
Parallelism in Signature Based Virus
Scanning with CUDA

Andrej Dimitrioski(B), Marjan Gusev, and Vladimir Zdraveski

Faculty of Computer Science and Engineering,
“Ss. Cyril and Methodius” University, Skopje, Republic of Macedonia

andrej.dimitrioski@students.finki.ukim.mk,

{marjan.gushev,vladimir.zdraveski}@finki.ukim.mk

Abstract. Information security is playing big role in the computer tech-
nologies. Its job is to detect unauthorized violation of the information
integrity, secure it and also recover it, if the integrity was violated. One
of the things that can alter an information are computer viruses. One
of the task of the information security is also to detect these malicious
applications and prevent their goal. This can be achieved in various tech-
niques and one of them is signature based virus scanning. This technique
uses a virus database (virus signatures) to detect if a file or application
is infected with a specific virus. In this paper we are going to see in
more details how is this implemented, which algorithm are mostly used
and also try to improve its performance by parallelizing it on GPU by
using CUDA. We are also going to see how CUDA utilizes large num-
ber of threads to solve a specific problem and use it to implement a
parallel signature based virus scanner. Later we are going to see the per-
formance benchmarks of the conducted experiments and discuss them
and give a final conclusions for the usage of a GPU in signature based
virus scanning.

Keywords: Virus · Scanning · CUDA · GPU

1 Introduction

Computer viruses are malicious applications that can harm the computer in var-
ious ways and they can be written in different programming languages. Their
first appearance starts in 1970’s and through the development of computer tech-
nologies they were getting more and more advanced and now we know a plethora
of different types of computer viruses. In the early 80’s computer viruses were
primitive, destructive and were mostly distributed through software and trans-
ferred from a computer to a computer by using floppy disks. When the computer
networking hit mainstream users it opened whole new ways of infecting comput-
ers with viruses. In that time there was the first appearance of computer worms
which they are able to replicate itself and spread to other computers. This was

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. Poulkov (Ed.): FABULOUS 2019, LNICST 283, pp. 413–422, 2019.

https://doi.org/10.1007/978-3-030-23976-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23976-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-23976-3_36


414 A. Dimitrioski et al.

achieved through emails, hidden in attachments in a form of an application or
any type of a media file. Spreading through network usually was aided by flaws in
the network stack of the operating systems or flaws in software that relied on the
network. This trend continued in the next years till today and it is unimaginable
to encounter a virus which does not rely on the computer network. Virus scan-
ning or namely the anti-virus software starts in the late 1980’s as measure to deal
with viruses. At that time anti-virus software was primitive relaying on a simpler
techniques to detect and handle virus infections. These most include techniques
like signature based virus scanning and they were quite effective since metamor-
phic viruses did not exist back then. Also its usage wasn’t trivial because it had
a complicated interface. As of today that has changed drastically, more detection
techniques were developed which was caused from the streamlined improvement
of the viruses. These include polymorphic, unusual behavior, heuristic and cloud
based detection.

From the start of the development of anti-virus software till today the CPU
is the main resource that is used to execute these detection techniques. The CPU
mostly relies on sequential execution, though processors of this era are capable
to execute several instructions in parallel in the same time due to the larger
number of cores and threads. As applications get more and more demanding
and techniques get more and more complex this means big performance impact
in systems where can it mean more than the actual security. We know that GPUs
are capable of utilizing large number of cores and that is proven to have great
performance on graphical computing. The possibility to exploit the potential
of these devices in more general problems was introduced with the GPGPU [6]
or General-purpose computing on graphics processing unit which is extensively
used in parallel programming paradigm.

Right now there are several platforms where a end-user can develop GPGPU
application. CUDA [7] being the one of the most popular and developed by
NVIDIA provides an API to utilize their graphic cards. Having this in consider-
ation we can see that the problem we introduced above may be transformed in
a way that we can use the large number of cores in the GPU to scan programs
for a malicious code which frees the CPU and we can use it in executing other
tasks.

