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Abstract. For the first time a queue, related to the shortage of network
resources, is included in a model of overall telecommunication system
with finite number of users and facilities which makes the model closer
to the real system. The service in the queue depends on feedbacks of call
attempts and of the state and duration of services in the overall system.
The server of the queuing system has more than one exits. The results
presented are a base for future development of tools for management,
design, dimensioning and redimensioning of the system.
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1 Introduction

The classical conceptual model of overall telecommunication system is described
in [4] and developed in more details in [5]. We briefly mention the most important
features of the model and some basic notation.

The classical conceptual model considers user’s behaviour, finite number of
homogenous users and terminals, losses due to abandoned and interrupted dial-
ing, blocked and interrupted switching, unavailable intent terminal, blocked and
abandoned ringing and abandoned communication. The traffic of the calling
(denoted by A) and the called (denoted by B) terminals and user’s traffic are
considered separately but in their interrelation. Two types of virtual devices are
included in the model: base and comprising base devices.

At the bottom of the structural model presentation, we consider basic virtual
devices that do not contain any other virtual devices. A basic virtual device has
a general graphical representation as shown in Fig. 1.

The parameters of the basic virtual device x are the following (see [2] for
terms definition):
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Fig. 1. A graphical representation of a basic virtual device x.

– Fx - intensity or incoming rate (frequency) of the flow of requests (i.e. the
number of requests per time unit) to device x;

– Px - probability of directing the requests towards device x;
– Tx - service time (duration of servicing of a request) in device x;
– Y x - traffic intensity [Erlang];
– V x - traffic volume [Erlang - time unit];
– Nx - number of lines (service resources, positions, capacity) of device x.

The graphic representations of the base virtual devices together with their
names and types are shown in Fig. 2 (see [4]). The type of each of the basic
virtual devices is also shown in Fig. 2. Each basic virtual device belongs to one
of the following types: Generator, Terminator, Modifier, Server, Enter Switch,
Switch and Graphic connector. With the exception of the Switch, which has
one or two entrances and one or two exits, every other virtual device has one
entrance and/or one exit.

The names of the virtual devices are concatenations of the first letters of the
branch exit, branch and stage in that order (see Fig. 2). For example ad stands
for the virtual device “abandoned dialling” while rad – for “repeated abandoned
dialling”.

For the better understanding of the model and for a more convenient descrip-
tion of the intensity of the flow, a special notation including qualifiers (see [2])
is used. For example dem.F for demand flow; inc.Y stands for incoming traffic;
ofr.Y for offered traffic; rep.Y for repeated traffic.

The following comprising virtual devices denoted by a, b, s (see Fig. 2) and
ab (not shown in Fig. 2) are considered in the model.

– a comprises all calling terminals (A-terminals) in the system. It is shown with
continuous line box in Fig. 2;
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Fig. 2. Classical conceptual model of an overall telecommunication system (see [4]).

– b comprises all called terminals (B-terminals) in the system. It is shown in
box with dashed line in the down right corner in Fig. 2;

– ab comprises all the terminals (calling and called) in the system. It is not
shown in Fig. 2;

– s virtual device corresponding to the switching system. It is shown with
dashed line box into the a-device in Fig. 2.

2 Representation of the Queuing System Within the
Switching Stage of an Overall Telecommunication
System

In this section, we propose a representation of a Queuing system in the Switch-
ing system of an overall telecommunication system. In the classical conceptual
model (see [4]), once the Switching system reaches its capacity, the incoming call
attempts are blocked and they are redirected to the “blocked switch” branch
which begins at the virtual device denoted by bs on Fig. 2.

