allow for a feed-forward ANN that develops the robot morphology
and the actuator properties, and the ANN begins developing from a single voxel
to design a completed robot. We believe that the straightforward approach is
able to provide evolution-ranges toward more adaptive and unexpected robots.
We assume that our robot is developed through sequential voxel addition and
deletion. Moreover, we provide one of four material properties – hard muscle,
soft muscle, bone, and fat – to all voxels based on the output of the ANN because
we focus on making a model of a real-like creature as a soft-bodied robot.

2.2 Voxelyze

In 2013, Hiller et al. developed computer software named Voxelyze [24–27], for
the physical simulation of a soft-bodied robot composed of material voxels. Vox-
elyze provides several properties – size, Young modulus, density, coefficient of
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Fig. 2. (Left) The artificial neural network for making the morphology of a soft-bodied
robot with homogeneous materials. (Right) The three developmental rules, which are
no action, removing the voxel, and adding a new voxel.

thermal expansion, friction, and damper – for insertion into the voxel, and it
can verify the control system of a more complex soft-bodied robot.

Additionally, the morphology can be constructed by using a 3D printer.
Figure 1 shows a sample robot created by Voxelyze and a 3D printed robot in
the real world based on Voxelyze. We define four materials for use in the voxel.
The first material is a hard muscle voxel (red voxel) that has high Young mod-
ulus. The second material is a soft muscle voxel (orange voxel) that has a lower
Young modulus than the hard muscle. Those voxels work as dynamic actuators
in the robot body and periodically vibrate depending on a sine function. The
third material is bone voxel (blue voxel) and is a static support object with the
same Young modulus as the hard muscle.

The fourth material is a fat voxel (cyan voxel), and it is also a static support
object with a lower Young modulus than the bone voxel. Our modeling constructs
an all-connected voxel as a robot in 11 × 11 × 11 design space that is able to
place each voxel.

2.3 Evolving Artificial Neural Network

The ANN is a well-known brain model and consists of a set of neurons and
synapses. Our network is composed of six input neurons and five output neurons
(see Fig. 2). We provide a time signal that merely increases in [0:1] and the
three-dimensional position – in x-, y-, and z-coordinates – as inputs to the ANN.
Additionally, we introduce two morphogen neurons into the ANN, and the ANN
can consider interaction among adjacent voxels by corresponding to two virtual
morphogens, namely the rate of dynamic voxels (hard and soft muscle) and the
rate of static voxels (bone and fat) in the surrounding voxels. Figure 2 shows the
structure of the ANN and the construction rule of voxels by the ANN. There are
two types of output neuron to determine which direction creates the new voxel
and which material defines the voxel. For one type of three output neurons (xadd,
yadd and zadd) shown in Fig. 2, the ANN chooses one of three developmental
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actions – no action, adding a new voxel, and removing the voxel – by three
neurons. The second of the two output neurons shown in Fig. 2 enables the ANN
to determine one of four materials to add to the voxel. The value of input and
output neurons is defined by Eqs. (1) and (2). We use the ReLU as an activation
function for each neuron. All outputs are converted into zero or one depending
on the output neuron of the ANN.

ui =
∑

j

ωjivi (1)

vi = max(0, ui) (2)

If the addition rule is selected, the new voxel is created toward the direction
determined by the ANN unless no empty space is retained, If not, the operation
is aborted. All voxels are able to create a new voxel toward six kinds of direc-
tion from adjacent space every 100 steps of the development stage. Meanwhile,
all voxels deal with the deletion rule as a priority even before the addition is
activated, in which case the addition is not executed; however, no deletion hap-
pens when the total number of voxels equal to one or robot is separated into
two or more parts. The total number of voxels is as many as 1331 to prevent
a declining calculation speed if the number of created voxels exceeds each lim-
itation. Figure 2 shows an overview of the addition and deletion processes (see
right figure).

