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Abstract. As manipulating the self-assembly of supramolecular and
nanoscale constructs at the single-molecule level increasingly becomes
the norm, new theoretical scaffolds must be erected to replace the ther-
modynamic and kinetics based models used to describe traditional bulk
phase active syntheses. Like the statistical mechanics underpinning these
latter theories, the framework we propose uses state probabilities as its
fundamental objects; but, contrary to the Gibbsian paradigm, our the-
ory directly models the transition probabilities between the initial and
final states of a trajectory, foregoing the need to assume ergodicity. We
leverage these probabilities in the context of molecular self-assembly to
compute the overall likelihood that a specified experimental condition
leads to a desired structural outcome. We demonstrate the application
of this framework to a simple toy model in which three identical molecules
can assemble in one of two ways and conclude with a discussion of how
the high computational cost of such a fine-grained model can be over-
come through approximation when extending it to larger, more complex
systems.
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1 Introduction

The concept of structure-driven communication is first grasped at a very young
age, when one first puzzles out that the square peg must be inserted into the
square hole. But at a much earlier stage of development, this “lock and key”
motif is already ingrained into our bodies on the microscale, where evolution
has engineered countless proteins whose native states form a pocket that is sized
and shaped to bind only a single, specific molecular partner. In the macroworld,
we make locks that admit only a single key shape so that we may exclude others
from our privacy. Exclusivity is the objective of structural communication in the
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microworld as well, though it is not volitional interlopers who are the concern but
rather stochastic ones. In the noisy environment of our cells, structural exclusion
is the only way to ensure that a protein does not bind the first molecule to diffuse
into it.

While structural specificity may combat the stochasticity inherent to molec-
ular binding, the stochasticity inherent to the self-assembly of these structures
themselves is a much higher hurdle to surpass. Even nature, with four billion
years of evolutionary experience, has not perfected this art. The misfolding of
proteins like the neuronal amyloid-beta (Aβ) protein or the pancreatic amylin,
for example, can seed the formation of plaques that have been implicated as
a potential cause for Alzheimer’s disease and type II diabetes, respectively [1].
Human efforts to synthesize nanoscale structures that can interact with or lever-
age biology have thus understandably struggled with precise structural control.
Gold nanoparticle [2] and liposome [3] syntheses have difficulty achieving accept-
able levels of monodispersity, biofilm [4] and other monolayer surface deposi-
tions [5] are prone to disorder and defects, and supramolecular assemblies [6] are
often plagued by competing interactions that lead to disparate products.

Newer techniques such as optical and magnetic tweezers [7], molecular
beams [8], and micro- and nanofluidics [9] have shown potential for greatly improv-
ing our control over molecular self-assembly processes by reducing the scale of
the experiments from the macroscopic bulk phase to systems involving only a few
relevant molecules. The current theories used to model self-assembling systems,
however, still largely rely on bulk statistical thermodynamics and kinetics [10–12],
which are insufficient for this new experimental scale. In this paper we attempt to
address this gap by modeling the distribution of self-assembled states by consid-
ering the stochastic dynamics of a single self-assembly sequence and its branching
structural end states. The result is a probabilistic model that requires neither an
ergodic hypothesis nor a thermodynamic limit.

2 The Model

The framework of our model is to assign to each molecule two sets of stochas-
tic variables. The first set, which we denote as the state ψ, characterizes the
molecule’s entry into the system. This set of parameters might include the time
at which it is injected or emitted, its initial position and velocity, and its starting
orientation. These are parameters over which the experimenter exercises some
degree of control. The second set, which we denote by the state φ, describes the
molecule’s interaction with the self-assembling core. Whether or not the molecule
adds to the growing structure and in what manner it adds will depend upon the
same sorts of parameters, but evaluated at the time of first interaction, which
itself may be one of the random variables in φ. We denote the set of all pos-
sible end states of the self-assembly process under consideration as S, and the
probability that self-assembly terminates at some structure s ∈ S will depend
upon the states φ of each interacting molecule–even those that interacted with-
out binding to the structure. We call this set of states {φ} and the probability
linking this set to a specified outcome as pR(s ∈ S|{φ}), where the R index
stands for “result.”
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The set of states {φ} evolve dynamically from the set of initial states {ψ} as
a result of some stochastic transport process. This process might be simple diffu-
sion through a volume or across a surface, or it might be some facilitated process.
The probability of observing a specific set of interacting states given a set of ini-
tial states is defined as the conditional transport probability pT ({φ}|{ψ}). We
further define the source probability pS({ψ}|σ) as the likelihood that a set of
initial states {ψ} are observed given specified values of a set of externally tunable
parameters σ. This set can consist of variables like temperature and emission
frequency that are directly manipulated by the experimenter. The ultimate prob-
ability that we wish to compute is pF (s|σ), the overall final probability that a
set of input parameters will result in molecules assembling into structure s. This
probability can be related to the latter three by the following integral:

pF (s|σ) =
∫

d{φ}d{ψ} pR(s|{φ})pT ({φ}|{ψ})pS({ψ}|{σ}). (1)