With the inclusion of queue in the Switching stage of the model when the
Switching system has reached its capacity the incoming call attempts wait in a
buffer until a service line in the Switching system becomes available. We consider
the buffer size of the queuing system to be of finite length and the number of
servers (service lines) also to be finite. In such queuing system, the call attempts
will be blocked only when both the Switching system and the buffer have reached
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their capacity. The conceptual model of the Switching system with a queue in
terms of Service Systems Theory is shown in Fig. 3. In comparison to the clas-
sical conceptual model in Fig. 2, the branch bs is removed because the blocked
call attempts from the Enter Switch remain in the queue and they are not redi-
rected to other virtual devices. The Switching system with a queue consists of
a device of type Queue denoted by q, the Enter Switch before it and all devices
of the bq branch. The switching system is denoted by s in Fig. 3 as well as in
Fig. 2. The Enter Switch device before the q device redirects the call attempts
when the queue is full. The base device q has the same parameters as the other
base devices: Fq, Y q, T q, Pq,Nq. The capacity of the buffer is Nq. The queue
discipline considered in the model is FIFO. The Enter switch device between
the q device and the s device has one important parameter – the probability of
blocked switching (Pbs) with which the call attempts remain in the q device.

Fig. 3. Conceptual model of a part of the Switching stage of an overall telecommunica-
tion system with a queue. cd stands for “carried dialing”, q for the Queue device, s for
“Switching system”, bq for “blocked queuing”, rbq for “repeated blocked queuing”,
ed for “enter dialing”.

In [6] four conceptual models of a queuing system are compared. One of
the models (see Fig. 4) illustrates the important concept of “zero queuing”. The
internal structure of the queue is presented, including two virtual devices: “car-
ried queue” (cq) and “zero queuing” (zq). Requests pass the Queue without
delay, with probability Pzq = 1 − Pbs, in case there are free places available
in the Server, in the moment of their arrival. The duration of the zero queuing
(Tzq) may be zero, or close to it. The total queuing time (Tq) is given by

Tq = Pbs(1 − Pbq)Tcq + (1 − Pbs)Tzq. (1)
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This approach is a detailization of the classical approach (Fig. 3). It represents
explicitly the important concept of zero queuing and the probability of blocked
server (Pbs). It is more complex, but allows more clear and full presentation of
the processes in the queuing system.

Fig. 4. More detailed representation of a queuing system.

The parameters of the queuing system in the case of service of the call
attempts without waiting can be obtained using Eqs. (42) and (43) from Sect. 4.

In order to compactly describe single queuing stations in an unambiguous
way, the so called Kendall notation is often used (see [1]). A queuing system is
described by 6 identifiers separated by vertical bars in the following way:

Arrivals |Services |Servers |Buffersize |Population |Scheduling

where “Arrivals” characterises the arrival process (arrival distribution), “Ser-
vice” characterizes the service process (service distribution), “Servers” – the
number of servers, “Buffersize” – the total capacity, which includes the cus-
tomers possibly in the server (infinite if not specified), “Population” – the size
of the customer population (infinite if not specified), and finally, “Scheduling” –
the employed service discipline.

In our model, the queuing system in the Switching stage of the telecommu-
nication network in Kendall notation is represented as M |M |Ns|Ns + Nq|Nab|
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FIFO, where M stands for exponential distribution, Ns is the capacity of the
Switching system (number of equivalent internal switching lines) and Nab is the
total number of active terminals which can be calling and called. This is related
to the derivation of the analytical model of the system.

The important parameters of the devices in Fig. 3 can be divided into two
groups. The first group consists of parameters whose values can be obtained
from the environment of the Queuing system in the way described in [4,5].
These parameters are Ts,Ns, Pbs, Y s, ofr.Fq. The second group consists of the
unknown parameters of the queuing process Fq, Pbq, T q, Y q. In order to describe
the queuing process in details we consider the following cases separately depend-
ing on the value of Y s – the traffic of the Switching system.

Case 1. If the Switching system has reached its capacity, i.e. Y s = Ns,
and there are call attempts waiting to be serviced in the Queue device, i.e.
Y q > 0, then Pbs > 0. In this case the intensity of the flow carried by the Queue
device is equal to the intensity of the flow leaving the Switching system, i.e.
crr.Fq = out.Fs where the qualifier “out” is abbreviation of outgoing. Generally,
for the outgoing flow from the Switching system we have

out.Fs =
Y s

Ts
(2)

which is a restatement of the Little’s formula. Since Y s = Ns we also have

out.Fs = crr.Fq. (3)

Case 2. If the Switching system has not reached its capacity but there are
call attempts being serviced, i.e. 0 < Y s < Ns, then Y q < Nq and Pbs < 1.
The equality Fq = Fs holds.

