
GPU Extended Stock Market Software
Architecture

Alisa Krstova(B), Marjan Gusev, and Vladimir Zdraveski

Faculty of Computer Science and Engineering,
University Ss. Cyril and Methodius, Skopje, Macedonia

krstova.alisa@gmail.com

Abstract. We propose a stock market software architecture extended
by a graphics processing unit, which employs parallel programming
paradigm techniques to optimize long-running tasks like computing daily
trends and performing statistical analysis of stock market data in real-
time. The system uses the ability of Nvidia’s CUDA parallel computa-
tion application programming interface (API) to integrate with tradi-
tional web development frameworks. The web application offers exten-
sive statistics and stocks’ information which is periodically recomputed
through scheduled batch jobs or calculated in real-time. To illustrate
the advantages of using many-core programming, we explore several
use-cases and evaluate the improvement in performance and speedup
obtained in comparison to the traditional approach of executing long-
running jobs on a central processing unit (CPU).

Keywords: Stock market · GPU · Parallel programming · CUDA

1 Introduction

As more and more people become interested in getting familiar with and invest-
ing into the stock market, more research efforts are devoted for its analysis. The
stock market is a complex platform which acts like an intermediary between
the sellers of shares of stocks and the interested buyers. There are many details
connected to the stock trading process that can be perplexing for the average
investor or to a person who is just entering the market.

A good starting point to learn the intricacies of stock trading are web applica-
tions that simulate the stock market dynamics and offer an up-to-date overview
of the stock market with all the relevant information (stock indexes, daily stock
returns, volatility, Sharpe ratio etc.) being updated a few times per day. These
web applications often act like a virtual stock market, where the users can learn
how to build their investment portfolio, i.e. how to buy and sell shares in the
most profitable way [1]. A crucial step in facilitating the process of making an

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. Poulkov (Ed.): FABULOUS 2019, LNICST 283, pp. 386–399, 2019.

https://doi.org/10.1007/978-3-030-23976-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23976-3_34&domain=pdf
https://doi.org/10.1007/978-3-030-23976-3_34


GPU Extended Stock Market Software Architecture 387

informed decision would be providing valuable insights about the situation on
the stock market with the following use-cases:

– calculating daily/monthly/yearly stock returns,
– grouping together stocks that exhibit high correlation in returns and
– ranking stocks in terms of relevant metrics.

Note that some of these features have been integrated as part of the
ByteWorx Contest, http://www.byteworx.eu/stock-contest/. Integrating such a
module into the aforementioned virtual stock market system would help investors
improve their risk management strategies.

Performing statistical analysis on a stock market dataset is different from
applying these techniques in other fields, mostly due to the large amounts of
collected data and the complex interactions between companies and individuals.
This implies that constructing a web-based system that would offer all the rele-
vant metrics re-computed in regular intervals from a stream of raw stock market
data would come at a high computational cost. We aim to remedy this issue by
proposing a prototype of a system which would harness the power of graphics
processing units (GPUs) and the parallel programming paradigm in order to find
patterns in a large stock market dataset obtained from Kaggle [2]. This dataset
provides the full historical daily price and volume data for all US-based stocks
and exchange-traded funds (ETFs) trading on the New York Stock Exchange
(NYSE) and NASDAQ stock market and represents a good starting point for
building our system.

The rest of the paper follows the following structure. Section 2 presents the
related work. In Sect. 3 we describe the proposed solution to the problem of
long-running tasks and the high computational cost that accompanies them.
The parallelization approach this solution is based on is discussed in Sect. 4.
The testing methodology used to validate the suggested concepts is described
in Sect. 5 and an overview of the obtained results is demonstrated in Sect. 6.
Finally, a summary of the evaluation process and concluding remarks are given
in Sects. 7 and 8.

