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Abstract. We utilize a type of encryption scheme known as a Fully
Homomorphic Encryption (FHE) scheme which allows for computation
over encrypted data. Our encryption scheme is more efficient than other
publicly available FHE schemes, making it more feasible. We conduct
simulations based on common scenarios in which this ability is useful.
In the first simulation we conduct time series analysis via Recursive
Least Squares on both encrypted and unencrypted data and compare
the results. In simulation one, it is shown that the error from computing
over plaintext data is the same as the error for computing over encrypted
data. In the second simulation, we compute two known diagnostic func-
tions over publicly available data in order to calculate computational
benchmarks. In simulation two, we see that computation over encrypted
data using our method incurs relatively lower costs as compared to a
majority of other publicly available methods. By successfully computing
over encrypted data we have shown that our FHE scheme permits the use
of machine learning algorithms that utilize polynomial kernel functions.

Keywords: Clinical decision support · Data mining ·
Machine learning · Privacy preserving classifier · Encryption

1 Introduction

The field of medical informatics utilizes data mining algorithms that should be
built on diverse databases in order to obtain generalizable results [36]. Training,
validating, and testing a computational hypothesis typically requires access to
large sample datasets that adequately represent any variation within the relevant
population [29]. Ideally, data from separate entities, i.e., multiple hospitals and
healthcare systems, would be integrated to en-sure an accurate sample. It is evi-
dent that healthcare systems vary in location, specialty, and patient care proto-
cols; patients at any particular hospital represent only a subset of the population
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and therefore data from a single hospital may contain only a subset of potential
illnesses and injuries. Any computational analysis meant to produce diagnostic or
prognostic clinical decision support needs to be validated on data collected from
multiple healthcare systems. However, ownership and privacy issues greatly limit
the possibility of creating such large, comprehensive databases.

Due to the sensitivity of medical data, federally enforced privacy regula-
tions such as Health Insurance Portability and Accountability Act (HIPPA)
[7] place firm constraints on data sharing. Therefore, creating or obtaining
diversified medical datasets without violating privacy regulations is challenging.
Anonymization, the systematic removal of potential patient identifiers, is often
seen as a potential solution. However, it has been shown that deanonymization
is a relatively simple task. The ease of deanonymization is exemplified by the
re-identification of the Governor of Massachusetts within an anonymized health
database [11], as well as many other instances. These privacy concerns suggest
that medical data should only be released in encrypted format. Thus far, for
medical data, there has been a trade-off between utility and security; a useful
patient database that allows for computation is insecure, whereas a secure patient
database is practically useless for computation and research. This complication
stems from the lack of existing technologies that are capable of supporting statis-
tical analysis or machine learning methods on encrypted data. In order to make
comprehensive, secure and publicly useful databases possible, the medical com-
munity needs to adopt an approach that would allow data analytics on shared
encrypted databases while respecting federal privacy restrictions.

The cryptographic community has recently developed fully homomorphic
encryption (FHE) schemes, which admit such secure computation. The fully
homomorphic property of an encryption function E, can be defined as follows:
for any a, b, one has that

E(a + b) = E(a) + E(b) and E(ab) = E(a)E(b).

This implies that for any polynomial function F (x1, x2, . . . , xn) one has the
following property:

E(F (x1, x2, . . . , xn)) = F (E(x1), E(x2), . . . , E(xn))

In other words, computing on an encrypted database yields essentially the same
results as computing on an unencrypted database. In this paper we propose a
secure machine learning approach based on FHE. This allows researchers and
hospitals to run a family of machine learning methods on encrypted data. We
offer a solution to the privacy standoff in the case that the desired machine
learning algorithm uses polynomial kernel functions.

The FHE scheme most widely accepted as theoretically secure is due to the
work of Gentry [14]. This scheme was subsequently improved by Brakerski et al.
[5] and the relevant software under development by IBM is available on GitHub
[20]. The security of these particular solutions is given by the property of “ran-
dom self-reducibility”. Essentially, finding a solution to the underlying problem
is about as hard on average as it is in the worst case. While this property is
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indeed good evidence of theoretical security, the resulting homomorphic encryp-
tion algorithm is too inefficient to be practical.

