®

Check for
updates

Classification of Permutation Distance
Metrics for Fitness Landscape Analysis

Vincent A. Cicirello(®)

Stockton University, Galloway, NJ 08205, USA
cicirelv@stockton.edu
https://www.cicirello.org/

Abstract. Commonly used computational and analytical tools for fit-
ness landscape analysis of optimization problems require identifying a
distance metric that characterizes the similarity of different solutions to
the problem. For example, fitness distance correlation is Pearson cor-
relation between solution fitness and distance to the nearest optimal
solution. In this paper, we survey the available distance metrics for per-
mutations, and use principal component analysis to classify the metrics.
The result is aligned with existing classifications of permutation problem
types produced through less formal means, including the A-permutation,
R-permutation, and P-permutation types, and has also identified sub-
types. The classification can assist in identifying appropriate metrics
based on optimization problem feature for use in fitness landscape anal-
ysis. Implementations of all of the permutation metrics, and the code for
our analysis, are available as open source.

Keywords: Fitness landscape analysis - Permutation distance -
Permutation metric - Combinatorial optimization -
Fitness distance correlation

1 Introduction

The concept of a fitness landscape originated in Mendelian genetics [24], and is
now extensively used in the analysis of genetic algorithms and other forms of evo-
lutionary computation. A fitness (or search) landscape [15] is the space of possi-
ble solutions to an optimization problem spatially arranged on a landscape with
“similar” solutions neighboring each other, and where elevation corresponds to fit-
ness (or solution quality). Peaks (for a maximization problem) and valleys (for a
minimization problem) correspond to locally optimal solutions. The optimization
problem is to find an optimal point on that landscape. Search landscape analysis is
the term covering the theoretical and practical techniques for studying what char-
acteristics of a problem make it hard, how different search operators affect fitness
landscape topology, among others. In our research, we are especially interested
in the fitness landscapes of permutation optimization problems, where solutions

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

A. Compagnoni et al. (Eds.): BICT 2019, LNICST 289, pp. 81-97, 2019.
https://doi.org/10.1007/978-3-030-24202-2_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24202-2_7&domain=pdf
http://orcid.org/0000-0003-1072-8559
https://doi.org/10.1007/978-3-030-24202-2_7

82 V. A. Cicirello

are represented by permutations of the elements of some set, and where we must
maximize or minimize some function. For example, a solution to a traveling sales-
person problem (TSP) is a permutation of the set of cities, and the objective is to
find the permutation that corresponds to the minimal cost tour.

There is much work on fitness landscape analysis, including for permutation
landscapes [3,6,8,19,21,22]. Fitness landscape analysis can use fitness distance
correlation (FDC) [10], Pearson correlation between solution fitness and distance
to the nearest optimal solution. The search landscape calculus [4] is another
fitness landscape analysis tool that examines the local rate of change of fitness.

Fitness landscape analysis tools such as FDC and search landscape calculus
require distance metrics. The features of a given structure, such as a permutation,
that are important in determining similarity or distance is often problem depen-
dent. For example, for a TSP, the permutation represents a set of edges between
adjacent pairs of cities. Circularly rotate the permutation, and it still represents
the same set of edges, and thus the same TSP solution. However, permutations
can also represent one-to-one mappings between the elements of two sets. For
example, in the largest common subgraph problem, one must find the largest
subgraph (in number of edges) of graph G that is isomorphic to a subgraph of
graph G5. Potential solutions to this problem can be represented by keeping the
vertices of one of the graphs in a fixed order, and using a permutation of the
vertices of the other graph to represent a mapping. In this case, if vertex i of G
is in position j of the permutation, it corresponds to mapping vertex i of G5 to
vertex j of G1. In this example, it is the absolute positions of the elements in the
permutation that are important to fitness. Campos et al. categorized permuta-
tion optimization problems into two types [1]: R-permutation problems, such as
the TSP, where relative positions (i.e., adjacency implies edges) are important;
and A-permutation problems, such as mapping problems, where absolute ele-
ment positions have greatest effect on fitness. We previously added a third type,
P-permutation, to this classification [4]. In a P-permutation problem general ele-
ment precedences most directly impact solution fitness (e.g., element w occurs
prior to elements x, y, and z, but not necessarily adjacent to any of them). Many
scheduling problems fall into this class (e.g., a job « may be delayed if there are
jobs with long process times anywhere prior to it in the schedule).

In this paper, we begin in Sect. 2 with a survey of the wide variety of permu-
tation distance metrics that are described in the research literature. In Sects. 3
and 4 we then use principal component analysis (PCA) to formally identify
groups of related permutation distance metrics from among those available.
We will see that the first three principal components correspond to the three
problem classes previously defined; and that our approach additionally identi-
fies subtypes. A classification of permutation distance metrics that aligns with
the existing classification of permutation problems is a desirable property of
our results. For example, if one requires a permutation metric relevant for ana-
lyzing the fitness landscape of a problem known to be in a particular problem
class, then the distance classification can directly lead to the most relevant met-
rics. Next, in Sect. 5, we provide a set of fitness landscapes that correspond to
the identified classes of permutation distance metric. For each of these land-
scapes and for each metric, we compute FDC as an example application of the



Classification of Permutation Distance Metrics 83

Table 1. Summary of distance measure classes.