Case 3. Finally, if there are no call attempts being serviced by the Switching
system, i.e. Y s = 0, then Fq = Fs = 0 and Y q = 0.

3 Conceptual Model of Overall Telecommunication
System with Queue in the Switching Stage

By combining the representation of the queue in terms of Service System Theory
shown in the previous section and the classical model from [4] we obtain concep-
tual model of the overall telecommunication system with queue in the Switching
stage. Its graphical representation is shown in Fig. 5.

In the conceptual model in Fig. 5 there are at least 37 important virtual
devices. Of them 33 are basic virtual devices and 4 (a, b, s, ab) are comprising.
They are of interest because the values of their parameters characterize the
state of the overall telecommunication system. Every device has five parameters:
P, F, T, Y and N . Therefore the total number of parameters is 185.

The meaning of two of the parameters – Fo and M ′ – should be explained
separately. Fo is the intent intensity of calls of one idle terminal. M ′ is a con-
stant, characterizing the Bernoulli-Poisson-Pascal (BPP) flow of demand calls
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Fig. 5. Conceptual model of an overall telecommunication system with a queue in the
Switching stage.
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(dem.Fa). The intensity of the flow of demand calls is given by the equation
dem.Fa = Fo(Nab + M ′ Y ab). If M ′ = 1, the intensity of demand flow corre-
sponds to Bernoulli (Engset) distribution. If M ′ = 0, the intensity of demand
calls corresponds to the Poisson (Erlang) distribution. If M ′ = 1, the intensity
of demand calls corresponds to the Pascal (Negative Binomial) distribution. In
our analytical model every value of M ′ in the interval [−1,+1] is allowed. The
BPP-traffic model is a very suitable one (see [3]).

To simplify the characterization of the parameters of the network we need to
introduce, following [4], the terms system tuple and base tuple. A system
tuple is a finite set of parameters’ values which satisfy the following conditions:

1. All parameters in the system tuple belong to one particular system;
2. All values of the parameters are obtained (measured) during one and the

same period of time;
3. The beginning and the length of the time period to which the values of the

paramers correspond are elements of the system tuple.

The definition of system tuple is similar to the tuple definitions in Computer
Science and Mathematics and allows for real time measurements, modeling and
simulation to be performed. In practice, the duration of the time interval varies
between 15 min and one hour. Since we study the system in stationary state the
beginning and the duration of the time interval are not important. Every subset
of the system tuple is referred to as sub-tuple.

A base tuple is a subset of the system tuple (sub-tuple) with the property
that if we know the values of these parameters we may calculate the values of
all other parameters of the same system tuple.

The parameters of the base tuple may be divided into two groups as follows:

– Static parameters: M ′, Nab,Ns, Ted, Pad, Tad, Prad, P id, T id, Prid, Ted,
P is, T is, Pris, Pns, Tns, Tes, Prns, T br, Prbr, Par, Tar, Prar, T cr, Pac,
Tac, Prac, T cc, Prcc,Nq, T bq, T rbq, Prbq. Their values are considered inde-
pendent of the system state Y ab (see [5]) but may depend on other factors.
For the model time interval they are considered constants.

– Dynamic parameters: Fo, Y ab, Fa, dem.Fa, rep.Fa, Pbs, Pbr, ofr.Fq, crr.Fs,
Tq, Pbq. Their values are mutually dependent. Equations expressing their
dependencies can be derived with the help of the graphical representation of
the conceptual model in Fig. 5.

The parameters can be also classified on the basis of the origin of their values.

– Parameters related to the technical characteristics of the system: Pid, P is,
T cs,Ns,Nq;

– Parameters describing the human behaviour: Fo,Nab, Prad, T id, Prid,
Pris, T is, Pns, Tns, Prns, T br, Prbr, Par, Tar, Prar, T cr, Prac, T cc,
Prcc, T bq, T rbq, Prbq;

– Mix factors’ parameters: Ted, Pad, Tad, T cd, Pac, Tac. They are dependent
on the first two groups;
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– Parameters whose value is determined by the modellers: M ′. It characterizes
a Bernoulli-Poisson-Pascal (BPP) flow;

– Parameters derived from the previous groups: Y ab, Fa, dem.Fa, rep.Fa,
Pbs, Pbr, ofr.Fq, crr.Fs, Tq, Pbq.