The conflict can be stated as follows: in order to provide semantic security
an encryption algorithm must be randomized, but on the other hand any homo-
morphism should map zero to zero; an encryption of zero cannot be zero but
an encryption of zero must be zero. To resolve this, encryptions of zero are
“masked” by “noise” in the aforementioned schemes. The new problem is that
during computation on encrypted data this “noise” tends to accumulate and
must occasionally be reduced to preserve the correctness of decryption. There-
fore, the inefficiency of these schemes can be attributed to the adopted noise
management solution. In the above implementations the noise reduction pro-
cess is recryption (also known as bootstrapping), a function that takes a noisy
ciphertext and produces an equivalent ciphertext with less noise. Recryption is
an expensive procedure and limits both the efficiency and real-life applicability
of any existing FHE solution.

There were alternative proposals for FHE following Gentry’s, given by Brak-
erski et al., Ducas et al. and Van Dijk et al., which can be found in their respec-
tive works [6,10,35]. While some of these approaches seem conceptually simple
and effective, all proposed solutions still involve “bootstrapping”. In addition,
a majority of the existing methods deal with encrypting Boolean circuits (i.e.,
AND and OR Boolean operations) as opposed to the “usual” arithmetic opera-
tions of multiplication and addition. A “leveled” scheme, an encryption scheme
that is typically more efficient than FHE schemes but can only correctly com-
pute a bounded number of operations on ciphertexts, based on adaptations of
one of the works above has been developed by Fan and Vercauteren [13], an
implementation of this scheme in the R-platform can be found online. In con-
trast to leveled schemes, our scheme is fully homomorphic and therefore does
not require that any parties determine the desired function to compute prior
to instantiating the encryption scheme. A further review of FHE schemes and
software tools has been provided by Aslett et al. [2].

The first implementation of Gentry’s FHE scheme boasted one – albeit large
dimensional – bootstrapping operation in 31 min [15]. Subsequent implementa-
tions of the improved FHE schemes utilize as benchmarks the computation time
for one bootstrap operation as well as computing the AES encryption circuit.
The HElib [19], FHEW [10], and TFHE [8] are implementations of alterna-
tive encryption schemes. In terms of benchmarking, the fastest and most recent
implementation, TFHE, reports 13 ms for the computation of one bootstrapped
binary gate.

Recently, secure machine learning techniques have appeared in the literature.
Many techniques implement the schemes mentioned above, but many privacy
preserving classifiers circumvent FHE and instead make use of leveled homomor-
phic encryption schemes, garbled circuits, secret sharing, or multi-party compu-
tation. For example, Du et al. [9] develop a secure model for linear regression
and two-party multivariate classification. This technique does not use FHE, nor
does it provide computational benchmarks.
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Various techniques attempt to use differential privacy, a tool to protect
against database deanonymization, to allow for data sharing. These schemes
include those provided by Zhang et al. [38] and Sarwate et al. [32]. These tech-
niques do not implement cryptographic schemes but, if provably secure, could
allow for useful patient data warehouses. Yang et al. [37] develop a framework
for delegated computation, such as searching encrypted databases in the cloud,
which can be used for electronic medical records. This framework, while efficient,
does not implement machine learning or FHE.

Graepel et al. [16] construct low-degree polynomial versions of classifica-
tion algorithms on a leveled homomorphic encryption scheme. Nikolaenko et al.
[28] improve upon this performance, reducing computation time, and construct
privacy preserving ridge regression using encryption and garbled circuits. This
construction does not use an FHE scheme, but is a hybrid construction. Other
hybrid constructions exist, such as the constructions that use garbled circuits
proposed by Sadeghi et al. [31] and Evans et al. [12] or garbled circuits combined
with secret sharing proposed by Lindell et al. [24], but do not implement FHE.

Bos et al. [3] also utilize a leveled homomorphic encryption scheme. The
encryption scheme uses a polynomial ring as a platform to allow a client to
delegate medical prediction functions to a server. In this setting the algorithm
only keeps the patient data private, and allows everyone to know the function.

