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Real-world optimization problems often involve multiple conflicting objectives.
These problems are said to be multi-objective optimization problems. The aim
of multi-objective optimization is to acquire a set of solutions approximating the
Pareto front, the optimal trade-off among conflicting objectives. So far, evolu-
tionary algorithms have been intensively studied for solving multi-objective opti-
mization problems [1,2]. As an evolutionary algorithm solving multi-objective
problems, we focus on MOEA/D which decomposes the Pareto front in the
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Abstract. For solving multi-objective optimization problems with evo-
lutionary algorithms, the decomposing the Pareto front by using a set
of weight vectors is a promising approach. Although an appropriate dis-
tribution of weight vectors depends on the Pareto front shape, the uni-
formly distributed weight vector set is generally employed since the shape
is unknown before the search. This work proposes a simple way to con-
trol the weight vector distribution appropriate for several Pareto front
shapes. The proposed approach changes the distribution of the weight
vector set based on the intermediate objective vector in the objective
space. A user-defined parameter determines the intermediate objective
vector in the static method, and the objective values of the obtained
solutions dynamically determine the intermediate objective vector in the
dynamic method. In this work, we focus on MOEA/D as a represen-
tative decomposition-based multi-objective evolutionary algorithm and
apply the proposed static and dynamic methods for it. The experimental
results on WFG test problems with different Pareto front shapes show
that the proposed static and dynamic methods improve the uniformity
of the obtained solutions for several Pareto front shapes and the dynamic
method can find an appropriate intermediate objective vector for each
Pareto front shape.
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objective space [3]. MOEA/D simultaneously optimize a number of scalariz-
ing functions with different weight vectors and tries to approximate the Pareto
front by the obtained solutions paired with weight vectors. MOEA /D needs
to prepare the set of weight vectors before the search. Since each weight vec-
tor determines an approximation part of the Pareto front, the distribution of
weight vectors strongly affects the distribution of the obtained solutions in the
objective space. The appropriate distribution of weight vectors depends on the
shape of the Pareto front. However, the shape of the Pareto front is generally
unknown before the search. The conventional MOEA /D uses a uniformly dis-
tributed weight vectors based on the simplex-lattice design method. Although
several methods arranging the weight vector set have been studied recently [4-7],
we are investigating another simple way to re-arrange the weight vector set.

In this work, we propose an approach to re-arrange the weight vector set
based on the intermediate objective value in the population. The approach is
employed in the two proposed methods. The first one is the static method which
determines the intermediate objective value by using an user-defined parameter.
The another one is the dynamic method which determines the intermediate
objective value by the objective values of the obtained solutions during the
search. The effects of the two proposed methods are verified on tWFG4 problems
[8] with different Pareto front shapes.

2 Evolutionary Multi-objective Optimization

A multi-objective optimization problem is defined as follows:

Minimize f(ili) = (fl(w)an(w)aafm(x)) (1)

Since these minimizations of m kinds of objective functions f; (i = 1,2,...,m)
often conflict, there is no single optimal solution & which minimizes all objective
values simultaneously. The optimal trade-off among objectives arises instead, and
it is said to be the Pareto front. Therefore, the task of multi-objective optimiza-
tion is to acquire a solution set approximating the Pareto front. Approximation
qualities of the Pareto front can be evaluated by the convergence of solutions
toward the Pareto front, the spread of them to cover the entire Pareto front, and
the distribution uniformity of them in the objective space.

Although there are several approaches to address multi-objective optimiza-
tion, population-based evolutionary algorithms have an advantage that a set of
solutions approximating the Pareto front can be obtained in a single run. In this
work, we focus on MOEA /D [3] as a representative evolutionary algorithm for
solving multi-objective optimization problems.

3 MOEA/D

MOEA/D specifies N approximating parts of the Pareto front with a weight
vector set £ = (AN, A2,... AN). Each weight vector A’ has m kinds of ele-
ments (A{,A%,...,A%L). The decomposition parameter H and the number of
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objectives m are used to generate the weight vector set L. Each element of
Al = (N[, AL,...,AL) is one of {0/H,1/H,...,H/H}, and all N = C} ),
kinds of weight vectors satisfying 3 7", A} = 1.0 are employed in the search.
These weight vectors are uniformly distributed on the m-dimensional hyper-
plane, and it is said to be the simplex-lattice design.