The parameters characterizing the Quality of Service (QoS) are Pbr, Pbs, T q.
This classification of the parameters allows for different types of teletrafic

tasks to be formulated and solved. These tasks are divided into two groups:
Stationary teletraffic tasks and Dynamic teletraffic tasks. There are three main
Stationary teletraffic tasks.

– QoS prediction task is the task of finding values of the parameters deter-
mining the QoS (Pbs, Pbr, Pbq) if the parameters related to the technical
characteristics and the human behavior are known. This allows for the values
of the indicators for QoS to be obtained (see [7]);

– Technical characteristics task is the task of finding the values of those
parameters related to the technical characteristics (the first group) which
guarantee a given QoS if the values of the parameters describing the human
behavior and the desired QoS are known. The rest of the base parameters in
the same base tuple are known. The important Network Dimensioning and
Redimensioning tasks belong to this type.

– Human behavior task is the task of finding the values of a set of parameters
characterizing the behavior of the users who would generate call attempts ser-
viced with the desired QoS if the parameters related to the technical charac-
teristics and the QoS are given. The users’ behavior can be influenced through
changes in the tariff policies and the technical limitations. For instance, the
allowed duration of listening to busy and dialing tone.

In the Dynamic teletraffic tasks the system’s dynamic is represented as a
series of tuples. There are long and short term dynamics. In the long term
dynamics, all parameters of the system may have variable values while in short
analysis, some of the parameters are assumed to have constant values. In the
present paper systems in stationary state for a short time interval are considered.

4 Main Assupmtions and Derivation of Some Analytical
Expressions for Parameters of the Queuing System

We consider the conceptual model of overall telecommunication system with
queue shown in Fig. 5 and described in the previous section. Parameters with
known values are all probabilites for directing the call to a device (the P–
parameters), the holding time parameters of the base virtual devices (T –
parameters) and the values of the intensity of the incoming calls flow – Fa.
The unknown parameters are the parameters of the comprising virtual devices
except Fa and Nab. We want to express analytically the unknown parameters’
values of the Queue: Tq, Pbq, Y q.
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4.1 Main Assumptions

To obtain simple analytical models of the system in the process of solving dif-
ferent teletraffic tasks, as in [4], we need to state the following assumptions.

1. The telecommunication system considered is represented graphically and
functionally in Fig. 5 and it is closed.

2. All base virtual devices except the Queue device have unlimited capacity.
The Queue has capacity Nq which is the buffer size. The comprising virtual
devices have limited capacity: the ab device contains all active terminals
Nab ∈ [2,∞). The switching system (s) has capacity Ns. One internal
switching line can carry only one call for both incoming and outgoing calls.

3. Every call from the incoming flow to the system (inc.Fa) occupies only a
free terminal which becomes a busy A-terminal.

4. The system is in a stationary state and the Little’s theorem can be applied
for every device.

5. Every call occupies one place in a base virtual device independently from
the other devices.

6. Any calls in the telecommunication network’s environment (outside the a
and b devices) do not occupy any of the telecommunication system’s devices.

7. The probabilities of directing the calls to the base virtual devices and the
holding time in the devices are independent from each other and from the
intensity of the incoming flow inc.Fa. Their values are determined by the
users’ behavior and the technical characteristics of the telecommunication
system. Exception to this assumption are the devices of type Enter Switch
corresponding to Pbq and Pbs, and Pbr (see Fig. 5).

8. For the base virtual devices ar, cr, ac and cc the probabilities of directing
the calls to them and the duration of occupation of the device are the same
for the A and B calls.

9. The variables in the model are random with fixed distributions. The Little’s
theorem allows us to use their mean values.

10. Every call occupies simultaneously all base virtual devices through which
it has passed, including the device where it is at the current moment of
observation. When a call leaves the comprising devices a or b the occupied
places by it in all base virtual devices are released.

