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Abstract. Modern air quality monitoring systems are characterised by high
complexity and costs. The expensive embedded units such as sensor arrays,
processors, power blocks, displays and communication units make them less
appropriate for small indoor spaces.

In this paper we demonstrate that two widely available, in private houses,
sensors (for Humidity and Temperature) are promising alternative, to the
expensive indoor air quality solutions, provided with intelligent data processing
tools. Our findings suggest that neural network based data analytics system can
learn to discriminate unusual indoor gases from normal home air components
based only on temperature and humidity measurements.
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1 Introduction

Nowadays, people spend much time in closed spaces, therefore monitoring of indoor
air quality attracted much attention in recent years. Standards, guidelines and
requirements, defined by international agencies, are used to evaluate the acceptable
quality of air in indoor as well as outdoor environments. Research is carried out to
bring dust free, noxious free and smell free environment at home, hospitals, schools,
cars, etc. Several air quality monitoring systems have been recently proposed.

A grey model to indoor air quality management in rooms based on real-time
sensing of nano and micro particles and volatile organic compounds is proposed in [1].
Pollution sources are analysed and a management model is defined to minimize the
time during which the pollutant concentration falls below threshold value. An
embedded system model for air quality monitoring is proposed in [2] using low cost
gas sensors and Arduino microcontroller. The system is tailored to study the long-term
impacts of bad air quality on health particularly with respect to allergic patients. An
enhancement of the gas sensitivity and selectivity of a piezoelectric micro-cantilever by
using chemically-modified carbon nanotubes as a sorbing layer and a gas sensitive film
is studied in [3]. Two measurement modes are compared, the frequency mode that
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requires a significant amount of nanotubes to coat the cantilever and trap target
molecules and the resistance mode that needs a small amount of nanotubes for the film
not to be too conductive. An improved sensor based on resistance mode is demon-
strated to achieve good sensitivity to gases.

Smart home system with embedded gas sensors arrays to control not only the
indoor air quality but also to discriminate room occupancy and human activities in
presented in [4]. A portable chemical-based monitoring system built of 32 gas sensors
array has been tested in NASA space craft cabin simulator. The compact autonomous
system (3.6 L volume, 3.4 kg weight) is composed of polymer-carbon composite
elements and is suitable for a long term continuous operation. The system detects the
number of individuals present in the room and the number of people exercising. To
correct for sensor drift and improve the precision, during periods of lack of activity in
the room, the sensors’ baselines can be adjusted. Due to air circulation, odours travel
from one room to another and thus the sensing range of chemical sensors appear to be
wider than video camera-based systems. Interestingly, the system is able to detect
human behaviours that caused higher concentration levels of ethanol. Gas sensor arrays
are usually used for discrimination of gas mixtures composed of air and single chemical
such as hexane, ethanol, acetone, ethyl acetate and toluene. Method for gas mixtures
discrimination based on sensor array, temporal response and data driven approach is
proposed in [5]. Furthermore in [6], gas recognition by activated thin-film sensors array
is studied. Principle Component Analysis (PCA) is applied to cluster target gases. Gas
discrimination using nano-electronic nose has been applied in [7]. The integration of
nanowire and carbon nanotube sensors, precise control of the sensor temperature, and
the use of PCA for data processing resulted in effective discrimination between a wide
variety of gases, including explosive ones and nerve agents. The response of these
sensors to hydrogen, ethanol, and NO2 were measured at different concentrations and
both at room temperature and at 200 °C.

