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Abstract. Certain species of bacteria are capable of communicating
through a mechanism called Quorum Sensing (QS) wherein they release
and sense signaling molecules, called autoinducers, to and from the envi-
ronment. Despite stochastic fluctuations, bacteria gradually achieve coor-
dinated gene expression through QS, which in turn, help them better
adapt to environmental adversities. Existing sequential approaches for
modeling information exchange via QS for large cell populations are
time and computational resource intensive, because the advancement in
simulation time becomes significantly slower with the increase in molec-
ular concentration. This paper presents a scalable parallel framework
for modeling multicellular communication. Simulations show that our
framework accurately models the molecular concentration dynamics of
QS system, yielding better speed-up and CPU utilization than the exist-
ing sequential model that uses the exact Gillespie algorithm. We also
discuss how our framework accommodates evolving population due to
cell birth, death and heterogeneity due to noise. Furthermore, we ana-
lyze the performance of our framework vis-á-vis the effects of its data
sampling interval and Gillespie computation time. Finally, we validate
the scalability of the proposed framework by modeling population size
up to 2000 bacterial cells.

Keywords: Autoinducer · Quorum Sensing · Gillespie ·
Multicellular system · Noise analysis · Population evolution ·
Scalability

1 Introduction

Large population of bacteria communicate with one another by releasing sig-
naling molecules, called autoinducers, into the environment. Bacteria are also
capable of sensing the environmental autoinducer concentration and regulating
the expression of certain specific genes in a coordinated manner. This mecha-
nism of communication and mutual regulation is called Quorum Sensing (QS)
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[1]. Communication via QS has been observed in a wide range of bacteria species,
such as marine bacteria (like Vibrio fischeri) and pathogenic bacteria [2,3].

Since each cell responds uniquely to its environment, any cellular regulation
and signaling is prone to stochastic fluctuation. There have been attempts to
study how population of bacteria achieve coordinated gene expression, despite
such noise [4]. Sequential stochastic modeling of QS considers all reactions within
the system, one reaction at a time. This makes modeling of large population
of cells significantly more expensive, with respect to time and computational
resources [2]. Thus, several works on parallel implementation of stochastic simu-
lation of biological system have been proposed (though all of them do not pertain
to QS alone). For example, a parallel software framework, using discrete agent-
based simulation, has been proposed in [5]. It models the behavior of large cell
population and updates molecular concentration using coupled Partial Differen-
tial Equations (PDE). A coarse-grained parallel approach is implemented in [6],
to perform independent stochastic simulation. In [7], a C++ based stochastic and
multi-scale simulation toolkit is proposed for chemically reacting system. The
performance of Gillespie Stochastic Simulation is accelerated in [8] using Graph-
ics Processing Units (GPUs). A parallel algorithm for off-lattice individual-based
models of multicellular populations is presented in [9]. Gillespie’s First Reaction
is applied in [10] to present a stochastic simulation software framework for bio-
chemical reaction networks. A graph-based model for parallel, distributed and
portable applications is introduced in [11], and finally, a parallel algorithm is
designed in [12], focusing on simulation of reaction-diffusion based system.

Let us consider an example of bacterial growth in rich media, where inter-
cellular communication may be assumed to be negligible. Such a system can be
implemented in parallel due to absence of significant dependency among the cells.
However, in case of QS, cellular interaction via autoinducers plays a pivotal role
in the coordinated behavior of the system. An ideal parallel QS framework must
therefore incorporate, both, modeling accuracy of molecular (especially autoin-
ducer) concentration, as well as efficiency in terms of time and resource utiliza-
tion. Among the aforementioned literature, only [12] takes cellular interaction
via environment into consideration. However, even that work neither discusses
the inevitable trade-off between the parallelism and accuracy, nor the capability
of accurately modeling population dynamics due to cell birth and death.