2.4 Age-Fitness Pareto Optimization

Age-fitness pareto optimization (AFP) is an evolutionary algorithm for multi-
ple objective optimization proposed by Schmidt [28]. Adjusting weights in the
ANN is required to obtain the desired dynamics because the initial statement
of the network randomly outputs a value and, in many cases, these values are
meaningless for achieving a task. It is difficult, however, to explicitly optimize
a set of weights in the ANN when the virtual robot has a more complicated
morphology, many actuators, and has been given a complex task or situation.
We adopt AFP to improve the connection weights of our ANN because AFP
showed high performance for many optimization benchmark problems and it is
also applied to optimize multiple finesses. The AFP can treat a set of weights of
the ANN as a real-valued vector and approximately improve these weights while
maintaining the diversity of the vectors. These vectors are known as individuals
in evolutionary algorithms. Basically, the AFP has concepts of a population, i.e.,
a set of individuals and a generation, i.e., the number of times of improvement.
The classic evolutionary algorithm repeatedly conducts three evolutionary oper-
ations – crossover, mutation, and selection – to multiple individuals to retain the
good features of the previous population in the next population. The crossover
operation creates a new individual by exchanging a part of two parent individu-
als. The mutation operation creates a new individual by changing some elements
of the parent individual. The selection operation chooses more appropriate indi-
viduals based on any evaluation criterion. Here, as the important factor of the



118 J. Ogawa

AFP, there is the concept of aging [29,30]. All individuals have age and the age
merely increases while the generation increases. The AFP optimizes the fitness
function with the age and the solution is considered more optimal if the age
is below that of other individuals. Optimizing the fitness function by minimiz-
ing the age prevents the early convergence of solution search. Thus, the AFP
adds a rule of adding a zero-age individual into the current population in three
evolutionary operations of the classic evolutionary algorithm.

Our crossover operation chooses a couple of individuals with the crossover
probability Pc and selects one of the output units and by adopting BLX-α as
the crossover. BLX-α determines new individual yi from two parent individuals
x1 = (x11, x12, . . .) and x2 = (x21, x22, . . .) based on Eqs. (3) and (4).

yi = αdir + x1i (3)

di = x2i + x1i (4)

The basic concept of BLX-α is that a more optimal individual exists in the
solution space between two parent individuals. Our simulation does not include
the mutation operation because BLX-α includes the meaning of the mutation
operation. Our selection operation also randomly chooses a couple of individu-
als with the more optimal individual overwriting another individual, and it is
conducted by comparing the fitness function and age between two individuals. If
the fitness value of one individual is larger than that of another individual and
the age is below that of another individual, the inferior individual is removed
from the current population. The selection is named tournament selection and
all individuals are retained unless they are removed from the population.

2.5 Dynamics Computation

As mentioned above, our simulation uses Voxelyze to simulate a soft-bodied
robot and fluid motions. Our simulation model calculates buoyancy Fb and drag
Fd to represent resistance in fluid. Basic translational and rotational motion at
the center of the mass are used to describe the motion of one voxel. Eqs. (5) and
(6) show the equation of motion,

F = m
dv(t)
dt

(5)

T =
dL(t)

dt
(6)

where F is the force vector, m the mass of the voxel, v the linear velocity of
the voxel, t the time, T the torque, and L the angular velocity of the voxel.
The conceptual design in Fig. 3 is intended to clarify our approach. We employ
thermal expansion for the muscle voxels. At the end of the development stage,
the muscle voxels vibrate depending on the frequency ω, the amplitude A, and
phase shift φ, and those two values are used in Eq. (7).
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Fig. 3. Concept of our evolutionary strategy for robot development. Our simulation has
two simulation stages: development and locomotion. The genotype of our simulation
means a set of weights in the ANN and the phenotype is a morphology developed by
the ANN from a single voxel during the development stage. The robot is evolved to
accomplish a crawling task on the ground and underwater.

Kt = A sin(2πωt + φ) (7)

where K is the temperature in the voxel, t the current simulation time, φ is the
minimum angle between a normal vector of six surfaces of the voxel and the
normalized vector from the voxel centroid to the target source. If all the surfaces
of voxels have contact with other voxels or if the inner product of those vectors is
smaller than zero or there is no target source, the angle φ equals zero. Voxelyze
cannot calculate fluid forces in the default situation. Implementing calculation
expressions supports buoyancy Fb and drag Fd in fluid [31], defined in Eqs. (8)
and (9),

Fb = ρV g (8)