Permutation distance Runtime Metric?
Edit distance O(n?) Yes
Exact match distance O(n) Yes
Interchange distance O(n) Yes
Acyclic edge distance O(n) Pseudo
Cyclic edge distance O(n) Pseudo
R-type distance O(n) Yes
Cyclic r-type distance O(n) Pseudo
Reversal edit distance Init: O(n!n®) Compute: O(n?) | Yes
Kendall tau distance O(nlgn) Yes
Reinsertion distance O(nlgn) Yes
Deviation distance O(n) Yes
Normalized deviation distance | O(n) Yes
Squared deviation distance O(n) Yes
Lee distance O(n) Yes

classification scheme. We implement the PCA, as well as our FDC examples, in
Java, using an open source Java library of permutation distance metrics [5]. We
have added the source code for our analysis to the repository to enable easily
replicating our results. The source repository is found at https://github.com/
cicirello/JavaPermutationTools, and additional documentation for the library
itself at https://jpt.cicirello.org/. We wrap up with a discussion of the classifi-
cation in Sect. 6.

2 Permutation Distance

Table1 summarizes the permutation distance metrics used in our analysis,
including runtime, and indicating which are metrics. The n in runtimes and
in equations is permutation length. Wherever we specify a distance mathemati-
cally, p(7) refers to the element in position 7 of permutation p; and we use 1-based
indexing in the equations (index of first position of a permutation is 1). If we
need to refer to two different permutations, we use subscripts. Thus, p; (i) refers
to the element in position ¢ of permutation p;.

Edit Distance: The edit distance between two structures is the minimum cost
of the “edit operations” required to transform one structure into the other. Lev-
enshtein distance is a string edit distance [13], where the edit operations are
inserting a new character, removing an existing character, or changing a char-
acter to a different one. Levenshtein was concerned with binary strings (i.e., of
ones and zeros). Wagner and Fischer extended this to non-binary strings, intro-
duced the ability to apply different costs to the three types of edit operations,


https://github.com/cicirello/JavaPermutationTools
https://github.com/cicirello/JavaPermutationTools
https://jpt.cicirello.org/

84 V. A. Cicirello

a) Form a graph with permutation elements as vertices, and for the
pair of permutations interpret corresponding elements as edges.

pl=0,1,2,3,4,5,6)\7,8,9 Forexample, we'll have an
p2=1,2,0,8,4,3\5/7,6,9 edgebetween 6 and 5.

b) Count the number of cycles in the induced graph.
? @D GrB) In this example, there
G5 @~© @00 are 5 cycles.
c) Distance is permutation length minus number of cycles.
In this case, 10 -5 = 5.

Fig. 1. Computing interchange distance via cycle counting.

and provided a dynamic programming algorithm for computing it [23]. Sérensen
suggested treating a permutation as a string, and applying string edit distance to
permutations [21]. All edit distances are metrics. Our edit distance implemen-
tation is of Wagner and Fischer’s dynamic programming algorithm, including
parameters for the costs of the edit operations. Runtime is O(n?).

Exact Match Distance: Ronald extended Hamming distance to non-binary
strings, producing a permutation distance he called exact match distance [18],
which is the number of positions with different elements. It is an edit distance
where the only edit operation is element changes. It is widely used [3,6,20,21],
satisfies the metric properties [18], and has runtime O(n). We define it as:

(o) =3 { g et 7 P2 0

=1

Interchange Distance: Interchange distance is an edit distance with one edit
operation, element interchanges (or swaps). It is the minimum number of swaps
needed to transform p; into py; and is computed efficiently (O(n) time) by count-
ing the number of cycles between the permutations [6]. A permutation cycle of
length k is transformed into k fixed points with k& — 1 swaps (a fixed point is a
cycle of length 1). Figurel illustrates computing interchange distance by cycle
counting. Let CycleCount(p1,p2) be the number of permutation cycles. Thus,
we formalize interchange distance as:

0(p1,p2) = n — CycleCount(py, p2)- (2)

Cyclic Edge Distance and Acyclic Edge Distance: Ronald defines mea-
sures useful when permutations represent sets of edges: cyclic edge distance and
acyclic edge distance [16,17]. Both assume that the element adjacency within a
permutation correspond to undirected edges. Cyclic edge distance considers the
permutation to be a cycle, where the first and last elements are adjacent; whereas
acyclic edge distance does not. Cyclic edge distance interprets the permuta-
tion, [0, 1,2, 3, 4], as the set of undirected edges, {(0,1), (1,2),(2,3), (3,4), (4,0)},



Classification of Permutation Distance Metrics 85

while acyclic edge distance excludes (4, 0) from this set. Both are invariant under
a complete reversal (e.g., [0,1,2,3,4] is equivalent to [4,3,2,1,0]). The cyclic
form is also invariant under rotations. In both forms, distance is the number
of edges that are not in common (i.e., the number of edges in p; that are not
found in ps) and is computed in O(n) time. Both are pseudo-metrics [17] (due to
reversal invariance, and rotational invariance for the cyclic form). We formalize
cyclic and acyclic edge distances, respectively, as follows:

0 if3j3xFy, j=(imodn)+1 Ay=(xmodn)+1A
RS [(p1(i) = p2(2) Ap1(j) = (y))
oo p2) = g V(p1() = pa(y) Apr(G) = pa())

1 otherwise.