Bost et al. [4] explore privacy-preserving classifiers in the form of hyperplane
decision, Naive Bayes, and decision trees using delegated computation. This is
based on additively homomorphic encryption schemes and garbled circuits. Our
scheme has the advantage of involving lower communication complexity for a
linear classifier. Eventually, our framework could be extended to include more
sophisticated learning algorithms such as those addressed in this paper. Many
other constructions, such as that by Aono et al. [1], merely use an additively
homomorphic encryption scheme for computations such as logistic regression or
statistical analysis [21,23,27].

Liu et al. [25] use the IBM implementation of FHE to delegate the computa-
tion of Support Vector Machine classification on encrypted data to a server. The
paper provides benchmarks for encryption and decryption time, as well as homo-
morphic multiplication and addition, on a small dataset. Our scheme, as seen
in our results, greatly reduces computation time. Our approach to homomor-
phic encryption is based on the use of mathematical rings and homomorphisms
between those rings. This framework has the additional benefit of avoiding any
computational overhead due to converting between “real-life arithmetic” and
Boolean circuits. In this paper we avoid detailing the specifics of our encryp-
tion method, which are outlined in [17,22]. We will say that since the ciphertext
ring, in which computations on encrypted data are performed, has a very sim-
ple structure all computations within our scheme are orders of magnitude more
efficient than the schemes mentioned.

The advantage of using this specific FHE scheme is error-less computation
with guaranteed security, in contrast to some of the non-FHE solutions provided
above. The main contribution of this paper is that our FHE scheme is a fully
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homomorphic scheme that is efficient enough to allow for machine learning on
encrypted data. We provide simulations, error, and computational overhead of
using our scheme for this purpose. While the works in this paper are generally
applicable to a multitude of scenarios, we consider two specific applications for
machine learning over encrypted data. These two scenarios will be simulated in
the following experiments. Most of the data utilized is actual patient data; the
term simulation refers to the simulation of both the communication between
parties, and computations performed by each party.

In the first scenario, a hospital H has a private database of patients’ data, D,
which cannot be shared with an external entity. On the other hand, a research
center C would like to use D to construct a machine learning model, for example
to build a function F to calculate a risk assessment score, or perform actuarial
analyses. In practice, C could be a research center, another hospital, a pharma-
ceutical company, an insurance company, or any other third party. Additionally,
C may be reluctant to share its intellectual property, F , with H. This scenario
happens quite often within the research community. Researchers find it difficult
to train generalizable models because of the lack of public data. This scenario is,
in part, simulated in this paper, when we compare the error results of training
a function on encrypted and unencrypted data.

In the second scenario, C has a collection of multivariate functions

Fi : Xn → Y for 1 ≤ i ≤ k

representing a specific machine learning algorithm, while H has the inputs rep-
resenting the medical data for patient x = (x1, x2, . . . , xn). The set of known
functions, F = Fi

k
i=1 are expected to predict a diagnosis or prognosis for x, for

example the chances of patient x having Parkinson’s, cancer, heart attack, etc.
The difference between this second scenario and the first outlined scenario is that
in this scenario we assume that F is a known function (e.g., we know how to cal-
culate Glasgow Coma Scale (GCS) using eye, verbal, and motor responses). Our
goal is to apply F on both encrypted and unencrypted data and show that the
output of a known function evaluation on both sets of data is the same. Outputs
of these functions could be “health metrics”, “severity scores” and other clin-
ical functions typically computed as a linear combination of privacy-protected
factors, such as quantitative clinical or physiological patient data with a set of
weights (coefficients). In practice, these functions are often designed to receive
integer values as input variables and produce an integer as an output score.
There are a large number of such studies conducted for diseases such as diabetes
[33]. In many such modeling tasks, particularly when designing these models
as commercial products, it is highly desirable to design, test and validate the
functions privately. This scenario, in part, is simulated in this paper, where we
apply known classification functions to encrypted and unencrypted data.