A method for online de-correlation of chemical sensor signals from the effects of
environmental humidity and temperature variations is proposed in [8]. The accuracy of
electronic nose measurements for continuous monitoring is improved taking into
account the simultaneous readings of environmental humidity and temperature. The
electronic nose setup, built for this study, consists of eight metal-oxide (MOX) gas
sensors, temperature and humidity sensors with a wireless communication link to
external computer. The wireless electronic nose was used to monitor the air for two
years in one residence and collected data continuously during 537 days with a sampling
rate of 1 sample per second. To test the benefits of de-correlating humidity and tem-
perature measurements from the MOX sensors’ responses, a scenario with three gas
stimuli has been designed — banana, wine and baseline responses. Multiclass inhibitory
support vector machine (ISVM) method [9] is used to discriminate between the
presence of banana, presence of wine, and baseline activity. To compare the perfor-
mance of the classifier with and without decorrelation of humidity—temperature, four
subsets of data were created by combining raw sensor responses, filtered sensor data,
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and temperature and humidity. Experimental results show that including the filtered
data in the classification model improves significantly the discrimination capability of
the model. In summary, it has been shown that simultaneous humidity and temperature
recordings are promising to extract relevant chemical signatures.

The reviewed air quality monitoring systems are complex and costly. They inte-
grate expensive components such as sensor networks, processors, power blocks, dis-
plays and communication units. Such technology is more appropriate for public
building and less suitable for private houses. Moreover, the large number of sensors
requires significant computational resources and processing time for data analytics.

In this paper we propose data analytics models for air quality monitoring adequate
for small indoor spaces such as private houses. The models are based on machine
learning approach (deep neural networks) and are demonstrated with real data provided
by the authors of [8] in UCI Machine Learning Repository (Gas sensors for home
activity monitoring Data Set). The task is to detect gas changes due to different home
activities based on measurements of ten sensors (eight MOX gas sensors, temperature
and humidity sensors). The proposed data analytics models differ in terms of number of
sensors as inputs and temporal length of the sensor readings. The goal is to build
reliable gas discrimination model based only on short time measurements of temper-
ature and humidity sensors.

The rest of the paper is organized as follow. In Sect. 2 deep neural networks are
introduced as the proposed data analytics model. In Sect. 3 the sensor array of data is
described. The implementation aspects and obtained results are discussed in Sect. 4.
Conclusions are drawn in Sect. 5.

2 Deep Neural Networks

Over the last decade, deep learning techniques have become very popular in various
application domains such as computer vision, automatic speech recognition, natural
language processing, and bioinformatics where they achieved excellent results on
various tasks. For example, neural networks with multiple hidden layers (deep neural
networks) are very successful in solving classification problems for high dimensional
data. Each layer learns to represent the data at a different level of abstraction. The idea
of having one algorithm that first maps data into a representative feature space and then
solve recognition tasks gained the great success of deep neural networks (DNNs). DNN
models have been applied within a wide range of applications including images,
videos, speech, text, [10-12], and recently also in neuro-imaging domain [13, 14].
The DNN success is due to their ability to extract representations that are robust to
partial translation and deformation of input patterns.

In the present study we explore the advantages of Deep Autoencoder Neural
Network (DANN) in the context of sensor array data modelling and compare it with a
shallow neural network (NN) model. The following training procedure for DANN was
implemented:
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(a) Training the first hidden layer of the auto-encoder without providing the labels.
An auto-encoder is a neural network which attempts to replicate its input at its
output. Thus, the input and the output have is the same size. The auto-encoder is
comprised of an encoder followed by a decoder. The encoder maps an input to a
hidden representation and the decoder attempts to reverse this mapping to
reconstruct the original input.

(b) The next hidden layers (auto-encoders) are trained in a similar way. The main
difference is that the features that are generated from the previous auto-encoder
are the training data for the next auto-encoder. The size of each subsequent
encoder is decreasing, so that it learns compressed input data representation.

(c) Unlike the auto encoders, the final (output) layer is trained in a supervised fashion
using training data labels. Softmax function was used as a processing unit in this
layer.

(d) Final retraining of the whole DANN is performed in a supervised mode applying
error-backpropagation. This step is referred as fine DNN tuning.