3)

no1 [0 if 3z, (pr(d) = pa(z) Apr(i+1) =pa(z+1)) v
S(prp2) = (p1(3) = oz + 1) Api(i+1) = pa(x)) (4)

=1 11 otherwise.
R-Type Distance and Cyclic R-Type Distance: The r-type distance (“r”
for relative) [1] is a directed edge version of acyclic edge distance. Cyclic r-type
distance [4] is a cyclic counterpart to r-type distance, which includes an edge
between the end points. Though r-type distance satisfies the metric properties,
cyclic r-type is a pseudo-metric due to rotational invariance. Both are computed
in O(n) time, and defined respectively as:

n—1 . . .
0 if 3z, pi(i) = po(a) Api(i+1) = palw+1)
1) = 5
(p1, p2) Z{l otherwise. (5)

i=1

n [0 if3jF2xTy, j=(imodn)+1 Ay=(xmodn)+1A
S(prip2) = pi(i) = pa(x) Ap1(5) = p2(y) (6)
i=1

1 otherwise.

Reversal Edit Distance: Reversal edit distance is the minimum number of
reversals needed to transform p; into ps. Computing reversal edit distance is
NP-Hard [2]; and Schiavinotto and Stiitzle argue that the best available approx-
imations are insufficient for search landscape analysis [19].

Our implementation of reversal edit distance uses breadth-first enumeration
to initialize a lookup table mapping each of the n! permutations to its rever-
sal edit distance from a reference permutation. Later, computing the distance
between a given pair of permutations becomes a table lookup. We originally
implemented this for a context where we required computing distance from all
permutations of a specific relatively short length (n = 10) to one specific per-
mutation [4]. In that context, initialization cost is O(n!n3) (i.e., breadth-first
enumeration iterates over O(n!) permutations, each of which has O(n?) neigh-
bors (i.e., possible sub-permutation reversals), and the cost to execute a reversal



86 V. A. Cicirello

is O(n). Therefore, applications with the need to compute O(n!) distances all
from the same reference permutation can do so with an amortized initialization
cost of O(n3) per distance calculation. The table lookup has cost O(n?) (cost to
compute mixed radix representation of the permutation).

Kendall Tau Distance: Kendall tau distance, a metric, is a slight variation of
Kendall’s rank correlation coefficient [11]:

5(p1. p2) :”f Z {o it 303y, p(i) =p2(@) AP =) A<y (g
=1 =11 1 otherwise.

Some divide this sum by n(n—1)/2, but most use it in the form of Eq.7 (e.g., [7,
14]) where it corresponds to the minimum number of adjacent swaps needed to
transform permutation p; into py. Thus, it is an adjacent swap edit distance.
For this reason, it is sometimes called bubble sort distance, since it corresponds
to the number of adjacent swaps executed by bubble sort. The runtime of our
implementation of Kendall tau distance is O(nlgn) using a modified version of
mergesort to count inversions.

Reinsertion Distance: Reinsertion distance is an edit distance with a sin-
gle atomic edit operation, removal/reinsertion, which removes an element and
reinserts it elsewhere in the permutation; and thus is the minimum number of
removal /reinsertions needed to transform p; into ps. Relying on the observation
that the elements that must be removed and reinserted are exactly the elements
that do not lie on the longest common subsequence [4], it can be computed effi-
ciently in O(nlgn) time (e.g., using Hunt and Szymanski’s algorithm for longest
common subsequence [9]). Thus, we implement reinsertion distance as:

d(p1,p2) = n — #(MaxCommonSubsequence(py, p2)). (8)

Deviation Distance and Normalized Deviation Distance: Deviation dis-
tance is the sum of the positional deviations of the permutation elements, and
is a metric [18]. The positional deviation of an element is the absolute value
of the difference of its index in p; from its index in ps. Ronald [18] originally
divided this sum by n — 1 to bound an element’s contribution to total distance
in the interval [0,1]. Many use this form (e.g., [21]) including in our own prior
work [3,6]. Others (e.g., [1,20]), including our own prior work [4], do not divide
by (n —1). Runtime of our implementation is O(n). The two forms are:

3(p1,p2) = 725 Y |i — j|, where p1 (i) = pa(j) = e. 9)
eepy
S(pr,p2) = Y |i — jl, where py (i) = pa(j) = e. (10)
eEepy

Squared Deviation Distance: Sevaux and Sorensen suggested squared devi-
ation distance, which is based on Spearman’s rank correlation coefficient [20].



Classification of Permutation Distance Metrics 87

It is the sum of the squares of the positional deviations of the permutation ele-
ments. Sevaux and Sorensen falsely state that squared deviation distance as well
as deviation distance require quadratic time [20], however our implementations
of these are O(n) time, with two linear passes, the first to generate the inverse
of one permutation, which is then used in the second pass as a lookup table (i.e.,
to find element indices).

8(p1,p2) = Y _ (i — §)*, where py (i) = pa(j) = e. (11)

eep1

Table 2. Lower triangle of correlation matrix (columns in same order as rows).