Contribution: In this paper we take the first step towards developing a scal-
able parallel framework for modeling biochemical network that meets both the
requirements of accuracy and speed-up. We apply this framework to model QS
in bacteria, where each cell is a process that exchanges messages with the mas-
ter (or coordinator) process. It incorporates a simple approximation to maintain
the uniformity of the environmental parameters. An initial version of this frame-
work is discussed in [13]. Our simulation experiments show that this framework
captures the dynamics of molecular concentration as accurately as the standard
sequential QS model [2]. We analyze our system in light of how sampling inter-
val affects the overall accuracy and variation of computation overhead due to
varying concentration of molecules. We also discuss how this framework handles
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evolution due to cell birth and death. We show that our framework exhibits
higher speed-up and more balanced CPU usage when compared to sequential
model. Furthermore, we incorporate cellular heterogeneity and phenotypic vari-
ability by sampling the QS system parameters from Gaussian distribution. It
is noteworthy that existing literature on QS [2,14] has modeled up to a popu-
lation of 240 cells, whereas our proposed framework has been used to simulate
a population of 2000 cells. Scalability experiments are performed on 50 cores
of Forge high performance computing clusters built on Rocks 6.1.1, while other
experiments are performed in Ubuntu 14.04 system with 8 CPUs.

This paper is organized as follows. Section 2 presents an overview of the over-
all QS system. Section 3 discusses the details of the Gillespie algorithm, sequen-
tial model and the parallel QS framework. Section 4 compares the experimental
results. Finally, Sect. 5 closes the paper with concluding remarks.

2 System Overview

Our Quorum Sensing (QS) system consists of a population of cells and their
shared environment, defined as the concentration of autoinducers outside the
cells (external autoinducer). Figure 1 shows a population of cells and LuxI/LuxR
regulatory network within bacterium Vibrio fischeri [3].

Fig. 1. Population of cells and macro view of each cell with the LuxI/LuxR regulatory
network

In a QS system, bacteria communicate with each other through autoinduc-
ers (AHL), produced due to the synthesis of protein LuxI. These molecules are
small in size and can diffuse freely through cell membrane into the environ-
ment and from the environment back into cell. The diffusion process changes
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the concentration of environment, which in turn, affects the whole population.
The overall system remains coupled through this diffusion process. Within a cell,
the LuxR protein binds with AHL to form the monomer (LuxR.AHL). Then,
through dimerization, this monomer forms (LuxR.AHL)2, repressing transcrip-
tion of luxI gene. Diffusion rate of intra-cellular autoinducer AHL depends on
the concentration of AHL itself, and extra-cellular autoinducer (AHLext). The
chemical reactions and corresponding rate constants are taken from [3].

Below, we have provided a list of the chemical reactions (in accordance with
the reduced QS model discussed in [3]). The propensity of the LuxI expression
reaction is shown in Eq. 1 and the rate constant parameters for the reactions are
listed in Table 1.

Table 1. List of constant parameters [3] used in our framework

Parameter Description Value

ttLuxR Protein expression rate: LuxR 76 copies/min

ttLuxI Protein expression rate: LuxI 219 copies/min

k−1 Dissociation rate: LuxR to AHL 10 min−1

k−2 Dissociation rate: (LuxR.AHL)2 1 min−1

α Basal expression rate: luxI 0.01

kA Synthesis rate: AHL by LuxI 0.04 min−1

D Diffusion rate: AHL 2 min−1

kd1 Dissociation const.: LuxR to AHL 100 molecule

kd2 Diss. const.: (LuxRAHL) 20 molecule

kdlux Diss. const.: (LuxRAHL) to lux 100 molecule

dI Degradation rate: LuxI 0.027 min−1

dR Degradation rate: LuxR 0.156 min−1

dA Degradation rate: internal AHL 0.057 min−1

dAe Degradation rate: external AHL 0.04 min−1

dRA Degradation rate: (LuxR.AHL) 0.156 min−1

dRA2 Degradation rate: (LuxR.AHL)2 0.017 min−1

Vcell Initial cell volume 1.1e−9 l

Vext Extracellular volume 1.1e−3 l

LuxI
dI

φ

(LuxR ·AHL)2
f(x3,t)

LuxI + (LuxR ·AHL)2
LuxR

dR
φ

ttLuxR LuxR

LuxR + AHL
k–1/kd1

K–1
LuxR ·AHL
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(LuxR ·AHL)2
dRA

φ

2 (LuxR ·AHL)
k–2/kd2

K–2
(LuxR ·AHL)2

AHL
dA

φ

LuxI
kA LuxI + AHL

AHL D
DVC

AHLext

AHLext

dAe
φ

f(x3, t)
Δ= ttLuxI

(kdlux + αix3

kdlux + αi

)
(1)

3 Sequential and Parallel QS Frameworks

In this section we discuss the details of the sequential model for QS and the
proposed parallel framework.