In very general terms, a potential exchange between the hospital H and
a center C goes as follows. H encrypts data, x1, x2, . . . , xn, of a particular
patient x with E and sends the encrypted values E(x1), E(x2), . . . , E(xn) to C.
C applies the private function F to the encrypted data, thereby computing
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F (E(x1), E(x2), . . . , E(xn)). The result of this computation, by the fully homo-
morphic property of E, is equal to E(F (x1, x2, . . . , xn)). Next C sends this result
to H, who decrypts the value and thus recovers F (x1, x2, . . . , xn). H then sends
this decrypted value back to C. Based on the received evaluation of F , the final
plaintext message, the hospital H has a diagnosis or risk assessment for patient x.
Thus, C never learns the plaintext patient data x and H never learns the function
F , but does learn F (x).

2 Encryption Overview

We first give a general description of FHE and its relevant terminology. The
term plaintext refers to unencrypted data, whereas ciphertext refers to encrypted
data. For our applications all data will be integers. Additionally, in order to
enable the encryption process to select elements of the plaintext space uniformly
at random, we require that the plaintext space be finite. This randomness is
required for security. In the case that actual medical data is not measured in
integers, we can merely “re-scale” the measurement by multiplying the value
with a sufficiently large integer, to ensure that this property holds. Thus, we
can guarantee that the set of plaintexts, Zp, will be the ring of integers modulo
p. The prime number p here should be large enough that all plaintexts would
be integers much less than p. Specific implementation details can be found in
supplementary materials, [17,22]. To keep this paper relatively self-contained we
describe our general encryption scheme below. Although certain details of the
scheme are provided, the FHE scheme will essentially be implemented as a black
box encryption function for the duration of this work.

– Plaintexts are elements of the ring Zp. We start by embedding Zp into a
larger ring R, which is a direct sum of several copies of Zp. We denote this
embedding by α and the inverse map by β. The ring R can be public but
both α and β are private; α is a part of the private encryption key, while β
is a part of the private decryption key.

– Ciphertexts are elements of a ring S, such that R ⊂ S is a subring of S. In
our scheme S is, again, a direct sum of several copies of Zp. The ring S is
public but contains a private ideal I such that S/I = R.

– Encryption is given by E(u) = u + E(0), for an element u ∈ R, where E(0)
is a random element of the private ideal I. This encryption function is a
homomorphism; the additive property is clear. For multiplication we have,
for some j1, j2, j3 ∈ I, that

E(u)E(v) = (u + j1)(v + j2) = uv + j1u + uj2 + j1j2 = uv + j3 = E(uv)

– Decryption is computed with a private decryption key, a map ρ : S → R that
takes every element of the ideal I to 0, followed by the map β from R to Zp.

Here is a diagram to visualize our general scheme:

Zp
α−→ R

E−→ S
ρ−→ R

β−→ Zp
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It should be noted that the number of distinct fully homomorphic embed-
dings, α, from Zp into R is quite large, even if R is a direct sum of only a
few copies of Zp. To explain this we first mention that a map α : 1 → α(1)
extends to an embedding of Zp into R if and only if α(1) is an idempotent of
R, i.e., α(1)2 = α(1). When R is a direct sum of n copies of Zp, then it has
2n idempotents, so there are 2n different embeddings of Zp into R. Similarly, a
fully homomorphic encryption function E : R → S is an embedding of rings.
Therefore, a similar argument applies to counting embeddings of R into S.

From the security point of view, it is known that all FHE schemes have a
theoretical vulnerability [18]. In our scheme, the ideal I used for encryptions of
zero is finite dimensional and therefore accumulating sufficiently many encryp-
tions of zero may give an adversary the ability to recover I. Fortunately, the
recovery of I is not a security threat from a practical point of view because I
is not a part of the decryption key; the decryption key consists of the maps ρ
and β. If an adversary has recovered the ideal I they may be able to recognize
all encryptions of zero, but in real-life scenarios encryptions of zero are not fre-
quently transmitted. We note that if a plaintext is “close” to zero, which can be
the case in a medical database, the corresponding ciphertext does not have to be
“close” to zero; the proposed encryption function does not preserve any metric
and therefore does not preserve distance from zero. In fact, it is easy to see that
any encryption function which does preserve such a metric cannot possibly be
secure.