Exact match 1.000
Interchange 0.766 |1.000
Acyclic edge 0.019 |0.070 |1.000

Cyclic edge —0.000/0.056 [0.899 |1.000
Rtype 0.024 [0.009 |0.628 |0.564 |1.000
Cyclic rtype —0.000/—0.010/0.557 |0.619 |0.911/1.000

Kendall tau 0.328 |0.241 |-0.000/0.000 |0.085/0.075 |1.000
Reinsertion 0.301 |0.182 |0.102 |0.100 |0.422|/0.392 |0.704|1.000
Deviation (dev)|0.515 |0.395 |0.008 |—0.000/0.020|—0.000/0.931|0.650|1.000
Squared dev 0.333 |0.255 |—0.000|—0.000|0.017|—0.000/0.984|0.623|0.947|1.000
Lee 0.556 |0.426 |0.019 |0.000 |0.014|—0.000/0.447|0.452|0.703|0.455|1.000

Lee Distance: We include in our analysis an adaptation for permutations of Lee
distance [12] for strings, which originated in coding theory. Lee distance sums
the positional deviations of the elements, however, it uses the minimum of the
deviations to the left and right treating the permutation as a cyclic structure. It
is a metric, and is computed in O(n) time. Define it as:

d(p1,p2) = Z min(|i — j|,n — |i — j|), where p1(i) = p2(j) =e. (12)
eepy

3 Classification of Permutation Distance Measures

We use principal component analysis to identify groups of related permutation
distance metric. We use all of the distance measures from Sect.2 except edit
distance, normalized deviation distance, and reversal edit distance. We exclude
edit distance because its parameters define a continuum of distance metrics. We
exclude normalized deviation distance because it is simply deviation distance
scaled, and thus any observations made of deviation distance apply to both.
We exclude reversal edit distance due to cost of computing it, however, we later



88 V. A. Cicirello

discuss where it fits in our classification. We begin by generating a dataset by
iterating over all permutations of length n = 10 and computing distances to a
single reference permutation. We then compute the correlation matrix, found in
Table 2.

Using Jacobi iteration, we compute the eigenvalues and eigenvectors of the
correlation matrix. Table3 lists the eigenvalues of the principal components
(PC). The first three PCs have eigenvalues greater than 1.0; and the first five
PCs combine for greater than 90% of the sum. Table4 provides the eigenvec-
tors associated with the first five PCs. Table 5 lists the correlation between the
original distance metrics and each of the first five PCs. The first three PCs (all
with eigenvalues greater than 1) correspond to the three types of permutation
optimization problem discussed earlier in Sect. 1.

Table 3. Eigenvalues of the principal components.

PC | Eigenvalue | Proportion | Cumulative
1 4.3644 0.3968 0.3968
2 [3.1148 0.2832 0.6799
3 |1.4740 0.1340 0.8139
4 0.8367 0.0761 0.8900
5 10.5465 0.0497 0.9397
6 |0.2492 0.0227 0.9623
7 10.2120 0.0193 0.9816
8 [0.1575 0.0143 0.9959
9 0.0315 0.0029 0.9988
10 |0.0107 0.0010 0.9998
11 |0.0026 0.0002 1.0000

PC1 (P-Permutation): PC1 correlates extremely strongly (0.94) to deviation
distance, very strongly to Kendall tau distance and squared deviation distance,
and reasonably strongly to reinsertion distance and Lee distance (Table5). The
Kendall tau and reinsertion distances, by their very definitions, focus on permu-
tation similarity in terms of pairwise element precedences. Although the vari-
ations of deviation distance do not explicitly consider this, they capture that
essence in that an element that is displaced a greater number of positions is
likely involved in a greater number of precedence inversions (i.e., where a is
prior to b in one permutation, and somewhere after b in the other). So these
five permutation metrics are P-permutation distances, measuring permutation
distance in terms of precedence related features.



Classification of Permutation Distance Metrics 89

Table 4. Eigenvectors of the first five principal components.

Distance PC1 |PC2 PC3 PC4 PC5
Exact match distance 0.2984 1 0.0958 |0.5419 | —0.1573|0.1423
Interchange distance 0.248710.0695 |0.6058 | —0.0586 | 0.3936
Acyclic edge distance 0.0854 | —0.4751{0.1354 |0.4611 | —0.0635
Cyclic edge distance 0.0805| —0.4768 | 0.1194 |0.4674 | —0.0455
R-type distance 0.1271 | —0.4873 | —0.0576 | —0.3803 | 0.0517
Cyclic r-type distance 0.1153 | —0.4874 | —0.0666 | —0.3793 | 0.0510
Kendall tau distance 0.4216 1 0.0928 | —0.3110| 0.1400 | 0.2292
Reinsertion distance 0.3721 | —0.0848 | —0.2529 | —0.3795 | —0.0509
Deviation distance 0.4516 1 0.1321 | —0.1089|0.1630 | —0.0651
Squared deviation distance | 0.4140 | 0.1189 | —0.2828 | 0.2444 |0.2218
Lee distance 0.3381/0.1027 |0.2157 | —0.0476 | —0.8396

PC2 (R-Permutation): PC2 correlates very strongly with both forms of edge
distance, and both forms of R-type distance (|r| > 0.83 in all four cases). These
distances all focus on adjacency (i.e., edges) of permutation elements.

Table 5. Correlation between distance metrics and first five principal components.

Distance PC1 |PC2 PC3 PC4 PC5
Exact match distance 0.6234/0.1691 |0.6579 | —0.1439|0.1052
Interchange distance 0.5196 1 0.1227 |0.7355 | —0.0536 | 0.2910
Acyclic edge distance 0.1784 | —0.8385 | 0.1644 |0.4218 | —0.0470
Cyclic edge distance 0.1682 | —0.8415|0.1450 |0.4276 | —0.0337
R-type distance 0.2654 | —0.8600 | —0.0699 | —0.3479 | 0.0382
Cyclic r-type distance 0.2410 | —0.8602 | —0.0808 | —0.3469 | 0.0377
Kendall tau distance 0.8808 1 0.1638 | —0.3775|0.1281 |0.1695
Reinsertion distance 0.7774 | —0.1497 | —0.3070 | —0.3472 | —0.0377
Deviation distance 0.94350.2332 | —0.1322|0.1491 | —0.0481
Squared deviation distance | 0.8649 | 0.2099 | —0.3434 | 0.2236 | 0.1640
Lee distance 0.7063 | 0.1812 | 0.2619 | —0.0436 | —0.6207

PC3 (A-Permutation): PC3 strongly correlates to exact match distance and
interchange distance (r = 0.6579 and r = 0.7355, respectively). Both of these
distance metrics focus on absolute positions of permutation elements.