4.2 Expressing Analytically the Parameters of the Queue

In most publications on Queuing Theory and its applications in Telecommuni-
cation Systems the queuing systems studied have either one service line (server)
or infinite servers and the buffer size of the queue is also infinite. In the few
sources where queuing systems of type M|M|n|m|FIFO are studied such as [8,9],
analytical expressions for their parameters such as mean duration of service,
queue length, probability of blocking due to full buffer, probability of wait-
ing in the queue etc, are only partially found. Here we start, following [8],
with the simplest queuing systems to determine the queue parameters. Then,
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using the same approach, we determine the parameters of the queuing system
M|M|Ns|Ns + Nq|FIFO, where as usual, M stands for exponential distribution,
Ns is the number of switching lines in Switching system (finite), Nq is the length
of the buffer (also finite) and FIFO stands for First In First Out discipline of
service.

Finding the Parameters of the Queuing System M|M|1|FIFO. The den-
sity functions of the arrival and service times are respectively

a(t) = λe−λt, (4)

b(t) = μe−μt, (5)

where 1/λ is the mean value of time between two arrivals (interrarival time) and
1/μ is the mean time of service. For our model λ = ofr.Fq and μ = (crr.Fs +
Fis+Fns+Fbr+Far+Fac)/Y s = crr.Fs+Fis+Fns+Fbr+Far+Fac because
in this case there is only one service line in the Switching system. They are
assumed to be statistically independent which results in a birth-death process.
Let us denote with pn the probability that the queuing system is in state n
that is

pn = Pr{there are n call attempts in the queuing system}.

There are different ways to solve the birth-death equations. The solution is
well-known and can be found for example in [8]:

pn = p0(λ/μ)n, (n ≥ 1) (6)

p0 =
1

∞∑

n=0
(λ

μ )n

. (7)

Since the fraction λ/μ is found often below, in order to simplify the expres-
sions we introduce the notation ρ = λ/μ. Then the expression for p0 for ρ < 1
becomes

p0 =
1

∞∑

n=0
ρn

= 1 − ρ. (8)

Let Xs+q be the random variable “number of call attempts in the queuing
system” and Ys+q be its expected value. Then we obtain

Ys+q = E[Xs+q] =
∞∑

n=0

npn = (1 − ρ)
∞∑

n=0

nρn. (9)

The last sum can be written as
∞∑

n=0

nρn = ρ + 2ρ2 + 3ρ3 + ... = ρ

∞∑

n=1

nρn−1 = ρ
d[1/(1 − ρ)]

dρ
=

ρ

(1 − ρ)2
. (10)
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Therefore

Ys+q =
(1 − ρ)ρ
(1 − ρ)2

=
λ

μ − λ
. (11)

Let Y q be the expected number of call attempts in the buffer. Then

Y q =
∞∑

n=1

(n − 1)pn =
∞∑

n=1

npn −
∞∑

n=1

pn = Ys+q − (1 − p0) =
ρ

1 − ρ
− ρ

=
ρ2

1 − ρ
=

λ2

μ(μ − λ)
. (12)

Now, using Little’s theorem we can find the mean waiting time of a call
attempt in the queue (Tq) and the mean time spent in the queuing system of a
call attempt (Ts+q):

Ts+q =
Ys+q

λ
=

ρ

λ(1 − ρ)
=

1
μ − λ

, (13)

Tq =
Y q

λ
=

ρ2

λ(1 − ρ)
=

ρ

μ − λ
. (14)

After reverse substitution of λ, μ and ρ in (11), (12), (13) and (14) we obtain

Ys+q =
ofr.Fq

crr.Fs + Fis + Fns + Fbr + Far + Fac − ofr.Fq
. (15)

Y q =
(ofr.Fq)2

crr.Fs + Fis + Fns + Fbr + Far + Fac

· 1
crr.Fs + Fis + Fns + Fbr + Far + Fac − ofr.Fq

. (16)

Ts+q =
1

crr.Fs + Fis + Fns + Fbr + Far + Fac − ofr.Fq
. (17)

Tq =
ofr.Fq

crr.Fs + Fis + Fns + Fbr + Far + Fac

· 1
crr.Fs + Fis + Fns + Fbr + Far + Fac − ofr.Fq

. (18)