2 Related Work

Virus detection has a wide area of development and research. Since CPU process-
ing still has major role in virus scanning, most of the researches and related work
lies on it. In a particular the specific topic about signature based detection looses
its popularity because of the lack of a success rate when it comes dealing with
polymorphic viruses. Because of that the shift is now towards using heuristic
scanning techniques [11], [10] that can deal with self-modifying code. On other
hand, related work for a GPU aided virus scanning appeared in late 2009 where
NVIDIA posted [3] about Kaspersky Lab using their GPUs and CUDA. This
is achieved by uploading the suspected malicious file to Kaspersky Lab data



Parallelism in Signature Based Virus Scanning with CUDA 415

center where with the usage of NVIDIA CUDA and complex virus detection
algorithm it can quickly detect if the file is really malicious and give suggestion
to the user what to do next. Kaspersky is claiming that performance increase
reached even 360 times over the Intel Core2 Duo processor. NVIDIA released
a white-paper [4] on their GPU Gems site showing how pattern matching tech-
nique in virus scanning can provide better performance with the use of a GPU.
Intel on the other hand announced [5] that their 6th, 7th, 8th and their future
CPU generations will offload virus scanning from the CPU to their GPU so it
will help the performance and battery life. Although this is not really related
to CUDA platform, it shows that work on using the GPU for virus scanning is
leaning towards a successful future. Similar work [2] on the paper’s area has been
done, where by using GPU and NFA [8] improved performance of virus scanning
compared to open source anti-virus software ClamAV [9]. Another research on
signature based detection has been done where by using highly-efficient memory
compression technique and CUDA [12] showed improvement in memory usage
and performance in pre-processing and run-time stage. A research [14] on virus
detection by using Big Data [13] and Hadoop based comparison and pattern
matching was aided by use of a GPU.

3 Architecture and Design

3.1 Specifying the Problem

The problem that we are covering here is a signature based virus scanning. In
computer systems files are represented with bytes, that way it is easier for the
CPU to work with them. A variable length of bytes may represent instruction,
some data or something similar and also they may represent malicious segment
of the a file. A old technique that is still being used is a signature based scan-
ning. This technique searches for specific set of bytes. These specific set of bytes
(sometimes named Signature) are commonly stored in a file called Virus Defini-
tion Database. These databases are updated on regular basis by the anti-virus
vendors. So altogether this technique takes the file, and scans if it consists a
known signature. In this paper we are going to simplify the problem, and make
an assumption that programs that we are going to scan are not going to be
polymorphic or in other words, no variations of a signature may end up in a file
causing not to be detected by anti-virus.

3.2 Algorithm that We Are Going to Use

Solving the scanning problem on the first hand seems easy and if we consider
that we have one pattern (virus definition) to scan. We will certainly have a great
scanning performance. The problem gets harder if we have more than one virus
definition. A brute force implementation of that will mean that we will need to
do as many single searches as the number of virus definitions and that for certain
will be slow if we have thousands of registered definitions in the database. We will



416 A. Dimitrioski et al.

have performance improvement if we use some known string searching algorithm
as Rabin-Karp, Knuth-Morris-Pratt or Boyer-Moore but still we wont get the
results that we want. So we need to find a way to search concurrently for every
virus definition in one take. This gets even harder if we have different lengths in
virus definitions. That’s where Aho-Corasick [1] algorithm comes to play. The
idea behind that algorithm is to build a finite state machine represented with
a trie structure. This structure contains nodes with links between them which
helps in pattern matching by fast transitions. Functions that this algorithm use
are: Goto, Failure and Output function. Goto function gives us a next state for
the current state and character. Failure function represents when the current
character does not have an edge. And output function is used to map every
pattern that ends at some state.

3.3 CUDA Programming Model

CUDA utilizes a large number of threads to run on a processor or in this case
streaming multiprocessor. It achieves this by running them grouped in a thread
blocks, and one or more (highly dependent on the GPU specifications) thread
blocks can run simultaneously on streaming multiprocessor. These thread blocks
on other hand form a grid of blocks. Having this, CUDA gives opportunity to
the programmer to let him define the structure of the grid or thread blocks
depending on the problem. Since we can’t do computation without data, with
CUDA we can also reserve space on the GPU RAM for transferring the required
data from the system memory. The memory model in the GPU is divided to 3
kinds of memory: Local - used only by a single thread (also named cache), very
limited and the fastest one. Shared - used only by threads defined in a thread
block and it is slower than a local memory. Global - used by every thread in the
grid and it is the slowest and the largest one.