Our encryption scheme is completely secure against Ciphertext-Only Attack
(COA). This means that a “hacker” who retrieves any encrypted portion of
a database, regardless of the size, has only a negligible probability of cor-
rectly decrypting any portion of the database. COA security is fairly easy to
achieve with a private-key non-homomorphic encryption. However, this prop-
erty becomes very nontrivial for FHE. One of the main reasons we are able to
achieve this property with our FHE scheme is the incredibly large number of fully
homomorphic embeddings of Zp in our public ring S. This implies that there are
many different ways to decrypt any given ciphertext, but only one decryption
is correct. Therefore, the probability to decrypt correctly is 1

M , where M is the
total number of possible decryptions. If M is large enough this probability is
negligible. Our suggested parameters, which yield this security guarantee, have
M on the order of 2128.

3 Simulations

A machine learning solution should not only calculate the essential functions
on encrypted patient data but also preserve privacy. In this paper, we focus on
publicly available databases and high impact functions. First, we have conducted
time series analysis on both synthetic and real heart rate data. Second, we have
chosen to calculate known functions on Diabetes data, as well as a known pre-
dictive function on Parkinson’s data. To illustrate the correctness and efficiency
of our FHE scheme we perform experiments on this data. We report both error
and computational overhead in the Results Section of the paper.
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In the first simulation we apply a function, e.g., develop a model, on both
encrypted and plain-text datasets to estimate/predict an output for each dataset
and show that there is no difference between the outputs. We perform linear
time-series analysis and fit a model to the encrypted data to understand the
underlying structure and perform forecasting, monitoring and so on. Here, we
use Recursive Least Squared (RLS) as the F function.

In the second simulation we apply a known classification function on
encrypted data and measure the computational overhead. We focus on pub-
licly available medical data for Parkinson’s and diabetes, in order to illustrate
the efficacy of our scheme on medical data.

3.1 Experiment One

In this simulation we play the role of an external entity C: we are given an
encrypted database D and train a function F on the encrypted data. As an
example, an assessment function can tell whether a patient has a risk of heart
attack, based on his/her medical data such as age, blood pressure, heart rate, etc.
With the proposed encryption method, we can obtain an assessment function
from encrypted data when we are given the relevant formula for obtaining that
function from unencrypted data.

We perform linear univariate time series analysis on two separate databases
using the RLS algorithm. Time series data can allow for high level medical
analysis, including features calculated from variations in heart rate, heart rate
variability, blood pressure, etc. The RLS algorithm implemented in this section
is fairly straightforward.

Synthetic Data. The first database (DB 1) consists of synthetic data, gener-
ated according to a known distribution. The input signal is x(n) and we gener-
ated the output signal, y(n), via an equation presented in [26]:

y(n) =
N∑

k=0

h(k)x(n − k)

where h(k) = 1/(k + 1). Note that these parameter values were chosen arbi-
trarily: any values of N would yield similar results. We have applied the RLS
algorithm to both the encrypted and unencrypted data. We then measured the
mean squared error between the actual, known function value and our estimated
function value after the 1000 iterations. The goal, of course, is to have min-
imal error, thereby indicating the feasibility of running the RLS function on
encrypted data. Table 1 contains the error results for this database as well as
the time difference between plaintext and encrypted data computations for one
output.

Santa Fe Time Series Data. Our second database (DB 2) was time-series
data from the Santa Fe Time Series Competition [30]. For simplicity, only Heart
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Rate Variation (HRV) over time was considered. We applied RLS to both the
unencrypted and encrypted heart rate data of patients. We measured the error
between the actual heart rate and the one predicted by our function on both
unencrypted and encrypted data. To reiterate, the error between our function’s
prediction and actual heart rate is reported in both situations. Because this
simulation involves actual prediction, we hope for the error values on encrypted
and unencrypted data to be as close as possible. The given measurements of the
heart rate were in the range [70.00, 100.00]. Table One contains the results of
our tests.