Since each weight vector A’ is paired with one solution x?, the size of the
population P = {z!, z? ..., wN} becomes N which is equivalent to the size of
the weight vector set £. MOEA /D compares solutions based on their scalarizing
function values calculated with their objective function vectors and a weight
vector. For each weight vector, MOEA /D maintains the best solution with the
minimum scalarizing function value in the population. Although there are several
scalarizing functions, in this work, we use the reciprocal weighted Tchebycheff
function (rTCH) [9]. The rTCH scalarizing function is formulated as

o ; fi(x) —z;
T\ —
Minimize g(x|A\") =  nax X . (2)
where, z; (j =1,2,...,m) is an element of the obtained ideal point z. z; is set

to the minimum (best) objective function value f; found during the search.

4 Issue Focus: Weight Vector Distribution

The distribution of the obtained solutions in the objective space is affected by
the distribution of the weight vectors. Since the Pareto front shape is generally
unknown before the search, the conventional MOEA/D uses the weight vec-
tor set uniformly distributed on the m-dimensional hyperplane. However, the
weight distribution is appropriate only when the shape of the Pareto front is the
hyperplane. For other Pareto front shapes such as convex and concave shapes,
their appropriate distributions of weight vectors are different. If the distribution
of the weight vectors can be changed according to the Pareto front shape, the
distribution uniformity of the obtained solutions can be improved.

Several approaches varying the distribution of weight vectors have been stud-
ied so far [4-7]. Jiang et al. proposed a uniformly distributed weight vectors based
on the mixture uniform design method [4]. This method changes the curvature
of the hyperplane on the weight vectors. Deb et al. proposed a method to change
weight vector (reference point) distribution by deleting and adding weight vec-
tors during the search [5]. On the other hand, Hamada et al. proposed adding
and re-arranging mechanism of the weight vectors during the search [6,7]. In this
work, we propose an alternative way to change the weight vector distribution.

5 Proposed Method: Weight Vector Distribution Control
Based on Intermediate Objective Value

The proposed method varies the conventional weight vector set L to L=
{AY A%, AN} by using the intermediate objective value p. p is a real value
in the range [0, 1].
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Fig. 1. Weight vector distributions by varying intermediate objective value p

In this work, we proposed two methods. One is the static approach using
p as a static user-defined parameter, and another one is the dynamic approach
determining p based on the objective values in the population during the search.

5.1 Static Approach

In the static approach, we transform each weight vector X! = (A4, A5 ... A7)
into A* = (A}, Ay, ..., AL,) with an user-defined intermediate objective value p
in the range [0, 1]. Each element is transformed by
., Ai-pem, if At < L
X =y 1= g 3)
J 1= (1=A}) ;=5 - m, otherwise.

Figure 1 shows three examples of transformed weight vector sets with different
p on m = 2 objective space. We can see that the weight distribution with p =
1/m = 0.5 is the equivalent to the conventional weight distribution. We can see
that the weights with p < 0.5 get close to the origin point. This distribution is
appropriate for the convex Pareto front. Also, we can see that the weights with
p > 0.5 get away from the origin point. This distribution is appropriate for the
concave Pareto front.

5.2 Dynamic Approach

The dynamic approach determines the intermediate value p based on the objec-
tive values of solutions in the population during the search.

In each generation, the proposed dynamic approach calculates the interme-
diate objective value p by

~dy (), (4)

b
-
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Fig. 2. Calculation of the intermediate value p in the proposed dynamic approach

where,

x, = argmin  ds(x) (5)
ze{zt z2,.. N}

z) — 2)TAIM
i) = W@ “

)=o)~ (- sz )| v

The two distances d; and ds are employed from the concept of the penalty-based
boundary intersection (PBI) [3]. MM = (1/m,1/m, --- ,1/m) is the intermedi-
ate weight vector specifying the center of the Pareto front.