The complexity involved in actually evaluating Eq. (1) will naturally depend
upon the details of the system under consideration. In this paper, we restrict
our attention to a simple toy model that demonstrates how this theoretical
framework might be applied and what sort of predictions it can be used to make.
In this model, we assume that three identical molecules are released at randomly
selected times into a one-dimensional drift-diffusion channel characterized by a
drift speed v, a diffusion constant D, and a channel length �. The first molecule
to traverse the channel binds to a receptor site that catalyzes a self-assembly
process with the second molecule to arrive, resulting in a dimer state. We assume
that this assembly process takes a finite amount of time, which we denote as
the assembly time Tα. If the third molecule arrives while dimer assembly is
still occurring, it will be repelled and the final state of the system will be the
dimer. If, on the other hand, it arrives once the dimer is complete, then a trimer
state will result. Figure 1 depicts a cartoon representation of our toy model and
summarizes its possible outcomes.

If the three molecules are labeled 0, 1, and 2 based on the order in which they
are released into the channel, we may define the initial state of the ith particle
ψi as its injection time τi, and its interaction state φi can be defined analogously
as its arrival time ti at the channel terminus. Because the first such arrival time
may be thought of as the start of the experiment, the absolute release and arrival
times are irrelevant, and we can replace these six time variables with four time
intervals. We define the intervals Δτ1 and Δτ2 as the differences between the
injection times of particle 1 and particle 0 and particle 2 and particle 0, respec-
tively. Analogously, the intervals Δt1 and Δt2 are the equivalent differences in the
arrival times of the particles at the self-assembly site. Because the order in which
the particles arrive is not fixed, due to the stochasticity of the transport down the
channel, these latter time intervals can potentially be negative. The space of self-
assembled structures S in this case contains only the dimer and trimer configura-
tions, which we shall denote as s2 and s3, respectively. The probability of observ-
ing a dimer at the end of the experiment depends upon whether or not the third
molecule to interact does so within a time Tα of the second molecule’s arrival.
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Fig. 1. Toy model timeline. If t = 0 is the time at which the first two monomers initiate
their self-assembly into a dimer, then t = Δt is the time at which the third monomer
arrives. Depending upon whether this time is smaller or larger than the self-assembly
time scale Tα, the final state of the model will either be the original dimer or a trimer.

We can thus write the dimer result probability pR(s2|Δt1,Δt2) as the following
conditional:

pR(s2|Δt1,Δt2) =

⎧⎪⎨
⎪⎩

1 − Θ(|Δt2 − Δt1| − Tα) for Δt1 ≥ 0,Δt2 ≥ 0
1 − Θ(|Δt2| − Tα) for Δt2 ≥ Δt1,Δt1 < 0
1 − Θ(|Δt1| − Tα) for Δt1 ≥ Δt2,Δt2 < 0.

(2)

In the above, Θ(t) is the Heaviside step function. We adopt the convention that it
takes value unity when its argument exceeds zero and has value zero otherwise.
Since the only other possibility is that a trimer is formed, pR(s3|Δt1,Δt2) =
1 − pR(s2|Δt1,Δt2).

The first passage time across a drift-diffusion channel is distributed accord-
ing to the standard inverse Gaussian distribution IG(μ, λ; t) [13], analytically
continued to be zero for negative values of its time argument:

IG(μ, λ; t) =

⎧⎪⎪⎨
⎪⎪⎩

√
λ

2πt3 exp
[

−λ(t−μ)2

2μ2t

]
t > 0

0 t ≤ 0

(3)

The parameter μ ≡ �/v is the time it takes to cross the channel in the
absence of diffusion, and λ ≡ �2/2D is the average time it would take in the
absence of drift. This suggests the following form for the transport distribution
pT (Δt1,Δt2|Δτ1,Δτ2):

pT (Δt1,Δt2|Δτ1,Δτ2)

=
∫ ∞

0

dt IG(μ, λ; t)IG(μ, λ; t + Δt1 − Δτ1)

× IG(μ, λ; t + Δt2 − Δτ2). (4)

Finally, we will assume that each molecule has an equal chance of being released
into the channel at any moment in time after the previous molecule’s emission,
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which results in the release time intervals being exponentially distributed (as in
a radioactive decay process). Assuming an average injection rate 1/τ , we get

pS(Δτ1,Δτ2|τ) =
1
τ2

e−(Δτ2−Δτ1)/τe−Δτ1/τ

=
1
τ2

e−Δτ2/τ . (5)

Note that the dependence of this distribution on Δτ1 cancels out of the exponent
and that τ is the presumptive tuning parameter of the experiment.