2 Related Work

The literature documents several attempts to analyze and extract knowledge
from large stock market datasets using different techniques. Golan and Ziarko
[3] employ a model based on the variable precision model of rough sets to acquire
new knowledge from market data. There are also various stock market simulators
which illustrate the principles of share trading in the form of interactive games,
such as MarketWatch [4]. Many of these web applications support up to tens of
thousands of users that can interact with the updated stock market data.

As we have already mentioned, a high number of users and large data volumes
introduce the need for more compute-intensive operations, such as calculating
user statistics, stock market indicators or identifying clusters of related stocks.

http://www.byteworx.eu/stock-contest/


388 A. Krstova et al.

Much effort has been invested into attempting to discover meaningful relation-
ships in data of such nature - the research presented by Gariney [5] describes
several statistical measures whose integration into our system would accelerate
the overall process of understanding stock market data.

Within the context of developing models for statistical analysis of data using
a GPU/CUDA approach, some of the most interesting approaches include imple-
menting the computation of pairwise Manhattan distance and Pearson correla-
tion coefficient between data points presented in the work of Chang et al. [6].
Although not referring specifically to stock market data, the authors show that
it is possible to obtain a speedup of up to 38 times when calculating this metric
in comparison to the central processing unit implementation. We aim to test this
claim in a stock market environment.

The hybrid approach of combining CUDA and the Message Parsing Interface
(MPI) to compute the Pearson correlation coefficient described by Kijsipongse
et al. in [7] offers valuable guidelines for implementing this kind of module in a
distributed, possibly web-based environment. The research we propose, however,
goes one step further by identifying relevant use cases for the integration of
parallel computation in modern web development and testing the feasibility of
this objective.

3 Proposed Solution

We propose a new web system architecture in order to decrease the load time of
the virtual stock market web application by speeding up the underlying compu-
tations of relevant metrics. This section describes the extension of the traditional
web architecture and the advanced use-cases that the improved web application
model can be efficient for.

3.1 GPU Extended System Architecture

With large amounts of stock data being collected every day, the size of the
problem at hand is scaled up, mostly due to the increased demand for web
applications that deliver fast performance in analyzing this data. Web applica-
tion speed is becoming more and more important for providing the impression of
a fluid website experience and ultimately increasing user conversion rate. Han-
dling thousands, sometimes even millions of records of stored or streamed stock
market data to provide near real-time answers to user queries is challenging due
to several factors, such as network strength, load distribution, traffic size and
the nature of the computation itself. While the first factors are performance-
indifferent, the problems we are trying to solve are susceptible to parallelization
and thus allow room for performance improvements.

We propose extending the traditional monolithic web application architec-
ture where the entire application is deployed onto several servers/containers by
equipping each of these servers with a GPU.



GPU Extended Stock Market Software Architecture 389

Fig. 1. Traditional monolithic architecture extended with GPU

Figure 1 presents how a HTTP request initiated by the client is first inter-
cepted by a load balancer, which directs it to one of the available web server
instances (e.g. Tomcat). This instance performs the requested computation using
a CUDA kernel function which employs massively parallel computing on the
built-in GPU and returns the result to the client.

3.2 Advanced Use-Cases

The aim of the proposed prototype of GPU-extended stock trading software
architecture is to provide the user with an advanced, accurate and clean overview
of her portfolio as well as the situation on the stock exchange of interest. The
system contains several modules (functionalities):

– Performance overview - keeps track of the percentage change of the portfolio
value for the current day, the total portfolio cost and value;

– Transaction management - tracks individual buy and sell transactions;
– Visualization module - provides stock charts for a chosen company illustrating

price and volume trends for a given period of time (1 day, 1 week, 1 month
etc.) and

– Additional metrics - determines volatility and Sharpe ratio for a given portfo-
lio; calculates correlation coefficient of chosen company with any other com-
pany on the stock market based on past data.

We seek to optimize the computations which constitute the last module for
displaying additional metrics.