In Eq. (4), first we find the landmark solution x, with the minimum distance
dy among the all solutions P = {x', 22,... , ™ }. Figure 2 shows an example on
an m = 2 objective problem. In this example, the landmark solution is z* since it
has the minimum distance dy to the intermediate weight vector AIM = (0.5,0.5).
In Eq. (4), next we calculate the distance dy of the landmark solution. Then, we
calculate p as the side length of a hypercube which the length of the diagonal
line is d;. In the example of Fig.2, p is the side length of a square which the
length of the diagonal line is d; of *. In the proposed dynamic approach, the
intermediate objective value p is repeatedly updated every generation. That is,
the weight distribution is repeatedly changed every generation.

5.3 Expected Effects

For a convex Pareto front, we can expect the weight distribution with p < 0.5
obtains more uniformly distributed solutions than the conventional weight vec-
tors. For a concave Pareto front, we can expect the weight distribution with
p > 0.5 obtains more uniformly distributed solutions than the conventional
weight vectors. In the case of the static approach, we need to set a p value
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Fig. 3. Pareto fronts with different C' values

before the search. To find an appropriate p, we need the parameter tuning of p
by repeating run of the algorithm with different p. On the other hand, in the
dynamic approach, we can expect to obtain more uniformly distributed solutions
than the conventional weights from the convex to the concave Pareto front while
searching an appropriate intermediate objective value p during the search.

6 Experimental Setting

6.1 Test Problems

To verify the effectiveness of the proposed methods, in this work, we use tWFG4
[8] problems extended from WFG4 [10] problems. tWFG4 is formulated by

WFGA () \ ©
fg(-’”)ZQJ <fJQj()> (j:172a"'7m)7 (8)
where, fjW FG4 g j-th objective function of WFG4 problem [10], C is a parameter
specifying the Pareto front shape. tWFG4 with C' = 2 has a liner Pareto front.
tWFG4 with C' < 2 has a concave Pareto front. tWFG4 with C' > 2 has a convex
Pareto front. In this work, we use tWFG4 problems with C = {1, 2, 3}. Figure 3
shows three Pareto fronts with different C.
fJWFG4 (j = 1,2,...,m) involves two problem parameters. First one is the
distance parameter L to control the convergence difficulty. Another one is the
spread parameter K to control the spread difficulty. To evaluate the uniformity of
the obtained solutions, in this work, we respectively set them K = 1+ (m—1)—1
mod (m — 1) and L = 1. Consequently, the number of variables becomes n =
K+ L = {3,3,4} for m = {2,3,4}. That is, the uniformity of the solutions
strongly affect the search performance.
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6.2 Parameters

We use tWFG4 problems with m = {2,3,4} objectives and C' = {1,2,3}. For
m = {2, 3,4} objective problems, the decomposition parameters are respectively
set to H = {200,19,9}, and the population sizes become N = {201, 210,220}
in MOEA /D. Also, we employ commonly used SBX with the distribution index
7. = 20 and the crossover ratio 0.8 and the polynomial mutation with the distri-
bution index 7, = 20 and the mutation ratio 1/n. Also, the neighborhood size
is set to T'= 20, and the total number of generations is set to 3,000.

6.3 Metric

To evaluate the obtained solutions, we employ Hypervolume (HV) [11]. HV
is a volume determined by the obtained solutions and the reference point
T in the objective space. The convergence of solutions toward the Pareto front,
the spread of solutions in the objective space, and the uniformity of solutions
in the objectives space affects to the HV value. Before we calculate HV, we
each normalize objective value as fi(x) = f;j(x)/2j (j = 1,2,...,m). Then we
calculate HV with the reference point » = {1.1,1.1,...,1.1}. In this work, we
compare the median HV of all independent 31 runs.