Equations (2), (4), and (5) can be substituted into Eq. (1) to calculate the
total dimer probability pF (s2|τ). The simple conditional form of the result prob-
ability pR(s2|Δt1,Δt2) will lead to a modification in the limits of integration over
the arrival time intervals. This leads to a more complicated looking expression
for pF (s2|τ) that is nonetheless more straightforward to evaluate numerically:

pF (s2|τ) =
1
τ2

∫ ∞

0

dΔτ2

∫ ∞

0

dΔτ1 e−Δτ2/τ

×
[
2
∫ ∞

0

dΔt2

∫ Δt2

max(Δt2−Tα,0)

dΔt1 pT (Δt1,Δt2|Δτ1,Δτ2)

+ 2
∫ Tα

0

dΔt2

∫ ∞

0

dΔt1 pT (−Δt1,Δt2|Δτ1,Δτ2)

+ 2
∫ Tα

0

dΔt2

∫ ∞

Δt2

dΔt1 pT (−Δt1,−Δt2|Δτ1,Δτ2)

]
. (6)

The three integrals over the arrival time intervals in the above expression cor-
respond, respectively, to the cases in which particle 0 arrives first, second, and
third. The factors of 2 account for the symmetry, in each case, of swapping the
index labels 1 and 2.

3 Results and Discussion

Even for such a simple toy system, the numerical integration required to cal-
culate pF (s2|τ) is computationally intensive, with the principal time sink being
the repeated evaluations of Eq. (4) for all the different values of the release and
arrival time intervals needed to evaluate Eq. (6). We resolved this difficulty by
parallelizing the computation, evaluating each instance of pT (Δt1,Δt2|Δτ1,Δτ2)
on a separate thread of an Nvidia GeForce GTX TITAN GPU with 3,072 cores,
12 GB of RAM, and 1,000 MHz clock speed. This reduced the total computa-
tional time by a factor of roughly 1,000. For our integration mesh, we chose a
lattice spacing (bin width) of 0.02 time units, and a mesh domain defined in
terms of model time units by the inequalities 0 ≤ Δτ1 ≤ Δτ2, 0 ≤ Δτ2 ≤ r,
−10 ≤ Δt1 ≤ r + 10, and −10 ≤ Δt2 ≤ r + 10, where the integration range r
was set equal to 20 time units. For each point on this mesh, the formally infinite
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upper limit of each of the parallelized time integrals was approximated as 50 time
units. These restricted integration ranges were sufficient to approximately nor-
malize all of the probability distributions of the model to within an acceptable
tolerance.

After computing the transport probability at each point of the chosen inte-
gration mesh, it became tractable to evaluate the integrals over the release and
arrival time intervals serially, using an Intel Core i7-2600 CPU with 3.40 GHz
clock speed and 8 GB of memory. We demonstrate how this computational time
varies with integration range r in Fig. 2 for three different bin widths. As the
logarithmic scale makes clear, the serial computation time grows roughly expo-
nentially with the integration range. It also grows approximately as an inverse
power law of the bin width, with a negative exponent of about 4.
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Fig. 2. Computational time (in seconds) plotted versus the integration range (in model
time units) for three different bin widths (also in model time units): from top to bot-
tom, 0.02 (red), 0.05 (green), and 0.1 (blue). The ordinate axis is on a log scale to
better illustrate the exponential growth of the computational time for sufficiently large
integration ranges. (Color figure online)