The fourth and fifth PCs identify subtypes. Their eigenvalues are less than 1,
and account for relatively small portions of the eigenvalue sum (approximately
7.6% and 5%), but is interesting to interpret their structure none-the-less.



90 V. A. Cicirello

Table 6. Permutation distance metric classification.

Type Subtype Distance

P-permutation | Acyclic subtype Kendall tau distance, reinsertion distance,
deviation distance, squared deviation distance

Cyclic subtype Lee distance

R-permutation | Undirected subtype | Acyclic edge distance, cyclic edge distance,
reversal edit distance

Directed subtype R-type distance, cyclic r-type distance

A-permutation Exact match distance, interchange distance

PC4 (R-Permutation, Undirected Subtype): PC4’s strongest correlations
are to the two variations of edge distance, which consider permutations to rep-
resent sets of undirected edges.

PC5 (P-Permutation, Cyclic Subtype): PC5 has moderately strong corre-
lation (r = —0.6207) to Lee distance, and only weak correlation to the other
distances. Lee distance also had strong correlation with PC1 (P-permutation),
however, Lee distance is different than the other metrics based on deviations in
that the positional deviation is computed as if the end points are linked. So in
some sense, we might consider this a cyclic subtype of P-permutation.

Our classification of the distance metrics is found in Table6. It includes
three primary types: P-permutation, R-permutation, and A-permutation; and
subdivides two of the types into subtypes. Although we excluded reversal edit
distance in the analysis, we include it among the undirected R-permutation
metrics as a reversal operation essentially replaces two undirected edges.

Table 7. Lower triangle of correlation matrix (permutation length 50).

Exact match  |[1.000
Interchange 0.578 [1.000
Acyclic edge 0.001 [0.009 |1.000
Cyclic edge 0.000 |0.009 [0.980 [1.000
Rtype 0.001 |0.000 |0.693 |0.679 |1.000
Cyclic rtype —0.000/—0.000/0.679 |0.693 |0.980 1.000
Kendall tau 0.142 |0.082 |—0.000{—0.000/0.008 |0.007 |1.000
Reinsertion 0.140 |0.074 |0.060 [0.059 |0.176 |0.172 |0.532|1.000
Deviation (dev)|0.226 |0.132 |—0.000/—0.000/—0.001—0.001|0.944|0.555/1.000
Squared dev 0.143 |0.084 |—0.000/—0.000/—0.000/—0.001/0.995/0.501|0.949|1.000
Lee 0.248 |0.144 |0.000 |—0.000/—0.001/—0.0010.431|0.439|0.685|0.433|1.000




Classification of Permutation Distance Metrics 91

Table 8. Eigenvalues of the principal components (permutation length 50).

PC | Eigenvalue | Proportion | Cumulative
1 3.7755 0.3432 0.3432
2 ]3.3513 0.3047 0.6479
3 |1.5162 0.1378 0.7857
4 10.7515 0.0683 0.8541
5 10.6604 0.0600 0.9141
6 |0.4849 0.0441 0.9582
7 104111 0.0374 0.9955
8 10.0336 0.0031 0.9986
9 10.0069 0.0006 0.9992
10 | 0.0059 0.0005 0.9998
11 |0.0027 0.0002 1.0000

4 On the Relevance to Longer Permutations

In the PCA conducted in Sect. 3 to generate our classification scheme, we com-
puted the correlations for the correlation matrix using permutations of length
n = 10 and iterated over all permutations of that length. To explore whether
permutation length has an effect on the classes identified, in this section we
repeat the PCA using permutations of length n = 50. This length is too long to
compute the correlations using all permutations, so instead we randomly sample
the space of permutations. We use 3628800 randomly sampled permutations of
length 50 (the size of the space of permutations of length 10 so our correlations
are computed using the same number of data points as in Sect. 3. Table 7 shows
the correlation matrix. Table 8 provides the eigenvalues, and Table 9 shows the
eigenvectors of the first five principal components. Table 10 shows the correla-
tions between the original distance metrics and each of the first five principal
components.

From Table 10, we again see that PC1 correlates extremely strongly to devi-
ation distance, Kendall tau distance, and squared deviation distance (|r| > 0.9
in those cases), and also correlates strongly to reinsertion distance and Lee
distance. PC1, as before, corresponds to the P-permutation metrics. Like-
wise, PC2 (as before) correlates very strongly (|r| > 0.89) to both forms of
edge distance and both forms of R-type distance; and thus corresponds to the
R-permutation metrics. PC3 correlates very strongly to both exact match dis-
tance (r = —0.8265) and interchange distance (r = —0.8525). This likewise is
consistent with the results for shorter length permutations, and corresponds to
the the A-permutation metrics. PC5 again correlates moderately strongly to Lee
distance (r = —0.5258) and only weakly to the others.