390 A. Krstova et al.

Fig. 2. User interface of the company comparison module

Figure 2 displays all relevant statistics the company view offers to the users,
such as opening, closing, high and low prices for the chosen time period. The
right side of the view enables the user to choose another company to compare to -
a chart illustrating the closing prices across a given period for the two companies
is given and the correlation coefficient is computed. The link at the bottom of
the screen gives a list of the 5 companies with the closest correlation coefficient
to the base choice company. The described concepts can be expanded to include
other relevant metrics.

4 Parallelization Approach

We identify three scenarios related to stock market analysis that can be included
as part of the Additional Metrics functionality illustrated in Sect. 3. More pre-
cisely, we propose computing metrics such as the Pearson correlation coeffi-
cient between stocks and the Sharpe ratio by exploiting the highly parallelizable
nature of these problems. In addition, we describe a parallel CUDA approach to
ranking/sorting stocks based on a metric like the Pearson correlation coefficient.

4.1 Identifying Related Stocks Using the Pearson Correlation
Coefficient

From a user’s perspective, the ultimate goal of buying shares is to make profit
by buying stocks in companies that are expected to do well on the market,
i.e. whose share price would rise. Upon inspecting current and past trends of
the performance of a specific company, it can be useful to see whether another
company exhibits similar or different behavior. One way to do this is by calcu-
lating the Pearson correlation coefficient between two variables, in this case two



GPU Extended Stock Market Software Architecture 391

populations of stock market data for two companies. This coefficient can help
to determine how well a mutual fund is behaving compared to its benchmark
index, or how a mutual behaves in relation to another fund or asset class. It is
also a useful tool for building a portfolio and mitigating risk - by adding a low
or negatively correlated mutual fund to an existing portfolio, diversification is
increased.

Assume X and Y hold the closing prices of CompanyX and CompanyY. A
Pearson correlation coefficient rX,Y is defined by (1), where n is the number of
samples, X̄ and Ȳ are the means of X and Y, respectively and σX and σY are
their standard deviations.

rX,Y =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
σXσY

(1)

The value for the correlation coefficient can range from −1.0 to 1.0, where
−1.0 means perfect negative correlation, whereas 1.0 indicates perfect positive
correlation.

Parallel reduction is used as a common data parallel primitive to speed up the
computation of the mean and standard deviation. Although perhaps not evident
at first sight, according to (2), computing the standard deviation can be treated
partially as a reduction problem - computing sum of squares in the numerator
can be done in parallel using reduction, which is one of the basic data parallel
primitives. Also, calculating the mean of the input array can be implemented
using parallel summation followed by division by the length of the array, n.

σ =

√∑n
i=1 X2

i

n
− X̄2 (2)

Processing large arrays which can have up to millions of elements means
that multiple thread blocks must be used. The PyCUDA implementation [8]
uses interleaved addressing to avoid bank conflicts and the shared memory to
reuse intermediate results and data that has already been pulled from global
memory.

4.2 Ranking Stocks Based on Correlation Coefficient

In addition to being able to find the degree to which two companies’ shares
movements are associated, another practical use-case would be to offer the user a
list of most or least correlated companies with the one she is currently analyzing.
For this purpose, we need to compute the Pearson correlation coefficient (1)
between all pairs of company stock market data. This can be executed as a
scheduled batch-job in a predefined time period, for example once a day.

The proposed approach would allow the resulting array of correlation coef-
ficients for a given company to be constructed faster compared to a serial app-
roach.

Upon a user request to display the most or least correlated companies for a
certain company, a sorted array of correlation coefficients using the bitonic sort



392 A. Krstova et al.

algorithm is implemented in CUDA [9,10]. We opt for this algorithm because it
is highly parallelizable, i.e. the data to be sorted can be efficiently distributed
among the threads in the GPU.

4.3 Parallel Computation of Sharpe Ratio

The Sharpe ratio is the average return earned in excess of the risk-free rate
per unit of volatility or total risk. One way to better understand this metric is
by observing a “zero-risk” portfolio which has a Sharpe ratio of exactly zero.
The greater the value, the more attractive the risk-adjusted return. This metric
can be computed by (3), where n is the number of business days used in the
calculation for and d is the daily return as a vector for the given period.