3.4 Implementation and Restrictions

Aho-Corasick algorithm to work needs first to build the trie as we mentioned
before. From the observation this process seems to be highly sequential as we
can’t simply run a multiple threads for each of the signatures and build the trie.
This is because as mentioned earlier it uses all of the patterns to create the
structure. But on the other hand after the state machine is built, the algorithm
takes the input text (file in our case) processing character by character (byte
by byte). This on the CPU will require starting from the start of the file and
scanning byte by byte all the way to the end.

In previous subsection we mentioned that GPU can utilize large number of
threads. So instead of using the CPU to scan through whole file, we can divide
the file in section of a bytes and give each thread to pass a one section. Since
we have blocks and each one has same number of threads running on it, we are
actually going divide a larger section of the file to each block, and divide that
section into smaller sections and give it to each thread in the block. We can see



Parallelism in Signature Based Virus Scanning with CUDA 417

this illustratively with thread blocks and the threads in it in Fig. 1 and also with
Eq. 1 we denote how much bytes each GPU thread will have to scan.

bytesPerThread =
totalNumOfBytes

numOfBlocks ∗ threadsPerBlock
(1)

bytesPerThread ≥ max(L(vd1), L(vd2), ..., L(vdn)) (2)

Because we can have a different sizes of a files and also we can have different
sizes of blocks and threads, this can vary. But we need to make sure that every
thread will scan equal or more bytes than the largest virus definition. We denoted
that in Eq. 2

Fig. 1. GPU execution of scanning algorithm.

For the virus scanning we also need the file to reside in the memory of
the GPU as well as the data structure (trie) used for scanning the file. We
mentioned that the GPU uses global, shared and local memory and they have
own memory limits. Keeping this in mind, we need to decide where every piece
of the data will reside. Local and shared memory are extremely small so we can
store the variables that are used in scanning and also some parts of the trie
(Failure and Output function), so every thread will have own variables while
scanning and every thread block will have own copy of the Failure and Output
function. In global memory we are going to store the Goto function and the
file since their size is pretty larger than the rest of the data. Every thread on
the GPU will have access to this data. This is where we have limitations of



418 A. Dimitrioski et al.

running the scan more optimal as possible. Access to global memory is slow and
even slower when more than one thread wants to access same piece of data.
This although is not a problem for accessing the file since every thread has own
chunk to process but Goto function since it is used by all threads can lead to
high number of memory access conflicts thus decreasing the performance of the
scanning. Also since shared memory is small, we cannot always store the Failure
and Output functions in it because of their size which depends of the size of the
virus definition file, so in some cases if the virus definition is large we have to
store them in the global memory which further can decrease the performance.
Another restriction we have to mention is the limit of the actual virus definitions
which in this implementation is 32 because of the Integer data structure (4 bytes)
used for the Output function. CUDA still does not have wide range support for
more complex data structures, in our case Bitset data structure which makes it
possible to use larger virus definitions.

4 Experiment and Discussion

We conducted a experiment on different files sizes, each with different number of
blocks and threads and maximum size of 32 virus definitions. We need to point
out that these are random files, and virus definitions were generated with random
section of these files. System we used has Intel i5-5200U (up to 2.70 GHz), 8 GB
of RAM and NVIDIA GeForce 940M (2 GB of RAM). We benchmarked the
time that it takes the CPU and GPU to process the files on their respective
algorithms. The goal of this experiment is to show how the GPU and CUDA
are capable of executing a signature based scanning on multiple file sizes and
comparing them with CPU scan counterpart. We scanned a files with sizes 1670,
1400, 600, 100 and 10 MB. Also we made sure we don’t give a thread a number
of bytes to scan which is smaller than the largest virus definition we generated.

We ran the scanning on 1670 MB file on the GPU multiple times with dif-
ferent configuration of blocks and threads and also on CPU for reference. The
speedup started from 256 blocks and 256 threads per block and kept rising till
1024 × 1024 which had around 5.7 times speedup over the CPU. With 32 × 32
and 64 × 64 configurations we encountered less performance due to a threads
having to scan large chunks of the file. That is because performance of a single
thread on a GPU is much worse than the performance of a CPU. The results
are shown in more detail in Fig. 2 and Table 1 below. The first column of the
table represents the CPU result, next ones are GPU results noted by NumberOf-
Blocks × NumberOfThreads.