Fd =
1
2
ρSCdu

2
f (9)

where ρ is the fluid density, V the volume of the voxel, and g is the gravitational
acceleration. Further, S is the voxel surface area of each direction, CD is the
coefficient of drag force, and uf the relational velocity between the voxel and
the fluid.
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Table 1. Set of parameters for our evolutionary experiment with physical simulation
by Voxelyze

Parameter All Hard muscle Soft muscle Bone Fat

Size [cm3] 1.0× 1.0× 1.0 - - - -

Ambient temperature [C] 30.0 - - - -

CTE 2.0× 10−2 - - - -

Collision damper 5.0× 10−1 - - - -

Global damper (ground) 1.8× 10−5 - - - -

Global damper (water) 8.9× 10−4 - - - -

Young’s modulus [Pa] - 1.0× 107 1.0× 106 1.0× 107 1.0× 106

Density (voxel) - 1.1× 103 1.1× 103 2.0× 103 9.0× 102

Density (air) 1.2 - - - -

Density (water) 9.95× 103 - - - -

Kinetic friction 5.0× 10−1 - - - -

Static friction 6.0× 10−1 - - - -

Amplitude (expansion) - 7.0 7.0 0.0 0.0

Period [s] (expansion) - 2.0× 10−2 2.0× 10−2 0.0 0.0

3 Experiments

3.1 Experimental Details

The evolved robots were analyzed in different environments from the viewpoint
of morphological evolution and behavioral control. Our experiment prepared
ground and underwater environments in virtual space and provided a pushing
task involving a box object for the robots developed by the ANN. The evo-
lution of the robot is compared in the different environments by dividing the
experiment into three parts, which are (1) evolution on the ground, (2) evo-
lution underwater and (3) multiple objective evolutions in both environments.
Figure 3 shows the evolutionary concept of the NE and the physical simulation
by dynamics computation. The development stage of the simulation is for 100
time steps and the morphology of the robot is updated every 1 step (=0.01 [s])
by the calculation of the ANN. After the end of the development stage, the sim-
ulation transits the locomotion stage. For the locomotion stage, the developed
robot is simulated for 10.0 [s] in each environment and the behavior is evaluated
at the end of the locomotion stage. In the case of multiple objective evolutions in
both environments, the locomotion stage sequentially executes two simulations
in both environments, after which we evaluate each behavior. The side length
of single voxel is 1.0 cm. The box object is built by using 3 × 3 × 3 voxels, and
it is placed along the x-axis 15 voxels away from the center of the design space,
which is 11 × 11 × 11 voxels. The experiment consists of 30 runs, each with a
population size of 30, evolved for 200 generations. Tables 1 and 2 present a set
of parameters that were used in the evolutionary experiments.
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Table 2. Set of parameters for the evolving artificial neural network and the age-fitness
pareto optimization

Evolving artificial neural network Age-fitness Pareto optimization

Parameter Value Parameter Value

Layer 3 Runs 30

Input 6 Population size 30

Hidden 20 Generations 200

Output 5 Tournament size 2

Bias 1 Crossover rate 0.9

Weight range [−1.0:1.0] Crossover α 0.5

3.2 Tasks and Penalties

The aim of the task is to determine how the robot pushes the box a long distance,
and the robot needs a way to be able to crawl to the box and the body structure
that moves while the robot is pushing the box. Thus, the task achievement
detects whether to shift the box from the initial position or not. The behavior of
the robot when carrying out the task evaluates the fitness function f (Eq. (10)).

f =
1.0 + Dbox

1.0 + Drobot
(10)

where Dbox is the distance between the initial position of the box and the final
position of the box, and Drobot is the distance between the final position of the
robot and that of the box. The fitness function means maximizing the distance
the box moves and minimizing the distance between the box and the robot.
If the robot cannot achieve moving the box, the value of the distance the box
moves equals zero and the situation inhibits the evolution of the robot. In order
to prevent the situation, the minimum value of the evaluation for the movement
of the box is defined as 1.0. Besides, the minimum value of the evaluation for
the distance between the box and the robot equals 1.0 to prevent the distance
from becoming zero by using the equation. Therefore, the minimum value of the
fitness function becomes a positive value.