92 V. A. Cicirello

Table 9. Eigenvectors of the first five principal components (permutation length 50).

Distance PC1 PC2 PC3 PC4 PC5
Exact match distance —0.1601 | —0.0393 | —0.6712 | 0.0106 | 0.0194
Interchange distance —0.1125 | —0.0254 | —0.6923 | 0.1506 | 0.1593
Acyclic edge distance —0.0954 | 0.4879 | —0.0109 | 0.2416 | —0.3347
Cyclic edge distance —0.0951  0.4879 | —0.0103|0.2424 | —0.3348
R-type distance —0.1089 | 0.4878 | 0.0055 | —0.1944 | 0.3089
Cyclic r-type distance —0.1084 | 0.4878 |0.0060 | —0.1924|0.3079
Kendall tau distance —0.4675| —0.1104 | 0.1629 | 0.3089 |0.1655
Reinsertion distance —0.3550 | 0.0016 |0.0632 | —0.5557|0.2897
Deviation distance —0.4918 | —0.1188 | 0.0827 | 0.0987 | —0.0987
Squared deviation distance | —0.4648 | —0.1129 | 0.1608 |0.3356 | 0.1418
Lee distance —0.3428 | —0.0814 | —0.0815 | —0.5086 | —0.6471

Table 10. Correlation between distance metrics and first five principal components.

Distance PC1 PC2 PC3 PC4 PC5
Exact match distance —0.3111 | —0.0720 | —0.8265 | 0.0092 | 0.0157
Interchange distance —0.2185 | —0.0464 | —0.8525 | 0.1306 | 0.1294
Acyclic edge distance —0.18530.8932 | —0.0134|0.2094 | —0.2720
Cyclic edge distance —0.1849 1 0.8932 | —0.0127|0.2102 | —0.2720
R-type distance —0.2116 1 0.8931 |0.0067 | —0.1685|0.2510
Cyclic r-type distance —0.2106 1 0.8931 |0.0074 | —0.1668 | 0.2502
Kendall tau distance —0.9083 | —0.2021 | 0.2006 |0.2678 |0.1345
Reinsertion distance —0.6898 1 0.0030 |0.0778 | —0.4817|0.2355
Deviation distance —0.9555 | —0.2175|0.1019 |0.0855 | —0.0802
Squared deviation distance | —0.9032 | —0.2067 | 0.1980 | 0.2910 |0.1152
Lee distance —0.6661 | —0.1490 | —0.1003 | —0.4409 | —0.5258

PC4 is the only inconsistency when conducting the PCA using longer per-
mutations (length 50) and randomly sampling the space of permutations as
compared to shorter permutations (length 10) and computing the correlations
using all permutations of that length. Before, with shorter permutations, PC4
identified the two forms of edge distance, which we referred to as R-permutation
undirected subtype. With longer permutations that are randomly sampled, PC4
has identified reinsertion distance, and to a lesser extent Lee distance. This sug-
gests that as permutation length is increased that there may be a relationship
between reinsertion distance and Lee distance; or at the very least that reinser-
tion distance captures a rather different essence of permutation variability than
does the other P-permutation metrics.



Classification of Permutation Distance Metrics 93

We have chosen to stick with the classification identified earlier in Table 6,
since four of the five PCAs directly correspond to that earlier analysis, and since
the specifics of the distinct nature of reinsertion distance are not entirely clear.

5 Example Fitness Landscapes

In this section, we examine five search landscapes as examples.

R-Permutation Landscape, Undirected Subtype (L;): The first search
landscape is for a simple instance of the TSP with a known optimal solution.
Specifically, it consists of 20 cities arranged on a circle with radius 1.0, with
equidistant separation between each consecutive pair of cities. The cost of an
edge is Euclidean distance. The optimal solution is to either follow the cities
around the circle clockwise or counterclockwise returning to the starting city to
complete the tour. In the space of permutations, there are 40 optimal solutions:
20 cities at which the permutation can begin, and two possible travel directions
(clockwise and counterclockwise).

In Table 11 we provide FDC computed using 100000 randomly sampled per-
mutations. FDC is Pearson correlation between the fitness of a solution to the
problem and the distance to the nearest optimal solution. In this case, it is the
correlation between the cost of the tour of cities that the permutation represents,
and the distance to the nearest of the 40 optimal permutations. We have used
boldface font in the table to make it easy to see where we found the highest FDC.
Specifically, the highest FDC was seen for the two forms of edge distance, and
it was also reasonably high for the two forms of R-type (recall that the R-type
distance uses directed edges, while edge distance uses undirected edges). Cyclic
edge distance had slightly higher FDC over acyclic edge distance, which makes
sense since a solution to a TSP is a cycle of the cities so that the first and last
elements of the permutation represents an edge.

R-Permutation Landscape, Directed Subtype (Ls): The second land-
scape is for a simple asymmetric TSP (ATSP) instance. We again have 20 cities
arranged on a circle of radius 1.0, with equidistant separation around the circle.
Let city co be the city at “three o’clock” on the circle, and let city ¢; be the
next city after ¢;_i1 in counterclockwise order around the circle. The cost of the
edge from city ¢; to city c; is Euclidean distance if ¢ < j, and is otherwise a
constant distance 2.0 if ¢ > j. There is one optimal tour for this instance of
the ATSP, which is to visit the cities in counterclockwise order. In the space of
permutations, there are 20 optimal solutions that correspond to this tour: 20
starting cities.