7 Experimental Results and Discussion

7.1 Search Performance HV

Figures4, 5 and 6 show results of HV on problems with different Pareto front
shapes C' = {1,2,3} and number of objectives m = {2, 3,4}, respectively. In
each graph, the horizontal axis indicates the intermediate objective value p of the
static approach. The black vertical line on p = 1/m indicates the conventional
weight distribution based on the simplex-lattice design. The black horizontal
line indicates the HV value obtained by the conventional weight distribution.
Also, the red horizontal line indicates the HV value of the proposed dynamic
approach. The red vertical line indicates the intermediate objective value p of
the proposed dynamic approach at the final generation. The red dot line with
makers indicates HV values of the proposed static approach. In all graphs, the
error bars are the maximum and the minimum HV values among 31 runs.

First, from Fig.4 on m = 2 objective problems with a plane Pareto front
(C = 2), we can see that the proposed static approach achieves the highest
HV when we use p* = 0.5 which is the equivalent to the conventional weight
vector set by simplex-lattice design. We can see that the proposed dynamic
approach shows HV value comparable with the one obtained by the proposed
static approach with p* = 0.5.

Next, form the results on m = 2 objective problems with a concave Pareto
front (C' = 1), we can see that the proposed static approach achieves the highest
HYV when we use p* = 0.8 which the transformed weight vectors get away from
the origin point. Also, we can see that HV achieved by the static approach with
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p* = 0.8 is higher than HV obtained by the conventional weights with p = 0.5.
This result reveals that the proposed re-arrangement of weight vectors improves

HYV value. Also, we can see that the proposed dynamic approach shows HV value

close to HV values obtained by the static approaches with p = {0.7,0.8}. The
static approach has to determine an intermediate objective value p before the
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search. To find out the appropriate p*, we need to repeatedly run the algorithm
while slightly changing p. On the other hand, the proposed dynamic approach
searches while adjusting the intermediate objective value p during the search.
Therefore, the result reveals that the proposed dynamic approach achieves higher
HYV than the conventional method in a single run. Next, from the results on
m = 2 objective problems with a convex Pareto front (C' = 3), we can see that
the proposed static approach achieves the highest HV when we use p* = 0.3
which the weight vectors get close to the origin point. Thus, the optimal p*
maximizing HV decreases by increasing C' and changing the Pareto front from
a concave to a convex. Also, although the proposed dynamic approach cannot
achieve the maximum HV obtained by the static approach with the optimal
p*, the proposed dynamic approach achieves higher HV than the conventional
method in a single run. On m = {3, 4} objective problems, we can see that the
similar tendency observed on the m = 2 objective problem.
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7.2 Obtained Solution Set

Figure 7 shows the obtained solution sets at the final generation on m = 2 objec-
tive problem with a concave Pareto front (C' = 1). From the results obtained by
the conventional weights, we can see that the approximation granularity around
the edges of the Pareto front is high but one in the center of the Pareto front
is low. On the other hand, we can see that two proposed methods obtain more
uniformly distributed solutions than the conventional weights.

7.3 Transition of p in Dynamic Approach

Figure 8 shows transitions of the intermediate objective value p determined by
the proposed dynamic approach. From the result, we can see that p values con-
verge around ten generation on each of the problems with different Pareto front
shapes C' and the number of objectives. These stable transition of p reveals the
stable adaptation of the weight vector distribution by the proposed dynamic
approach.

8 Conclusions

To improve the uniformity of obtained solutions on problems with different
Pareto front shapes, in this work, we proposed a method to control weight vec-
tor distribution based on the intermediate objective value. Experimental results
showed that the proposed static approach improves the approximation perfor-
mance on problems with a convex, a plane, and a concave Pareto fronts by setting
an appropriate intermediate objective value. Also, we showed that the dynamic
approach achieved higher approximation performance than the conventional
weight vector distribution on problems with different Pareto front shapes with-
out parameter tuning of the intermediate objective value. We focus on MOEA /D
as a representative evolutionary algorithm for solving multi-objective optimiza-
tion problems, I believe it is necessary to check whether it applies not only to
MOEA/D but also to other decomposition base MOEAs including NSGA-III.

As future works, we will apply the proposed method to other decomposition-
based algorithms such as NSGA-III and verify the effects on the search perfor-
mance. We are designing an algorithm converting weight vector set based on
multiple objective vectors.
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