Sharpe =
√

n · d̄

σd
(3)

We make use of the Pandas library in Python to compute the daily returns
on a closing price series for a given portfolio and reuse the aforementioned par-
allelized code for determining the mean and standard deviation of the returns
vector.

5 Testing Methodology

In order to illustrate the discussed concepts and identify the scenarios which
might result in an improvement over the traditional methods of computation,
we perform several experiments to compare the proposed parallelized approach
with a serial solution.

The testing environment is a desktop computer using an Intel Core i5-4200M
2.5 GHz CPU for testing the sequential implementation of the programs. An
NVIDIA GeForce GT 820M graphics card is used for the CUDA-based testing.
This GPU configuration allows the utilization of CUDA with compute capability
of 2.1, which implements concepts like atomic functions, 3D grids of thread
blocks, surface functions etc. [11].

The software tools used as part of the testing methodology were Numpy, one
of the most powerful and fast libraries for scientific computing with Python for
the serial CPU implementation and PyCUDA, a fast Python wrapper for the
CUDA parallel computation API, which integrates seamlessly with the Flask
micro web framework. We chose PyCUDA for its robustness, automatic mem-
ory management and error checking, and near-zero wrapping overhead. Wise
exploitation of these concepts, as well as the massively parallel hardware offered
by the GPUs can lead to the time needed for a user to receive an HTTP response
being determined only by the speed of the communication channel rather than
the complexity of the request.

Kaggle dataset [2] is used in the experiments. Figure 3 gives an overview of
how the stock market data is distributed over the years. The x-axis represents
the year the data is collected for and the y-axis gives the corresponding number



GPU Extended Stock Market Software Architecture 393

Fig. 3. Distribution of part of the records in the available dataset over the years

of available records for that year. The dates of the records in the dataset range
from the beginning of 1962 until October 2017 and it can be seen that the amount
of collected data has grown significantly in the period between 2005 and 20171,
reaching a maximum of 1405977 records for 2017. The records are distributed
unevenly among 7197 companies on the US stock market and provide enough
data to experiment with finding correlations between older and newer data.

Our experiments aim at measuring the execution time of three different met-
rics. We consider the implementation, computation and evaluation of each of
these metrics as three separate logical units, i.e. modules (M) denoted by:

– M1 to calculate the Pearson correlation,
– M2 to calculate the Sharpe ratio, and
– M3 to calculate the stocks ranking.

The response time for the sequential execution is denoted by Ts(M) and for
parallel Tp(M), where M refers to either M1,M2 or M3.

Afterwards, we evaluate the possible speedup obtained by the parallelization
approach for each identified module, calculated by (4).

S(M) =
Ts(M)
Tp(M)

(4)

The speedup is defined as the ratio of the sequential execution time to the paral-
lel execution time, i.e. it measures the improvement in speed of execution of the
specific task when using a parallel as opposed to a sequential method of process-
ing. The larger the value of S(M), the more significant the difference between
the two measured times. The advantages of using this evaluation approach are
several:

1 The author of the dataset does not provide reasons for the very sharp increase in
collected data between 2004 and 2005.



394 A. Krstova et al.

– Speedup illustrates well the relative performance of two systems processing
the same problem and it is most commonly used in the parallel programming
world.

– Speedup can also be a base for further evaluation measurements like paral-
lel efficiency (ratio of speedup to the number of processors) which provides
information on how well the available resources are used.

– We can generate informative plots to understand the behavior of the paral-
lelized code.

– By computing the speedup for different block and grid configurations for a
problem of fixed size (for example, a vector of fixed length) we can iden-
tify the optimal GPU setup which would significantly outperform sequential
processing.