Parallelism in Signature Based Virus Scanning with CUDA 419

Fig. 2. Running the scan on 1670 MB file.

Table 1. Running the scan on 1670 MB file

CPU (32 × 32) (64 × 64) (128 × 128) (256 × 256) (512 × 512) (1024 × 1024)

1670MB 6430ms 20350ms 16879ms 5597ms 1750ms 1369ms 1126ms

Similar results were encountered on 1400 MB file where we had around 6
times speedup over the CPU. We encountered speedup in the rest of the tests
shown below, and they had better results than the CPU on every configuration
we tested. The results are shown in more detail in Fig. 3 and Table 2 below.

Fig. 3. Running the scan on 1400 MB file.

Table 2. Running the scan on 1400 MB file

CPU (32 × 32) (64 × 64) (128 × 128) (256 × 256) (512 × 512) (1024 × 1024)

1400MB 5433ms 17234ms 12784ms 1815ms 1533ms 1155ms 915ms

In the 600 MB file scan we had steady improvement as we increased the blocks
and threads peaking to maximum of 6 times speedup over the CPU. The results
are shown in more detail in Fig. 4 and Table 3 below.



420 A. Dimitrioski et al.

Fig. 4. Running the scan on 600 MB file.

Table 3. Running the scan on 600 MB file

CPU (32 × 32) (64 × 64) (128 × 128) (256 × 256) (512 × 512) (1024 × 1024)

600MB 2372ms 2273ms 1558ms 1610ms 773ms 957ms 394ms

In the 100 MB file scan, the 32 × 32 configuration gave immediate speedup
over CPU but as we started to increase them, the performance degraded till
256 × 256 as from that point again to see steady improvement but not much
from the 32 × 32 configuration. The results are shown in more detail in Fig. 5
and Table 4 below.

Fig. 5. Running the scan on 100 MB file.

Table 4. Running the scan on 100 MB file

CPU (32 × 32) (64 × 64) (128 × 128) (256 × 256) (512 × 512) (1024 × 1024)

100MB 439ms 130ms 156ms 302ms 158ms 72ms 66ms

10 MB file scan was no different than 100 MB one, same sharing a strange
degradation of a performance with 64 × 64 and 128 × 128 configurations. The
results are shown in more detail in Fig. 6 and Table 5 below.



Parallelism in Signature Based Virus Scanning with CUDA 421

Fig. 6. Running the scan on 10 MB file.

Table 5. Running the scan on 10 MB file

CPU (32 × 32) (64 × 64) (128 × 128) (256 × 256) (512 × 512) (1024 × 1024)

10MB 56ms 13ms 33ms 32ms 10ms 7ms 5ms

5 Conclusion

The implementation of the problem even if it was fairly simple and accounting
the restriction for the limited usage of the faster shared memory we still managed
to get better results than CPU across all of the file sizes we tested. From the
experiment we can conclude two types of usages for GPU virus scanning:

(a) Use of large number of threads to scan a very large file.
(b) Use of large number of threads and distribute them across many small files.

This is because our experiment showed a improvement across all file sizes. For
the larger ones we saw significant improvement if we used large number of threads.
On smaller sizes even the smallest number of threads showed improvement over
the CPU. We have to bear in mind that in our test bench we used a graphics card
that has small VRAM (video RAM) size and also has limits when it comes stor-
ing shared data for every thread block. That gives us greater chance of having a
memory access conflict while running a scan and degrading our performance and
also preventing us to scan even large files. So in a scenario where it is possible to
put the whole scanning data structure in shared memory (better graphics card),
we can decrease the memory conflicts and yield even more performance improve-
ments. With this we showed that signature based virus scanning is actually possi-
ble to do on GPU as it can be applicable in situations where we want to speedup
the scanning of the file or just offload some work of the CPU to the GPU. We
also have to mention that this is not the only scanning virus technique out there,
there are several others like anomaly detection with machine learning that as well
can utilize the power of a GPU. But still as of today signature based scanning is
intensively used as first set of checks in the virus scanning procedures or combined
with other techniques. Further development and research in this field can enable
the opportunity to completely offload the virus scanning on the GPU so we can
free up the CPU for the tasks where the performance is most needed.