Finding Parameters of the Queuing System M|M|Ns|FIFO. In this queu-
ing system, there are Ns serving lines in the Switching system and the buffer
has infinite length. The serving lines are assumed to have independent and iden-
tically exponentially distributed service times and the arrival process is Poisson.
Again, we have a birth-death process and λn = λ for all n. If there are more
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than Ns call attempts in the Queuing system, i.e. Y s+Y q > Ns, all Ns lines in
the Switching system are occupied and each of them is serving the call attempts
with mean rate μ = (crr.Fs+Fis+Fns+Fbr+Far+Fac)/Y s and the output
rate is Nsμ. If there are n call attempts in the queuing system and n < Ns, only
n of the Switching lines are occupied and the system output rate is μn where

μn =

{
nμ for 1 ≤ n < Ns.

Ns μ for n ≥ Ns.
(19)

Through the same procedure as in the case with one line in the Switching
system we obtain the probability of the system to be in state n:

pn =

{
λn

n!μn p0 for 1 ≤ n < Ns.
λn

Nsn−NsNs!μn p0 for n ≥ Ns.
(20)

Similarly, since the sum of the probabilities must be equal to 1, we obtain

p0 =

(
Ns−1∑

n=0

λn

n!μn
+

∞∑

n=Ns

λn

Nsn−NsNs!μn

)−1

. (21)

To simplify the expressions we introduce the notation r = λ/μ and ρ =
r/Ns = λ/(Nsμ). Now the expression for p0 becomes

p0 =

(
Ns−1∑

n=0

rn

n!
+

∞∑

n=Ns

rn

Nsn−NsNs!

)−1

. (22)

Since r/Ns = ρ < 1, the second sum above can be further simplified in the
following way:

∞∑

n=Ns

rn

Nsn−NsNs!
=

rNs

Ns!

∞∑

n=Ns

( r

Ns

)n−Ns

=
rNs

Ns!

∞∑

m=0

( r

Ns

)m

=
rNs

Ns!
1

1 − ρ
. (23)

After substitution of (23) in (22) we obtain

p−1
0 =

Ns−1∑

n=0

rn

n!
+

rNs

Ns!
1

1 − ρ
. (24)

For the expected length of the queue Y q we have

Y q =
∞∑

n=Ns+1

(n − Ns)pn =
∞∑

n=Ns+1

(n − Ns)
rn

Nsn−NsNs!
p0 =

rNsp0
Ns!

∞∑

i=1

iρi

=
rNsρ p0

Ns!

∞∑

i=1

iρi−1 =
rNsρ p0

Ns!
d

dρ

1
1 − ρ

=
rNsρ p0

Ns!(1 − ρ)2
. (25)
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Again, using Little’s formula we obtain the mean waiting time of a call in
the queue:

Tq =
Y q

λ
=

rNs

Ns! Ns μ(1 − ρ)2
p0. (26)

Now, we can find the expected number of call attempts in the queuing system
(Ys+q). First we notice that

Ts+q = Ts + Tq =
rNs

Ns! Ns μ(1 − ρ)2
p0 +

1
μ

. (27)

From the Little’s formula we have Ys+q = λTs+q. Therefore

Ys+q = r +
rNsρ

Ns!(1 − ρ)2
p0. (28)

Recall that

r =
λ

μ
=

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac
(29)

and
ρ =

r

Ns
=

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
. (30)

After substitution of (29) and (30) in (24), (25), (26), (27) and (28) we obtain
the following expressions for the parameters of the queue:

Y q =
(

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
.p0

· 1

Ns !
(
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)2 ,

(31)

where

p−1
0 =

Ns−1∑

n=0

(
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)n 1
n!

+
(

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns 1
Ns !