3.1 System Variables

Let us consider a system with χ reactions. We define the reactions set Γ =
{γi |i ∈ N, i ≤ χ}, set of reaction rate constants K = {ki|i ∈ N, i ≤ χ}, and
the concentration of jth reactant in reaction γi as ωj

i . We consider a molecular
concentration matrix Mn×m, where n and m are the number of cells and molecule
species in the QS system, respectively. Thus, Mi denotes molecular concentration
vector of the ith cell. Thus, Mi,5 stores the AHLext concentration for ith cell.
Since AHLext is a global system variable, Mi,5 remains same for all cells.

3.2 Gillespie Algorithm

The Gillespie Algorithm, also called Stochastic Simulation Algorithm (SSA), is
a procedure for simulating changes in the molecular concentration of chemical
species in a chemically reacting system. Hence the behavior of each cell and the
advancement of simulation time within the QS system is determined by execut-
ing the Gillespie algorithm. The Gillespie algorithm (shown below) calculates
propensity (likelihood) ai of reaction γi, and the total propensity A as follows:

ai = ki ×
|ωi|∏
j=1

ωj
i (2)

A =
∑
i∈Γ

ai (3)

In each step, the Gillespie algorithm takes four input parameters: the set
of reaction rules (Rr), reaction rate constant (Rc), initial simulation time t
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and molecular concentration matrix M . The Gillespie algorithm probabilisti-
cally chooses a single reaction (γj), based on the individual reaction propensi-
ties. Finally, Gillespie updates the reactant concentration of γj according to its
stoichiometric coefficients.

1: procedure Gillespie(Rr,Rc,M ,t)
2: Calculate ai for all reactions and A.
3: Select r1, r2 = random(0, 1)
4: Update current time t: t = t + ln(1/r1)/A
5: Select reaction γj : (∃J ∈ N)

∑J
j=1 aj < A × r2 ≤ ∑J+1

j=1 aj

6: Update reactant concentration of γj in M .
7: Return t, M
8: end procedure

3.3 Sequential Model

In the sequential QS model, each cell contains one copy of the regulatory net-
work (as shown in Fig. 1). All the reactions in the entire population, including
diffusion reaction between cell and environment, is considered as a single global
system. As shown in Line 4 of sequential algorithm, the Gillespie algorithm is
invoked in a loop, until the current time t exceeds the total simulation time T .
Note that the sequential QS, when used in conjunction with the exact Gillespie
algorithm, yields accurate result. Therefore, we implement the sequential model
as a benchmark of accuracy for our proposed parallel QS framework.

1: procedure Sequential(Rr,Rc,M ,T )
2: t = 0
3: While t ≤ T do
4: t, M = Gillespie(Rr,Rc,M ,t)
5: Endwhile
6: end procedure

3.4 Parallel Framework

The parallel QS framework is implemented using the Multiprocessing library of
Python [15]. Here we discuss the different aspect of the parallel framework.

Steps in Parallel Framework: As shown in Fig. 2, the virtual master pro-
cess takes 3 inputs: reaction rules (Rr), environment and constant (Rc). (1) The
master spawns several parallel processes. Here, each cell is modeled as a memo-
ryless process, termed cell process. In a large scale system several cell processes
are assigned to a single core. (2) In each time intervals, master sends molecu-
lar concentration and environment information to each cell process and invokes
Gillespie Algorithm. (3) Each cell process runs the Gillespie algorithm locally
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Fig. 2. Overview of steps in the parallel QS framework

and (4) returns the updated molecular concentration to the master. Following
this, the master node (5) updates environment variable, (6) population dynam-
ics and (7) global time, before returning to first step. This cycle continues until
simulation duration is reached.

Master Process: The master process reads and sends sampling interval Ψ , Rr,
Rc and Mi to all the cell processes, at each time instance t. Sampling interval
(Ψ) is defined as the time interval between which the master process collects
concentration data from all the cell processes. After each Ψ interval, the master
receives the updated Mi from each Zi. It is noteworthy that in the sequential
approach, a single reaction takes place at a time. Consequently, any change
to AHLext is instantly reflected to Mi,5 (for all i). However, in the parallel
approach, each cell process Zi autonomously invokes Gillespie and updates Mi,5.
Thus, we ensure uniformity of AHLext in the system using Eq. 4.