As the result of the calculation of the ANN, if the body of the robot separates
into two parts or more, the individual AFP is replaced by a new individual with
random values and repeatedly processes the development stage until the robot
develops a single body. In case all voxels of the robot are static material voxels,
the individual is also replaced by a new random individual. This is the reason
why the evolution of the AFP is not able to gradually create the actuated robot
when there are many static robots in the population.
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4 Results

Videos of our soft-bodied robots locomotion are available at http://www.
junogawa.com/evolutionary-soft-robotics/.

Fig. 4. Time series changes in the fitness value of the best robot, which means the
winner in the current population, in each experimental environment. These results are
the average values of 30 runs by the single and multiple objectives AFP. If the fitness
value exceeds 1.0, the robot surely has contact with the target box object.

4.1 Single vs. Multiple Objectives Optimization

In order to quantitatively evaluate the performance for single and multiple objec-
tive optimization, Fig. 4 shows the time series changes of the best robot in each
experimental environment, which are on the ground only, underwater only, and
both of these environments. In Fig. 4, the best robot by the multiple objectives
AFP is higher than the single objective AFP in both environments. It is clarified
that the existence of the ground surface and the difference between both envi-
ronments contributed some specific effects to the behavior of the robot because
there is a difference between the time series changes of the evaluations on the
ground and underwater. The multiple AFP always retains the best robots in
both environments in the current population, and it mechanically composes the
structure of the best robots in both environments in the process of evolution.

http://www.junogawa.com/evolutionary-soft-robotics/
http://www.junogawa.com/evolutionary-soft-robotics/
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The result shows that the multiple objectives AFP discovers the robot mor-
phology with better control systems earlier than the evolved robot in a single
environment.

Fig. 5. Time series changes in the average number of voxels used for evolving the robot
on the ground.

The search for the best robot underwater converges earlier than the search on
the ground. The task difficulty and the replacement between the separated robot
and a new robot would cause the convergence. The problem of early convergence
is resolved by adjusting the task difficulty; for example, changing the simulation
time in each environment or the initial position of the box. The destruction
of the separation robot and the creation of a new robot are introduced into the
AFP optimization to avoid the separation of the body of the robot. As a result of
using the replacement operation, the evolutionary search increasing the elements
of the random search; however, it is easy to discover better robots than with a
normal AFP in each generation.

4.2 Robot Size and Material Types

Our experiments calculate the number of voxels in the robot to analyze the rela-
tionship between the size of the robot and the task accomplishment. Figure 5
shows the average number of voxels in the best robot on the ground, and
Fig. 6 represents the time series changes in the average number of voxels in the
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Fig. 6. Time series changes in the average number of voxels used for evolving the robot
underwater.

best robot underwater. Besides, these figures also show the average number of
dynamic voxels (hard muscle and soft muscle) and the average number of static
voxels (bone and fat) in the robot. In the case of our evolutionary experiment
on the ground, the total number of voxels in the best robot is approximately
110, and the number of dynamic and static voxels is approximately 75 and 35,
respectively. The best robot on the ground accounts for 8% of the design space.
In the evolution underwater, the number of used voxels in the best robot is about
60, and this value is similar to half of the number of voxels in the robot on the
ground. Figure 7 shows the rate of dynamic and static voxels in the best robot
in each environment. There is no large difference between the number of static
voxels in both environments from Fig. 7. Therefore, our evolutionary approach
acquired a robot structure that includes many muscle voxels, which directly
produce power from the friction on the ground surface, in the evolution on the
ground. As a result of the evolution underwater, the size of the robot is smaller
than that of the robot that evolved on the ground. This robot is able to produce
the power for accomplishing the same task underwater. Thus, it was clarified
that the importance of muscle voxels is less important than the behavior on the
ground when the structure of the robot is developed to optimize the dynamics
among the vibration power by muscle voxels and the drag forces of all voxels
from the water for the task.
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4.3 Morphologies

In order to understand the morphological change in the best robot for each task
we visualize the time series of the evolved structure of the best robot in Figs. 8
and 9. The morphology of the evolved structures is actually quite indescribable
looking during early generation in both environments. During the end of evolu-
tion on the ground, these structures gradually transit to morphologies such as a
wing (see first line in Fig. 8), a slug (see second line in Fig. 8), a dome (see fourth
line in Fig. 8), and some limb-like parts. Partly, the appearance of the robot with
four limb-like parts (see fifth line in Fig. 8) resembles that of a real robot or real
four-legged insects. Basically, the evolved robots have parts to catch or push the
box and the robots use those parts to retain the box near those parts until the
simulation finishes accomplishing the task. Most of the robots underwater grad-
ually become very simple structures such as fish or a propeller for the evolution.
For the left robot of the third line and the middle robot of the fifth line In Fig. 8
the robot left of the third line and the robot in the middle of the fifth line are
those that are the best in both environments at generation. Our evolutionary
approach was able to discover that the common structures have a morphological
adaptation to crawl in both environments in the evolution process.