The experiments consist of test cases with different block sizes - we com-
pare the efficiency of the program when using 32, 64, 128, 256, 512 and 1024
threads per block (block sizes). The blocks are launched in a grid of blocks with
dynamically determined dimensions, depending on the size of the array.

Different aspects of the dataset are taken into consideration for modules M1
to M3. For M1, as input (the x-axis on Fig. 4) we take two arrays of equal length
consisting of closing prices for two companies over the same period of time. For
M2, the computations are also performed over a single array of closing prices,
however the daily returns are calculated first. Finally, for M3 as input we take
an array of values for the Pearson correlation coefficient between N pairs of
companies.

The size of the input also varies in each module. In M1 for a given company,
the number of available information about the closing prices ranges from 16
thousand to 1.6 million. For M2, in order to obtain a noticeable improvement in
performance, a bigger dataset was needed and the experiments were conducted
on several dataset sizes ranging from 16 thousand to 11.6 million records. Finally,
for M3 the number of values to be sorted goes up to 1.4 million.

6 Evaluation of Results

This section describes the obtained results and evaluates the performance of
the proposed parallelized approach for calculating metrics as opposed to using
standard methods and libraries.

To illustrate the benefits of parallel computing we artificially extend the
available dataset for the query companies by replicating and applying minor
transformations to the closing prices. More specifically, we replicate the original
vector to reach the desired size and add a random number between 0 and 2 to
every value except the original ones. The random number added to the repli-
cated closing prices conforms with the volatile nature of the stock market (if
we exclude major political or economic events, the closing prices usually do not
vary dramatically from day to day).

Figure 4 compares the execution time needed to calculate the Pearson cor-
relation coefficient on vectors with variable number of elements. For a given



GPU Extended Stock Market Software Architecture 395

Fig. 4. Performance evaluation of M1 module for Pearson correlation coefficient cal-
culation.

company, the number of available information about the closing prices ranges
from 16 thousand to 1.6 million (as shown on the x-axis is a logarithmic scale
of the number of closing prices, and y-axis the execution time (in seconds) of
computing the M1 module of Pearson correlation coefficient.

One can observe that for vectors with a relatively small number of instances,
the CPU version significantly outperforms our PyCUDA implementation. This is
because a lot of time is lost on initializing the kernel function, copying the input
vectors to and from the GPU etc. The benefit of using the parallel approach
becomes evident for arrays larger than 400 thousand elements - the relatively
constant CUDA execution time (around 0.7 s) is a better result than the growing
value for Numpy’s execution time.

After performing experiments with several different block sizes, as explained
in Sect. 5, we can see that most block sizes yield similar results in performance.
The block size that stands out with lowest execution time is 256 threads per
block, as shown in Fig. 4.

Fig. 5. Performance evaluation of M2 module for Sharpe ratio calculation.



396 A. Krstova et al.

A similar conclusion can be drawn for the Sharpe ratio calculation - the stan-
dard way is efficient enough for handling moderate to large-size arrays (Fig. 5).
The performance starts to decline after hitting the 7-million-elements mark -
this is when PyCUDA becomes more efficient. This leads us to the idea that
we can combine data for several companies/portfolios to calculate the respective
values for the Sharpe ratio to obtain a more significant speedup. We have again
run several experiments to test the impact of the block size and conclude that
the most optimal performance is achieved with 256 threads per block, with 64
threads per block performing insignificantly worse.

Fig. 6. Performance evaluation of M3 module for sorting of correlation.

Finally, we evaluate the performance of the bitonic sort algorithm on the
Pearson correlation coefficient vectors computed using the parallel approach.
Once again we compare the time of execution of the PyCUDA implementa-
tion and the standard Python sorting method. There is a negligible difference
between the two approaches in processing vectors of moderate size. The gap in
performance starts to grow rapidly on vectors of more than 20000 values - the
parallel bitonic sort performs more than 4 times faster in comparison to sorting
on the CPU. Figure 6 illustrates the negligible difference in execution time when
running the bitonic sort with a different number of threads per block. Although
the concept of implementing bitonic sort with PyCUDA has been tried out on
sorting correlation coefficient values, the same technique can be applied to any
other stock market metric that requires sorting.