Cell Processes: Each cell process Zi invokes the Gillespie algorithm and
returns updated Mi to the master. Let us discuss two key aspects of the Paral-
lelQS algorithm.
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1: procedure ParallelQS()
2: If ID = Master then
3: t = 0
4: ReadParameters(Rr, Rc, M, T, n, Ψ)
5: While t ≤ T do
6: While (not sentToAll()):
7: send(Mi, Rr, Rc, Ψ, AHLext(t))
8: Endwhile
9: While (not recvFromAll()) do

10: Mi, AHLi
ext(t + 1) = recv()

11: Endwhile
12: J = {AHLi

ext(t + 1)|i ≤ n}
13: ADJUSTEXT (AHLext(t), J)
14: t = t + Ψ
15: Endwhile
16: else
17: (Cell process)
18: Mi, Rr, Rc, Ψ, AHLext(t) = recv()
19: gt = 0
20: While gt ≤ Ψ do
21: gt, Mi = GILLESPIE(Rr, Rc, Mi, gt)
22: Endwhile
23: send(Mi)
24: Endif
25: end procedure

Time Synchronization: In each time instance, the master must wait till it has
heard from all cell processes (Zis). Following this, it increments the overall sys-
tem time t by sampling interval Ψ .

Time Increment: Gillespie calculates the increment in simulation time t as
ln(1/r1)/A, where r1 is random number between 0 and 1. Thus, there exists
an inverse relationship between time variable t and overall propensity A (i.e.,
t ∝ 1

A ). Note that the sequential model calculates A (Eqs. 2 and 3) based on all
reactions in the system, whereas each Zi in the parallel framework calculates Ai

only based on the reactions specific to itself, implying that Ai � A. Hence, the
time increment for the parallel framework is expected to be greater than that of
the sequential approach.

Adjustment of Global AHLext Concentration: We assume that AHLext is homo-
geneously distributed within the system boundary, making it a global system
variable. A cell is capable of interacting with any AHLext molecule. Master esti-
mates the adjusted system AHL concentration at time t + 1, AHLext(t + 1), by
incrementing AHLext(t) by the net difference of AHLext(t) concentration from
local cellular AHL concentrations, over all cells, using the equation below:
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AHLext(t + 1) = AHLext(t) +
n+1∑
j=2

(AHLj
ext(t + 1) − AHLext(t)) (4)

Here AHLj
ext(t + 1) is the local AHL concentration of the jth cell process at

time t + 1.

Adjustment of Molecular Concentration Due to Population Dynamics. The pro-
posed framework is capable of modeling dynamic population (i.e. cellular birth
and death). Each cell Zi undergoes division once simulation time t exceeds its
division time βi. For each Zi, we sample βi from exponential distribution with
μ = 45 min. Each cell division causes the mother cell to split into two daugh-
ter cells, each containing half the molecular concentration of mother cell. Given
initial volume of all cells Vcell, each Zi has a time-dependent volume, given by –

Vi(t) = Vcell × 2
t

βi (5)

Initial volume of a daughter cell is half the volume of its mother cell. The
propensity of each reaction is also updated to account for time-dependent vol-
ume. In our QS system, cell density is kept constant by compensating each cell
division by death of randomly picked cell (as discussed in [2]).

4 Results

We consider 6 molecule species in our reduced QS system – (A) LuxI, (B)
LuxR, (C) (LuxR.AHL)2, (D) AHL (E) LuxR.AHL and (F) AHLext. Parallel
framework is implemented using Python 2.7 and Python Multiprocessing library
[15]. Scalability experiments are performed on 50 cores of Forge high performance
cluster; for other simulation experiments, we use Ubuntu system with Linux
system with 8 CPUs of 1.6 GHz each.

4.1 Accuracy

We analyze how closely the dynamics of molecular concentration (matrix M)
generated by parallel QS framework aligns with that of the sequential model.
On both sequential and parallel approaches, we simulate 50 cells for 200 min and
sampling interval ψ = 0.05.

Similarity of Molecular Concentration. Fig. 3 shows that the average con-
centration dynamics of molecules (A)–(F) (over 10 trials) are nearly identical for
sequential and parallel approaches.
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Fig. 3. Comparison of average molecule concentration dynamics of 6 molecular species
– (A) LuxI, (B) LuxR, (C) (LuxR.AHL)2, (D) AHL (E) (LuxR.AHL) and (F) (AHLext)
for population of 50 cells.

Fig. 4. Increase in sampling interval (Ψ) increases Mean Absolute Error (MAE), but
decreases running time (RT), between sequential and parallel QS framework.