422 A. Dimitrioski et al.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18, 333–340 (1975)

2. Vicente Dias, A.N.: Detecting Computer Viruses using GPUs
3. New Virus Scanning Solution Uses NVIDIA CUDA. https://blogs.nvidia.com/

blog/2009/12/15/new-virus-scanning-solution-uses-nvidia-cuda/
4. Chapter 35: Fast Virus Signature Matching on the GPU. https://developer.nvidia.

com/gpugems/GPUGems3/gpugems3 ch35.html
5. Intel offloads virus scanning to the GPU for better battery life and perfor-

mance. https://www.pcworld.com/article/3268985/security/microsoft-intel-virus-
scanning-gpu.html

6. GPGPU. https://en.wikipedia.org/wiki/General-purpose computing on graphics
processing units

7. NVIDIA Inc.: CUDA. https://developer.nvidia.com/cuda-zone
8. NFA (Nondeterministic finite automata). https://en.wikipedia.org/wiki/

Nondeterministic finite automaton
9. ClamAV. https://www.clamav.net/about

10. Gao, D., Yin, G., Dong, Y., Kou, L.: A Research on the Heuristic Signature Virus
Detection Based on the PE Structure

11. Alberto, C., Gonzlez, N.: Polymorphic Virus Signature Recognition via Hybrid
Genetic Algorithm. https://github.com/carlosnasillo/Hybrid-Genetic-Algorithm/
blob/master/README.markdown

12. Pungila, C., Negru, V.: A highly-efficient memory-compression approach for GPU-
accelerated virus signature matching. In: Gollmann, D., Freiling, F.C. (eds.) ISC
2012. LNCS, vol. 7483, pp. 354–369. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33383-5 22. https://link.springer.com/chapter/10.1007/978-3-
642-33383-5 22

13. Big Data. https://en.wikipedia.org/wiki/Big data
14. Panigrahi, C.R., Tiwari, M., Pati, B., Prasath, R.: Malware detection in big data

using fast pattern matching: a hadoop based comparison on GPU. In: Prasath, R.,
O’Reilly, P., Kathirvalavakumar, T. (eds.) MIKE 2014. LNCS (LNAI), vol. 8891,
pp. 407–416. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13817-
6 39. https://link.springer.com/chapter/10.1007/978-3-319-13817-6 39

https://blogs.nvidia.com/blog/2009/12/15/new-virus-scanning-solution-uses-nvidia-cuda/
https://blogs.nvidia.com/blog/2009/12/15/new-virus-scanning-solution-uses-nvidia-cuda/
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch35.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch35.html
https://www.pcworld.com/article/3268985/security/microsoft-intel-virus-scanning-gpu.html
https://www.pcworld.com/article/3268985/security/microsoft-intel-virus-scanning-gpu.html
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://developer.nvidia.com/cuda-zone
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://en.wikipedia.org/wiki/Nondeterministic_finite_automaton
https://www.clamav.net/about
https://github.com/carlosnasillo/Hybrid-Genetic-Algorithm/blob/master/README.markdown
https://github.com/carlosnasillo/Hybrid-Genetic-Algorithm/blob/master/README.markdown
https://doi.org/10.1007/978-3-642-33383-5_22
https://doi.org/10.1007/978-3-642-33383-5_22
https://link.springer.com/chapter/10.1007/978-3-642-33383-5_22
https://link.springer.com/chapter/10.1007/978-3-642-33383-5_22
https://en.wikipedia.org/wiki/Big_data
https://doi.org/10.1007/978-3-319-13817-6_39
https://doi.org/10.1007/978-3-319-13817-6_39
https://link.springer.com/chapter/10.1007/978-3-319-13817-6_39

	Parallelism in Signature Based Virus Scanning with CUDA
	1 Introduction
	2 Related Work
	3 Architecture and Design
	3.1 Specifying the Problem
	3.2 Algorithm that We Are Going to Use
	3.3 CUDA Programming Model
	3.4 Implementation and Restrictions

	4 Experiment and Discussion
	5 Conclusion
	References