For this landscape, we find that the two forms of R-type distance offer the
highest FDC (see Table11) and that FDC is otherwise low for the other per-
mutation distance measures. The cyclic form has slightly higher FDC than the
acyclic form, which is consistent with the cyclic nature of ATSP solutions.

A-Permutation Landscape (L3): Our example A-permutation search land-
scape is a variation of the “Permutation in a Haystack” problem [4]. An instance



94 V. A. Cicirello

Table 11. Fitness-distance correlation for five example landscapes and each measure
of distance.

Distance L1 Lo Ls Ly Ls
Exact match distance 0.1548 ]0.1881 |0.6917 |0.2974 |0.4806
Interchange distance 0.1192 | 0.0886 |0.5296 |0.2204 |0.3665
Acyclic edge distance 0.6052 | 0.3474 |0.0118 |0.0020 |0.0186
Cyclic edge distance 0.6204 | 0.3822 | —0.0002 | 0.0006 |0.0026
R-type distance 0.5442 | 0.6333 | 0.0148 | 0.0790 |0.0136
Cyclic r-type distance 0.5562 | 0.6595 | —0.0016 | 0.0684 | 0.0005
Kendall tau distance 0.3423 | 0.2408 |0.2245 |0.9022 |0.3862
Reinsertion distance 0.3382 |0.5349 |0.2080 |0.6364 |0.3887
Deviation distance 0.3898 |0.1875 |0.3544 |0.8410/0.6072
Squared deviation distance | 0.3150 |0.1555 |0.2282 |0.8876 | 0.3935
Lee distance 0.4640 |0.2316 |0.3836 |0.4063 | 0.8619

of the “Permutation in a Haystack” problem is defined by specifying the opti-
mal permutation p, and then defining the optimization objective as minimizing
the distance to p for some specific choice of permutation distance metric. It is
the permutation analog of the “OneMax” fitness landscape often used in test-
ing genetic algorithms with the bitstring representation. The “Permutation in a
Haystack” problem enables easily defining permutation optimization landscapes
for testing and experimentation purposes that possess the topology that you
wish to study along with a known optimal solution.

For landscape L3, we modify the “Permutation in a Haystack” slightly. Specif-
ically, rather than using a distance function (as is) for the optimization objective,
we instead use a noisy distance function. After choosing p, the fitness of a per-
mutation ¢ in landscape Lg is equal to aq * §(p, ¢), where d(p, ¢) is the exact
match distance between ¢ and the optimal solution p, and the o, values are gen-
erated uniformly at random from the interval [1,1.5). We use a slightly smaller
permutation length of 10 for L3 than we did for the first two.

In Table 11, you will see that the two permutation metrics that were earlier
identified as A-permutation by our PCA both have high FDC to landscape Lg;
and FDC is low for all other permutation metrics.

P-Permutation Landscape, Acyclic Subtype (L4): We use the same vari-
ation of the “Permutation in a Haystack” problem as in L3 to obtain a P-
permutation landscape with a known optimal solution. Specifically, the fitness
of permutation g is equal to ay * §(p, ¢), but this time §(p, ¢) is the Kendall tau
distance between ¢ and the optimal solution p.

In Table 11, we find that three of the four permutation metrics that we clas-
sified as the acyclic subtype of the P-permutation class have very high FDC for
landscape L4 (namely, the Kendall tau, deviation, and squared deviation dis-
tance metrics). The fourth, reinsertion distance, also has a reasonably high FDC
for this landscape; while all other distance measures have low FDC.



Classification of Permutation Distance Metrics 95

P-Permutation Landscape, Cyclic Subtype (Ls): The last of our example
permutation fitness landscapes uses Lee distance in the variation of the “Permu-
tation in a Haystack” problem that we used in landscapes L3 and L4. You can
see in Table 11 that Lee distance provides the highest FDC for this landscape.

The distance metrics that lead to highest FDC for each of these five example
fitness landscapes correspond to the metrics from each of the five classifications
from Table 6, the three primary classes along with the subtypes. If we addition-
ally had a mapping of the available search operators (e.g., mutation and crossover
operators for a genetic algorithm, neighborhood operators for simulated anneal-
ing and other local search) to the classification scheme, then it would assist in
selecting relevant operators for the optimization problem at hand.

6 Discussion and Conclusions

In this paper, we used PCA to produce a classification of distance metrics for
permutations. The analysis used all of the most common permutation distance
metrics, providing open source implementations in the Java language. The code
for our PCA is likewise available in that same repository to enable others to
easily replicate our results.

The classification can help in the selection of a distance metric for use in
fitness distance correlation or other fitness landscape analysis techniques. For
example, if you are analyzing a search landscape for a problem where per-
mutations represent sets of edges (e.g., TSP and similar problems), then the
classification would suggest use of either one of the forms of edge distance or
r-type distance, depending upon whether the edges are undirected (like the
TSP) or directed (like the asymmetric TSP). Or, if you are faced with a P-
permutation problem, one where general pairwise element precedences have the
greatest impact on fitness (e.g., many scheduling problems), then you would
instead choose a P-permutation metric such as Kendall tau distance, reinsertion
distance, or one of the variations of deviation distance. Additionally, in this case,
you may then factor in the runtimes of the alternative metrics in your choice.
For example, Kendall tau distance and squared deviation distance correlate very
strongly (r = 0.984, Table 2). However, Kendall tau distance is computed in time
O(nlgn), while squared deviation distance is computed in O(n) time. Even if
Kendall tau is the best fit for your specific analysis problem, squared deviation
may be sufficient due to its strong correlation while saving computational cost.