We plot our numerically evaluated probability pF (s2|τ) in Fig. 3(A) as a
function of the self-assembly time scale Tα for values of the mean release inter-
val τ = 0.5, 1.5, 2.5, and 3.5, in descending order. For all curves, the time scales μ
and λ were both fixed at unity. As expected, when self-assembly is instantaneous
(Tα = 0), there is no interval of time during which the third molecule can be
repelled, so trimer formation is inevitable (pF (s2|τ) = 0). At the other extreme,
as Tα → ∞, the dimer becomes the only possible product (pF (s2|τ) → 1). As
molecule emissions into the channel become more infrequent (larger τ), the win-
dow to avoid trimer trapping becomes smaller, depressing the dimer probability.
These curves are all fit very well by a function of the form 1− exp[−c1(Tα/τ)c2 ],
where c1 and c2 are fitting parameters that may depend in a complicated manner
upon some dimensionless combination of the time scales τ , μ, and λ. These best
fit functions are plotted as solid curves over the numerical data in Fig. 3(A).
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Fig. 3. Plots of the final dimer formation probability pF (s2|τ) versus the self-assembly
time scale Tα for (A) fixed μ and λ equal to unity, with τ varying, from top to bottom,
as 0.5, 1.5, 2.5, and 3.5; and for (B) fixed τ = 1.5 with (μ, λ) varying, from top to
bottom, as (1, 1), (2, 2), (2, 1), and (4, 2). The data points are the computationally
evaluated probabilities, while the solid curves are the analytic fits of the function
1 − exp[−c1(Tα/τ)c2 ].

Figure 3(B) also plots the final dimer probability versus Tα, but this time τ
is held fixed at τ = 1.5 and μ and λ are varied instead. The top curve is the same
as the second to top curve in panel (A) (μ = λ = 1). The remaining curves are,
in descending order, for (μ, λ) = (2, 2), (2, 1), and (4, 2). These curves illustrate
several general trends. First, the dimer probability decreases monotonically with
increasing μ, reflecting the fact that a less facilitated channel will tend to space
out the arrival times of the molecules, making trimer formation more likely.
Increasing λ tends to have the opposite effect, since reducing the diffusivity
of the channel narrows the distribution of arrival times (Eq. (3)), resulting in
a less noisy channel. The variance of the inverse Gaussian distribution is μ3/λ,
explaining why pF (s2|τ) has a stronger dependence on μ than on λ. These curves
are well modeled by the same class of fitting function used in Fig. 3(A).

Perhaps the most informative way of quantifying how self-assembly depends
upon our model parameters is with a “phase diagram,” where a relevant param-
eter subspace is divided into regions based upon the most probable structure in
each. For our toy system, this phase diagram is fairly simple and is plotted in
Fig. 4 as a function of the control parameter τ and the self-assembly time Tα.
The transport parameters μ and λ are both fixed at unity. The phase boundary,
which turns out to be approximately linear (R2-value of ≈0.997), was determined
by finding, for each value of τ , the critical value of Tα for which pF (s2|τ) = 1/2.
For large Tα and small τ , the shorter average interval between particle emissions
and the longer assembly time will make it more likely for the third particle to
arrive while the first two are still docking, thereby frustrating trimer formation.
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In the opposite limit, the time between emissions will be long and assembly will
occur swiftly–both circumstances that favor the trimer product.

DIMER

TRIMER

τ

Tα

Fig. 4. The phase diagram for the toy model when μ = λ = 1. The phase boundary
separating the dimer and trimer favoring regions is approximately linear.

4 Conclusions

While the framework we have devised for quantifying self-assembly in terms of
individual molecular interactions is quite general, we have seen even in the simple
case of our three-molecule toy model that its computational cost is problematic,
especially were one to extend it to the self-assembly of long biopolymers like
proteins or microtubules. The set of interaction variables {φ} will necessarily
grow linearly with the number of interactions considered, but the real problem
is that an integral like that in Eq. (4) will have to be evaluated for every permis-
sible set of values these variables can take. The number of integrations will thus
grow exponentially with the number of interactions, rendering even paralleliza-
tion schemes unfeasible for supramolecular assemblies consisting of more than a
handful of subunits.

The most straightforward way to address this problem is to make physically
sensible approximations that constrain the hypervolumetric domain of the vari-
ables {φ}, thereby reducing the number of integrals that must be computed in
parallel. In our toy model, for example, we must consider a range of Δt1 and Δt2
values broad enough to allow for 3! = 6 different interaction orders. If we work
in the large τ limit, however, we can assume that the probability of nonconsecu-
tively released particles interacting in reversed order is negligible. This reduces
the number of permissible interaction orderings to three (removing the factor of
two from the second term on the right of Eq. (6) and deleting the third term
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entirely) and eliminates the need to consider negative values of Δt2. This is only
a modest gain, but if we were to extend our toy model to include tetrameric
structures, this approximation scheme would reduce the number of allowable
orderings from 4! = 24 to a paltry five.

Our intention moving forward is to begin exploring the impact these sorts of
approximation schemes have on both computational time and numerical accu-
racy in the hopes of ultimately applying the methodology outlined in this paper
to systems of actual biological consequence.
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