3 Data and Experimental Scenario Description

The complete data set [15] consists of recordings of ten sensors (§ MOX gas sensors,
temperature and humidity sensors). The sensors were exposed to two specific stimuli
(wine or banana smells) and background home smells. The responses to banana and
wine stimuli were recorded by placing the stimulus close to the sensors. The duration of
each stimulation varied from 7 min to 2 h, with an average duration of 42 min. The
dataset contains a set of time series from three different conditions: wine, banana and
background activity. There are 35 inductions with wine, 33 with banana and 31
recordings of background activity, corresponding to measurements along 99 days. The
dataset is composed of 99 snippets of time series, each being a single induction or
background activity. In total, there are 919438 samples. For each induction, the time
when the stimulus was presented is set to zero.

The system requirement is to detect on-line early change of indoor air composition
and give an alarm. Therefore, the sensor response to a stimulus at the beginning of each
experiment (the first few minutes) is of major importance. Sensor records over the first
160 s. of the experiment taken each 5 s were extracted from the original dataset.
Figure 1 shows samples from all sensors taken from one experiment with banana
stimulus. Samples for negative values of time correspond to sensor responses before
the stimulus presentation.

Data structure (Table 1) consists of 99 examples (99 days of experiments with
different stimulus) and time series of 32 readings per sensor for a total of ten sensors.
Three hypotheses are studied: detection of air quality variation based on (i) all sensors;
(i) MOX sensors, and (iii) Temperature and Humidity sensors.
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Fig. 1. Data visualisation (MOX, Temperature and Humidity sensor samples)

Table 1. Data structure
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Exper. |T (temp.) H (humidity) MOX sensor R1 MOX sensor R8

dayl Ttl, Tt2..... Htl, He2..... RItl, RI1t2..... R8t1, R82.....
Tt32 Ht32 R1t32 R8t32

....... Ttl, Tt2..... Htl, He2. RItl, RIt2..... R8t1, R8t2.....
Tt32 Ht32 RIt32 R8t32

day99 | Ttl, Tt2..... Htl, He2. R1tl, R1e2..... R8t1, R8t2.....
Tt32 Ht32 R1t32 R8t32

4 Gas Discrimination — Implementation and Experimental
Results

Two data analytics models for indoor gas discrimination were built- Deep Autoencoder
Neural Network (DANN) and a shallow Neural Network (NN). The models were
implemented in RapidMiner - open-source software environment. Training and hyper-
parameter optimisation steps for both models are outlined in DANN/NN Training
Algorithms. The PCA reduction of the feature space (Table 2) is a helpful step to speed
up the analysis in online implementation.

Table 2. Original and PCA (95% accumulated variance) reduced feature space

Feature set

Feature space (# of features)

PCA reduced feature space (#)

Hum & Tem
MOX Sensors
H & T & MOX

64
256
320

5
17
19
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DANN/NN Training Algorithms

1. Load dataset (Retrieved operator)

2. Data normalization into the range (0,1] (Normalize operator)

3. PCA-based feature space reduction (PCA operator, results in Table 2)
Iterate

4. Model hyper-parameter optimization (grid-based Optimize Operator)
Optimization of cost function parameters (learning rate and momentum) in
ten steps sampled from a linear scale range of [0.1 0.99] , (Table 3).

5. Cross Validation (10 folds CV)
If shallow NN model: single hidden layer L1 (9 units)
or
If DANN: two autoencoder layers, L1 (300 units) and L2 (100 units)

6.  Performance assessment (CV test based on model accuracy)

Table 3. Model optimal hyper-parameters
Feature sets Optimisation parameters NN hyper-parameters

Hum & Tem learning rate = 0.278, momentum = 0.1 | rho = 0.9693, eps = 0.1
MOX Sensors | learning rate = 0.1, momentum = 0.634 rho = 0.2789, eps = 0.42
H & T & MOX | learning rate = 0.723, momentum = 0.189 | rho = 0.18, eps = 0.74

4.1 DANN Model

The implemented training sequence for the DANN model is schematically outlined in
Fig. 2. The module structure represents the complete data analysis process, starting
from data normalization, feature space reduction (PCA), model hyper-parameter
optimization, training, validation and finally model performance assessment on test
data. The computationally most demanding step is the hyper parameter optimization.