3.2 Experiment Two

In this simulation we have run several statistical tests on real-life databases
encrypted by our method, including diabetic data [33] and Parkinson’s data [34].
This simulation has real-life applications. For example, a hospital H has a private
database D of patients’ medical/clinical data. At the same time, a research center
C has statistical tools that could help H assess risk. We therefore calculate this
classification function on the following databases while maintaining the privacy
of both the model and the data. Note that this scenario does not involve any
training, merely homomorphic function evaluation on ciphertexts. We compute
the same known polynomial function on encrypted and unencrypted data. We
measured the time for encryption and decryption of the data for one patient
as well as for the whole database. The execution time of a linear function was
captured for each encrypted dataset. Table 2 provides the results of simulation.

Diabetic Database. The diabetic data (D) represents 10 years (1999–2008)
of clinical care at 130 US hospitals and integrated delivery networks. The pub-
lically available input data contains many parameters on over 70, 000 patients,
including demographic and clinical values. Each patients data includes over 50
features, representing patient and hospital outcomes. The predetermined classi-
fication function takes these recorded values, such as race, age and time of stay
in hospital, and outputs a re-admission prediction.

Parkinson’s Database. The Parkinson’s data (P) encompasses a range of
biomedical voice measurements from 42 patients with early-stage Parkinson’s
disease, recruited for a six-month trial of remote symptom progression moni-
toring. These recordings were automatically captured in the patients’ homes.
Parameters include demographic and clinical data, as well as features calcu-
lated from the recordings such as jitter and shimmer. The known function under
consideration takes the patient data, including the dysphonia measurements,
as input and out- puts the Pitch Period Entropy (PPE). The PPE value is
highly correlated with the progression of Parkinson’s disease. The fixed function
under consideration is a linear combination of certain attributes in patient vector
x = 〈x0, x1, x2, . . . , xn〉, with precomputed coefficients ak : 1 ≤ k ≤ n taking the
following form:



Medical Diagnostics Based on Encrypted Medical Data 107

PPE = x0 +
18∑

k=1

akxk

4 Results

Tables 1 and 2 report the findings of the simulations. Table 1 reports the size
of the RLS window, N , the computation error over plain-text and encrypted
data, as well as the difference between these errors and the computational time.
Table 2 reports the size of each database, the time to encrypt and decrypt both
a single patient and the database, as well as the cost of function evaluation.

Table 1. Experiment One: RLS on Ciphertexts and Plaintexts. This table provides a
comparison of RLS applied on both databases, over encrypted and unencrypted data

Database N Plaintext error Encrypted error Error difference Time

DB 1 3 3.26 × 10−4 3.29 × 10−4 3 × 10−6 0.004 ms

DB 1 9 2.95 × 10−4 3.02 × 10−4 7 × 10−6 0.009 ms

DB 2 3 1.264 1.269 0.005 0.005 ms

DB 2 9 1.124 1.129 0.005 0.01 ms

In this scope, the importance of these results lies not in the error values
themselves but in the proximity between the error values. If the error values
are close, this implies that RLS behaves nearly identically on ciphertexts and
plaintexts. The closer the error values are the less error can be attributed to the
encryption scheme. Ideally, these error values would be the same but, because
we must scale all plaintext values to integers prior to encryption, we introduce
rounding error. In other words, the difference between the encrypted and unen-
crypted error values is due to rounding error generated by rescaling the real
numbers to integer values. The column “Encrypted Error” in Table 1 reports
the error from the recursive function. This computation includes embedding all
data into the integers modulo p via a common scaling integer, a power of ten,
encrypting, computing, decrypting, and dividing by the scaling integer.

Clearly, the accuracy of the assessment function on the synthetic data is
practically the same for unencrypted and encrypted data. This shows the ability
of the encryption function to handle RLS training while maintaining correctness.
It can be seen that the difference in error over encrypted and unencrypted data
for both the synthetic and real situations is negligible. This illustrates that basic
machine learning models, those that utilize the proper arithmetic operations, can
be trained on ciphertexts while maintaining correctness. Time series analysis is a
fundamental aspect of medical data analytics and these experiments have shown
that our FHE scheme permits the necessary computations for such analytics.