7 Discussion

As the previous section demonstrates, GPUs can provide good performance at
low computational cost (measured in both power consumption and execution
time) provided there is a good utilization of the available resources. Thread



GPU Extended Stock Market Software Architecture 397

block size is a key factor in determining kernel occupancy. Kernel occupancy
can be defined as the ratio of active warps on a Streaming Multiprocessor (SM)
to the maximum number of active warps supported by the SM [12]. This metric
is important as it provides information as to how well the parallel kernel is using
the allocated GPU resources.

Multiple grid and thread block sizes can provide high kernel occupancy, how-
ever different configurations can lead to differences in execution time. We seek to
explore the effect of specifying different combinations of grid and block sizes to
optimize the parallelized approach for each module. In particular, we are inter-
ested to apply the hypothesis that larger block sizes lead to better results, as
noted by Connors and Qasem [13].

Our experiments show that different configurations affect the performance
of the CUDA implementation for the three discussed problems differently. For
instance, the most optimal thread block size for computing the Pearson correla-
tion coefficient has been shown to be 256 threads per block, leading to a speedup
of 2.6 times compared to the serial implementation. The same holds for the cal-
culation of the Sharpe ratio for a vector of stock market records - performance
is best when we use 256 threads per block, yielding a speedup of up to 1.2 times.

Fig. 7. Speedup diagram - bitonic sort

We conduct additional trials for the last use-case, that is sorting records using
the bitonic sort algorithm. Figure 7 illustrates the dependency between using
different grid and block sizes and the resulting speedup. We perform 4 series
of experiments with 4 different grid sizes, i.e. 128, 256, 512 and 1024 blocks.
The respective block sizes (threads per block) are given on the x-axis and the
resultant speedup is shown on the y-axis. We conclude that it is best to use a
grid size of 128 blocks and 256 threads per block; this allows the sorting task
to execute up to 13.8 times faster than the sequential version of the program.
As can be seen from the plot, for grid sizes larger than 256, a bigger number of
threads in each block leads to better performance compared to using less threads
for the same grid size.



398 A. Krstova et al.

It can be noticed that 256 threads per block has proven to be optimal in all
three cases, which means that larger block sizes do lead to satisfactory results.

In spite of CUDA’s superior performance in processing very long sequences
of data, there is a lower bound to the vector size for which the parallel approach
becomes more efficient than the sequential. This lower bound is different for
the three problems. For the Pearson correlation coefficient, the CPU is faster in
processing sequences of up to 400 thousand elements. The Sharpe ratio has an
even higher threshold - the GPU accelerated version of the computation starts to
outperform for sequences longer than 7 million elements. This is because Python
libraries like Numpy are specifically designed to utilize the CPU resources in the
most optimal way. However, this result leads us to the conclusion that in order to
make the most out of the GPU execution environment, we should either increase
the complexity of the problem, while still allowing room for parallelization or
combine multiple simple computations in one. We show that sorting is a good
example of the first concept, where the GPU accelerated bitonic sort algorithm
is superior to the CPU sorting technique even for moderately large arrays of 20
thousand elements. With an optimal resource distribution, the maximal speedup
is 14 times compared to the sequential version.

8 Conclusion

In this paper, we described several use-cases for a stock market software system
and proposed a parallel-programming approach to optimize the computations
these use-cases include.

We proposed a system architecture which has the advantage over traditional
web architectures in a way that it incorporates a GPU to speed up computations.
The lower time needed for calculating the result requested from the user would
lead to a decrease in response time. This means that if the relevant computations
are fast enough, the overall response time will depend only on the speed of the
communication channel. The paper also provided a view on the user interface
which encompasses the use-cases. Finally, we evaluated the performance of the
parallel approaches to compute the desired metrics compared to the traditional
CPU methods.