This procedure is repeated for the following data sets:

()
(i)
(iii)

4.2

The DANN hypothesis is compared with a shallow NN model. The NN process
workflow is schematically represented in Fig. 3. The procedure is similar to the DANN
model, however the Neural Net module undergoes different parameter optimization

All sensors (MOX, Temperature, Humidity sensors) — data structure of 99
examples with 320 features (10 sensors x 32 readings).
MOX sensors — data structure of 99 examples with 256 features (8 sensors x 32
readings).
Temperature and Humidity sensors — data structure of 99 examples with 64
features (2 sensors x 32 readings).

Shallow NN Model

technique.
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The motivation behind the present study is to assess if the humidity and temperature
sensors are sensitive to variations in the air composition and may account for changes

in the air quality.
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The obtained experimental results are rather promising (see Table 4). Both DANN
and shallow NN gas discriminative model based on records only from two sensors
(Hum & Temp) are overall more accurate in detecting unusual (banana and wine) from
usual (background) gases than when the models are provided with more sensor data.
Class precision and recall performance indicators (summarized in Tables 5 and 6) are
also more favourable with respect to (Hum & Temp) sensor scenario. Shallow NN
(with a single hidden layer) model outperforms the deep NN (two autoencoders) which
is somehow expected due to the low number of features and training data.

Our results show that MOX sensors degrade the accuracy of the system. A possible
explanation for this unexpected outcome may be the quality of the MOX sensor or the

existence of periods of faulty (unregistered) states.

Table 4. Accuracy (%)

Sensors NN | DANN
Hum & Tem 69.78 | 69.67
MOX Sensors | 68.78 | 55.44
H & T & MOX | 65.67 | 55.89

Table 5. Class precision (%)

Sensors Class NN |DANN
Hum & Tem banana 58.06 | 61.76
wine 58.33 | 64.52
background | 93.75 | 82.35
MOX Sens. banana 68.98 | 48.39
wine 65.71 |58.45
background | 71.43 | 59.36
H & T & MOX | banana 66.67 | 55.56
wine 61.11 |51.11
background | 69.7 |66.67
Table 6. Class recall (%)
Sensors Class NN |DANN
2 sensors (Hum & Tem) banana 54.55|63.64
wine 58.33|55.56
background | 100 | 93.33
8 MOX Sensors banana 60.61 |45.45
wine 63.89 | 66.67
background | 71.43 | 53.33
10 sensors (H & T & 8 MOX) | banana 60.61 | 60.61
wine 61.11|63.89
background | 76.67 | 40.00
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5 Conclusion

Proper values of hydro-thermal parameters and good air quality are known to have a
great influence on human health and comfort. Major efforts in the area of indoor air
quality are focused into making our homes smart so that the healthy level of indoor air
is automatically controlled.

In this paper we demonstrate that two widely available, in private houses, sensors
are feasible to discriminate unusual gases from the usual house air composition.
Humidity and Temperature sensors are a promising alternative to the expensive indoor
air quality solutions provided with intelligent data analytics tools. Variations of the air
composition due to new stimuli are encoded in trivial Hum & Temp readings and can
be discriminated by a ML model trained to recognise the background home air
composition.

We are aware that “wine” and “banana” are not widely accepted as typical stimuli
to produce “unusual gases”, however in the experimental scenario they have been
selected as the new stimuli and the sensor recordings during their presence are labelled
as anomaly.

For now, the proposed data analytics system is confident in binary discrimination
between what has been learned as normal and abnormal home air composition. This
research can be extended focusing on better recognition of various abnormal air states.
Further to that considering more relevant unusual gas cases particularly those that may
cause health risks is a research direction with high social impact.
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