108 A. Gribov et al.

Note that the difference in error does not scale with N , the RLS window
size. This shows that the error introduced by increasing the number of variables
involved in computation is not expected to generate significant error. Unavoid-
ably, encrypted computation time is larger than unencrypted computation time.
While this computational overhead will increase with the number of patients,
this scheme is feasible for performing computation on encrypted data. Table One
shows that computation time with our method is still quite practical. This is not
the case with alternative FHE implementation methods. See, for example, the
work done by Ducas and Micciancio [10], which achieves a single bootstrapped
NAND computation in 0.69 s. Additionally, work provided by Aslett et al. [2]
claim a single scalar addition at 0.003 s and a single scalar multiplication at
0.084 s even using high performance computers.

Table 2. Experiment Two: Known functions computed on publicly available data.

DB DB
size
MB

Patient
records

Time to
encrypt
record

Time to
encrypt
DB

Time to
decrypt
record

Time to
decrypt
DB

Time to
evaluate
function

D 19 101767 0.02445 2488 0.18152 18472.7 1 × 10−5

P 1 5876 0.01194 70.1 0.09798 575.7 6 × 10−6

The results of simulation two can be seen in Table 2. With this simulation
we showed that given a polynomial function, e.g., a medical diagnostic or prog-
nostic function, both H and C can evaluate the function homomorphically on
encrypted data. This allows C to maintain the integrity of its intellectual prop-
erty, F , while still using the function to classify private data D. There is no
discrepancy between the assessment, i.e., function evaluation, on each individ-
ual patient regardless of whether the function was calculated on encrypted or
unencrypted data. Therefore, instead of reporting any error measurement we
report the efficiency of the scheme and computation on ciphertexts by applying
the same linear functions to unencrypted and encrypted data. The efficiency of
the scheme is noteworthy - with this simulation we have shown that function
evaluation can be performed relatively quickly using our FHE scheme. In this
table it is also notable that the time to decrypt is higher than the time to encrypt.
This discrepancy is due to the fact that encryption is essentially an addition,
while decryption requires computing the remainder of a ciphertext modulo the
ideal I via the decryption map.

5 Conclusions

We applied our method of Fully Homomorphic Encryption (FHE) to calculate
medical diagnostic functions based on encrypted medical data. Our FHE scheme
permits the use of machine learning algorithms that utilize polynomial kernel
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functions. These computations allow for medical diagnostics to be performed
on encrypted data, maintaining the privacy of patient data. We outlined exam-
ple scenarios where secure machine learning could be useful within the medical
community, considering the protection of patient data as well as a researchers
intellectual property.

Time series analysis was performed on synthetic and real data, showing that
the increase in error is negligible when operating on encrypted data. Then known
classification functions were applied to public medical databases without intro-
ducing additional error that illustrates the efficiency of our encryption method.

We have shown that it is possible to train an assessment function on
encrypted data provided that relevant formulas for obtaining such a function
from unencrypted data are available. Our method provides very efficient compu-
tation on encrypted data, which allows us to compute any polynomial function
on a single patient’s encrypted data in a fraction of a second. A polynomial func-
tion can be computed on a medical encrypted database in a couple of minutes.

We have shown that the encryption scheme is efficient enough to be practical,
secure and correct for linear classifiers as well as time series analysis. Theoreti-
cally, it is possible to extend the applicability of the scheme to different families
of machine learning functions. Planned future work includes adapting the cur-
rent encryption scheme to working with non-linear classifiers, such as Volterra
systems. This generalization would show that the encryption scheme permits a
larger class of machine learning functions to be computed on encrypted data.

The above implementation of the FHE function allows for efficient data min-
ing without decryption while maintaining correctness. Therefore, it is completely
feasible to consider the utilization of this encryption function for highly sensitive,
private, and federally regulated medical data.
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