Fig. 7. Rate of used dynamic voxels in the best robot in each evolutionary experiment.
The percentage of dynamics voxels in the robot on the ground is about 70%. This
result means that the robot crawling on the ground needs many actuators in the body.
Underwater, the difference between these rates is insignificant, and it shows that both
material voxels have the role of obtaining power at the same level.
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Fig. 8. Time series changes in the morphologies of soft-bodied robot to crawl on the
ground environment. From left to right, the morphology of the best robot is transited.
From top to bottom, we show the evolved morphology for five examples for the result
of runs of the AFP.

Fig. 9. Time series changes in the morphologies of soft-bodied robot to swim under-
water. From left to right, the morphology of the best robot is transited. From top to
bottom, we show the evolved morphology for five examples for the result of runs of
AFP.
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Fig. 10. Trajectory of behavior of the robot in the middle of the fifth line in Fig. 9.
This robot is able to reach the box object in both environments.
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Fig. 11. Time series changes in the behavior of two final robots to the right of the fifth
line in Figs. 8 and 9. Those robots have the evolutionary experience of being the same
structure before generation.

4.4 Behavior

According to the evolutionary transition of the fifth line in Fig. 9, the same
robot is chosen as the winner for both environments. The behavior of this robot
is shown in Fig. 10. This robot was able to reach to the position of the box in
both environments. As a result, in Fig. 10, the ground robot is pushing the box
while walking around by using four limb-like parts; however, the underwater
robot was reached by twisting its body and swimming as though it is drawing
an arch trajectory. This result showed that the same soft-bodied robot changes
its adaptive behavior depending on the surrounding environment.

After that, the robot finally evolved into different morphologies in each envi-
ronment. The behavior of those robots is shown in Fig. 11. The final morphology
of the ground robot repeatedly expands and contracts by two legs on a diagonal,
and the robot was able to effectively push the box by moving these legs. Then
the final underwater robot was gradually rotating by using the muscle voxels like
the tail of a fish to advance in the direction of the box. The robot also acquired
pushing behavior. Moreover, both robots retained their pushing behavior when
the position of box was changed by their behavior (Fig. 12). From the view-
point of morphology, the ground robot evolved like a terrestrial creature and the
underwater robot evolved like a fish.
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Fig. 12. Simulation prepares the evolved robot for pushing the yellow box and four
boxes. We positioned them on the ground. The robot changes the target box depending
on the current elapsed time. First is the yellow box and the simulation time is for
10.0 s, after which the robot changes the target box counterclockwise every 20.0 s. The
simulation result confirmed that the robot was able to crawl in any direction. (Color
figure online)

5 Conclusion

In this work we proposed a novel way of developing evolutionary soft robotics
from the viewpoint of morphological evolution with adaptation in different envi-
ronments. Our method was able to acquire more interesting morphologies of a
soft-bodied robot by reducing the human bias in the morphological evolution. By
introducing the role of sensing function into a voxel, our evolved robot was able to
conduct more controllable and adaptive behavior than the evolved rigid-bodied
robots in most conventional evolutionary robotics approaches. We ascertain that
there exist many unintentional and complex robots depending on the different
experimental situation. Besides, our simulation would be available for creating
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more robust soft-bodied robots. This work led to the finding of the possibility
of evolutionary robotics in the future development of soft robots toward envi-
ronmental adaptation and multi-objective learning. The result of optimization
continues to remain incomplete for maintaining the diversity of robot morphol-
ogy because the morphology obtained from AFP converges at an early stage.
In future, we would need to focus on improving the acceleration of the simu-
lation speed with the NE. We suggest solving the problem by applying a GPU
acceleration mechanism to Voxelyze.
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