A Scalable Parallel Framework for Bacterial Quorum Sensing 191

Effect of Sampling Interval. The choice of Ψ in the parallel framework affects
the number of the data points master receives from each Z[i]. If Ψ is high, we
expect our framework to exhibit inaccuracy in concentration dynamics due to
lack of sufficient data. Here we consider Mean Absolute Error (MAE) as our
metric of accuracy i.e. higher the MAE between two sets of plot points, greater
is the dissimilarity. Since the sequential model is our benchmark, we calculate the
deviation of AHLext of the parallel framework (φp) from the sequential model
(φS) on d data points, as MAE(φs, φp) = 1

d × ∑
d |Ms

i,5(d) − Mp
i,5(d)|.

Simulation on 50 cells for duration of 200 min shows that the MAE of AHLext

plots between the two approaches increases with the increase in Ψ (Fig. 4). We
observe that a higher Ψ , though enhances running time (RT) by minimizing
communication overhead, degrades accuracy.

4.2 Population Dynamics

We model cellular birth and death in QS for a population size 1000 cells and
duration 100 min. In Fig. 5(A), a single color represents the LuxI concentration
of a bacterial cell over time, while the discontinuity and drop in the curves show
cell death and division, respectively.

Fig. 5. Population dynamics: LuxI concentration during cellular birth and death under
conditions of (A) no noise and (B) noise with standard deviation 0.005.

Our proposed parallel framework is capable of modeling noise arising from
stochastic fluctuation in gene expression that can cause phenotypic variability
in isogenic population [16]. In Fig. 5(B), we show cellular birth and death under
condition of noise generated by sampling constant parameters RC from Gaus-
sian distribution with standard deviation 0.005. It is noteworthy that molecular
concentration in Fig. 5(B), by virtue of the noise, exhibits greater phenotypic
variability than the one in Fig. 5(A).
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4.3 Processor Utilization

We compare the CPU utilization of the sequential and parallel frameworks on a
population size of 100 cells and duration of 60 min on an 8-CPU machine.

Fig. 6. Comparison of CPU utilization for the sequential and parallel QS frameworks

We use the psutil python library [17] to record the instantaneous CPU uti-
lization for both frameworks. Figure 6 shows that the parallel framework exhibits
a more uniform CPU utilization than the sequential approach.

4.4 Speed up

Let the execution (or wall clock) time of sequential and parallel QS algorithms
be ρs and ρp respectively, and the simulation time for both algorithms be T .

We define speedup Sp =
ρs

ρp
=

ρs

T
× T

ρp
=

ρs

T
/
ρp

T
. For sequential and parallel

algorithms, we simulate a population of 10 to 50 cells for T = 200 min each.
Given that T is same for both algorithms, we compare their real (or execution)
time to analyze the speedup rendered by parallel QS framework. We generate
semi-log plots for execution time for population sizes 10, 20, 30, 40 and 50.
Figure 7(A) shows that our framework incurs extremely little increase in real
time with growth in cell population size as compared to the sequential approach.

4.5 Scalability

Finally, we compare the sequential and parallel approaches on the basis of exe-
cution time for population sizes 25, 50, 100, 500, 1000 and 2000 cells. Figure 7
and (B) is a log-log plot showing that the parallel framework incurs significantly
lower execution time. It is noteworthy that the sequential approach does not
scale beyond 100 cells, thus the expected real time values for sequential app-
roach (shown in dotted red line) is obtained through extrapolation.
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Fig. 7. (A) Speed-up: Semi-log plot for speed-up for population sizes varying between
10 and 50. Parallel QS framework exhibits little growth in running time with increase
in simulation time (B) Scalability: Log-log plot for scalability analysis for population
sizes 25, 50, 100, 500, 1000, 2000. (Color figure online)

5 Conclusion and Future Work

In this paper we present a scalable parallel framework for QS in bacteria. Simu-
lation for varying population size, sampling interval and duration show that our
framework models concentration dynamics almost as accurately as its sequen-
tial counterpart, while showing significant improvement in speed-up and CPU
utilization. We also study the degradation in accuracy and improvement in run-
ning time of this model, with increase in sampling interval. We show that the
framework incorporates cellular heterogeneity, phenotypic variability and scal-
ability by sampling the QS system parameters from Gaussian distribution and
modeling up to 2000 bacterial cells. Our future works involve the extension of
the framework to accommodate spatial positioning of cells and environmental
molecules to incorporate cellular heterogeneity. In the spatial model, the master
process will recalculate the coordinates of the cells and environmental molecules
after each sampling interval.
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