Another potential use in fitness landscape analysis is in identifying search
operators most relevant to a problem. For example, for some sample instances
of the search problem, you might start by computing fitness distance correla-
tion using one (or more) distance metric(s) from each class. Essentially this step
would map your problem into the same classification. Identifying the class of
the problem can then assist in identifying relevant search operators. For simu-
lated annealing, and as the mutation operator for a genetic algorithm, an inser-
tion operator has been shown quite effective in general for P-permutation prob-
lems [4]. Insertion removes a random element of the permutation, and reinserts



96

V. A. Cicirello

it at a different random point. While for an R-permutation problem, you might
instead use a reversal operator (reverses a randomly chosen sub-permutation) or
a block move (removes a random sub-permutation and reinserts it at a randomly
chosen position). Reversals essentially replace two undirected edges, and block
moves replace three edges. This approach can also be useful for identifying rele-
vant crossover operators from among the many permutation crossover operators
(cycle crossover, order crossover, etc) that are available, some of which better
maintain edges while others better maintain absolute positions.

References

10.

11.

12.

13.

14.

15.

. Campos, V., Laguna, M., Marti, R.: Context-independent Scatter and Tabu search

for permutation problems. INFORMS Comput. 17(1), 111-122 (2005)

Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First Interna-
tional Conference on Computational Molecular Biology, pp. 75-83. ACM (1997)
Cicirello, V.A.: On the effects of window-limits on the distance profiles of permu-
tation neighborhood operators. In: Proceedings of the International Conference on
Bioinspired Information and Communications Technologies, pp. 28—-35, December
2014. https://doi.org/10.4108 /icst.bict.2014.257872

. Cicirello, V.A.: The permutation in a haystack problem and the calculus of search

landscapes. IEEE Trans. Evol. Comput. 20(3), 434-446 (2016). https://doi.org/
10.1109/TEVC.2015.2477284

Cicirello, V.A.: JavaPermutationTools: a Java library of permutation distance met-
rics. J. Open Source Softw. 3(31), 950 (2018). https://doi.org/10.21105/joss.00950
Cicirello, V.A., Cernera, R.: Profiling the distance characteristics of mutation oper-
ators for permutation-based genetic algorithms. In: Proceedings of the 26th Inter-
national Conference of the Florida Artificial Intelligence Research Society, pp. 46—
51. AAAIT Press, May 2013

Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. STAM J. Discret.
Math. 17(1), 134-160 (2003)

Hernando, L., Mendiburu, A., Lozano, J.A.: A tunable generator of instances of
permutation-based combinatorial optimization problems. IEEE Trans. Evol. Com-
put. 20(2), 165-179 (2016)

Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common
subsequences. Commun. ACM 20(5), 350-353 (1977)

Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: Proceedings of the 6th International Conference on
Genetic Algorithms, pp. 184-192. Morgan Kaufmann (1995)

Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81-93
(1938)

Lee, C.: Some properties of nonbinary error-correcting codes. IRE Trans. Inf. The-
ory 4(2), 77-82 (1958)

Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and
reversals. Sov. Phys. Dokl. 10(8), 707-710 (1966)

Meila, M., Bao, L.: An exponential model for infinite rankings. J. Mach. Learn.
Res. 11, 3481-3518 (2010)

Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)


https://doi.org/10.4108/icst.bict.2014.257872
https://doi.org/10.1109/TEVC.2015.2477284
https://doi.org/10.1109/TEVC.2015.2477284
https://doi.org/10.21105/joss.00950

16.

17.

18.

19.

20.

21.

22.

23.

24.

Classification of Permutation Distance Metrics 97

Ronald, S.: Finding multiple solutions with an evolutionary algorithm. In: IEEE
Congress on Evolutionary Computation, pp. 641-646. IEEE Press (1995)

Ronald, S.: Distance functions for order-based encodings. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 49-54. IEEE Press (1997)
Ronald, S.: More distance functions for order-based encodings. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 558-563. IEEE Press (1998)
Schiavinotto, T., Stitzle, T.: A review of metrics on permutations for search land-
scape analysis. Comput. Oper. Res. 34(10), 3143-3153 (2007)

Sevaux, M., Sorensen, K.: Permutation distance measures for memetic algorithms
with population management. In: Proceedings of the Metaheuristics International
Conference (MIC 2005), pp. 832-838, August 2005

Sorensen, K.: Distance measures based on the edit distance for permutation-type
representations. J. Heuristics 13(1), 35-47 (2007)

Tayarani-N, M.H., Prugel-Bennett, A.: On the landscape of combinatorial opti-
mization problems. IEEE Trans. Evol. Comput. 18(3), 420-434 (2014). https://
doi.org/10.1109/TEVC.2013.2281502

Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168-173 (1974)

Wright, S.: Evolution in Mendelian populations. Genetics 16(2), 97-159 (1931)


https://doi.org/10.1109/TEVC.2013.2281502
https://doi.org/10.1109/TEVC.2013.2281502

	Classification of Permutation Distance Metrics for Fitness Landscape Analysis
	1 Introduction
	2 Permutation Distance
	3 Classification of Permutation Distance Measures
	4 On the Relevance to Longer Permutations
	5 Example Fitness Landscapes
	6 Discussion and Conclusions
	References