Our current research efforts are directed towards applying the described con-
cepts to other relevant metrics, such as ranking users by their performance,
identifying related stocks by means of clustering analysis etc. We also seek to
explore the approach of having a single GPU thread block allocated per user in
order to speed up individual computations. Furthermore, we are interested in
evaluating the effect of breaking down the monolithic architecture into dedicated
microservices which would also incorporate GPU-accelerated computations and
then comparing the two architectures.



GPU Extended Stock Market Software Architecture 399

References

1. Peachavanish, R.: Stock selection and trading based on cluster analysis of trend
and momentum indicators. In: Proceedings of the International MultiConference
of Engineers and Computer Scientists, vol. 1, pp. 317–321 (2016)

2. Marjanovic, B.: Huge stock market dataset. https://www.kaggle.com/
borismarjanovic/price-volume-data-for-all-us-stocks-etfs. Accessed 02 May
2018

3. Golan, R.H., Ziarko, W.: A methodology for stock market analysis utilizing rough
set theory. In: Computational Intelligence for Financial Engineering: Proceedings
of the IEEE/IAFE 1995, pp. 32–40. IEEE (1995)

4. Marketwatch - an online virtual stock market simulator. https://www.
marketwatch.com/game. Accessed 02 May 2018

5. Gariney, V.: Statistical analysis for daily forecast of stock prices (2002)
6. Chang, D.-J., Desoky, A.H., Ouyang, M., Rouchka, E.C.: Compute pairwise Man-

hattan distance and Pearson correlation coefficient of data points with GPU. In:
2009 10th ACIS International Conference on Software Engineering, Artificial Intel-
ligences, Networking and Parallel/Distributed Computing, pp. 501–506 (2009)

7. Kijsipongse, E., Suriya, U., Ngamphiw, C., Tongsima, S.: Efficient large Pearson
correlation matrix computing using hybrid MPI/CUDA. In: 2011 Eighth Interna-
tional Joint Conference on Computer Science and Software Engineering (JCSSE),
pp. 237–241, May 2011

8. Klöckner, A., Pinto, N., Catanzaro, B., Lee, Y., Ivanov, P., Fasih, A.: GPU scripting
and code generation with PyCUDA. In: GPU Computing Gems Jade Edition, pp.
373–385. Elsevier (2011)

9. Mu, Q., Cui, L., Song, Y.: The implementation and optimization of Bitonic sort
algorithm based on CUDA, CoRR, vol. abs/1506.01446 (2015). http://arxiv.org/
abs/1506.01446

10. Ionescu, M.F., Schauser, K.E.: Optimizing parallel Bitonic sort. In: Parallel Pro-
cessing Symposium: Proceedings, 11th International, pp. 303–309. IEEE (1997)

11. NVIDIA Corporation: Compute capabilities. https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#compute-capabilities. Accessed 12 May 2018

12. NVIDIA Corporation, Gameworks Documentation, “Achieved occupancy”.
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/
report/cudaexperiments/kernellevel/achievedoccupancy.htm. Accessed 12 May
2018

13. Connors, T.A., Qasem, A.: Automatically selecting profitable thread block sizes
for accelerated kernels. In: 2017 IEEE 19th International Conference on High Per-
formance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 442–449, December 2017

https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.marketwatch.com/game
https://www.marketwatch.com/game
http://arxiv.org/abs/1506.01446
http://arxiv.org/abs/1506.01446
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

	GPU Extended Stock Market Software Architecture
	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 GPU Extended System Architecture
	3.2 Advanced Use-Cases

	4 Parallelization Approach
	4.1 Identifying Related Stocks Using the Pearson Correlation Coefficient
	4.2 Ranking Stocks Based on Correlation Coefficient
	4.3 Parallel Computation of Sharpe Ratio

	5 Testing Methodology
	6 Evaluation of Results
	7 Discussion
	8 Conclusion
	References