· 1
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

. (32)
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Tq =
(

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· Y s

Ns !Ns(crr.Fs + Fis + Fns + Fbr + Far + Fac)

· 1
(
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)2 p0. (33)

Ts+q =
(

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· Y s

Ns !Ns(crr.Fs + Fis + Fns + Fbr + Far + Fac)

· 1
(
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)2 p0

+
Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac
. (34)

Ys+q =
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

+
(

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

· 1

Ns !
(
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)2 p0. (35)

Finding Parameters of the Queuing System M|M|Ns|Ns + Nq|FIFO.
Finally, we consider the queuing system which is used in the conceptual model
of overall telecommunication system with queue in the switching stage. The
difference between this queuing system and the one from the previous section is
that the buffer has finite length denoted by Nq. This sets a limit on the total
number of call attempts in the queuing system – they cannot be more than
Nq + Ns. Although often used, we could not find in literature expressions for
all parameters of the queuing system in one source. There are partial results
in [8,9]. Here, by analogy with the previous types of queuing systems we find
analytical expressions for the parameters of the queue. First, we notice that the
arrival rate λn is equal to 0 when n ≥ Ns + Nq. The probability for the system
to be in state n is now given by

pn =

{
λn

n!μn p0 for 1 ≤ n < Ns.
λn

Nsn−NsNs!μn p0 for Ns ≤ n ≤ Ns + Nq.
(36)
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Again, the condition that the sum of the probabilities pn should be equal to
1, gives us the following expression for p0:

p0 =

(
Ns−1∑

n=0

λn

n!μn
+

Ns+Nq∑

n=Ns

λn

Nsn−NsNs!μn

)−1

. (37)

In order to simplify the expression we set r = λ/μ and ρ = r/Ns. For the
second sum in (37) we have

Ns+Nq∑

n=Ns

λn

Nsn−NsNs!μn
=

rNs

Ns!

Ns+Nq∑

n=Ns

ρn−Ns

=

{
rNs

Ns!
1−ρNq+1

1−ρ for ρ �= 1.
rNs

Ns! (Nq + 1) for ρ = 1 .
(38)

After substitution in (37) we obtain

p−1
0 =

{∑Ns−1
n=0

rn

n! + rNs

Ns!
1−ρNq+1

1−ρ for ρ �= 1 .
∑Ns−1

n=0
rn

n! + rNs

Ns! (Nq + 1) for ρ = 1.
(39)

For the expected length of the queue in this case we have

Y q =

Ns+Nq∑

n=Ns+1

(n − Ns)pn =
p0r

Ns

Ns!

Ns+Nq∑

n=Ns+1

(n − Ns)rn−Ns

Nsn−Ns

=
p0r

Nsρ

Ns!

Ns+Nq∑

n=Ns+1

(n − Ns)ρn−Ns−1 =
p0r

Nsρ

Ns!

Nq∑

i=1

iρi−1

=
p0r

Nsρ

Ns!

d

dρ

(
ρ − ρNq+1

1 − ρ

)
=

p0r
Nsρ

Ns!(1 − ρ)2
[(1 − ρNq(Nq + 1))(1 − ρ) + ρ − ρNq+1]

=
p0r

Nsρ

Ns!(1 − ρ)2
[(ρ − 1)ρNq(Nq + 1) + 1 − ρNq+1] . (40)

The above holds for ρ �= 1.
To obtain the number of call attempts in the system Ys+q we notice that a

part pNs+Nq of the incoming flow of call attempts are blocked because the buffer
has finite length Nq + Ns. This probability in the conceptual model is equal to
Pbq. Therefore, the incoming rate becomes λ(1 − Pbq) and as in (28) we have

Ys+q = Y q + Y s =
p0r

Nsρ

Ns!(1 − ρ)2
[(ρ − 1)ρNq(Nq + 1) + 1 − ρNq+1] +

λ(1 − Pbq)
μ

=
p0r

Nsρ

Ns!(1 − ρ)2
[(ρ − 1)ρNq(Nq + 1) + 1 − ρNq+1] + r(1 − Pbq). (41)

With the Little’s formula we obtain

Ts+q =
Ys+q

λ(1 − Pbq)
. (42)
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and

Tq = Ts+q − 1
μ

=
Y q

λ(1 − Pbq)

=
p0r

Nsρ

Ns!(1 − ρ)2
[(ρ − 1)ρNq(Nq + 1) + 1 − ρNq+1]

λ(1 − Pbq)
. (43)

Finally, the probability of blocked queue (Pbq) is equal to the probability
that the system is in state Ns + Nq and from (36) we have

Pbq =
λNs+Nq

NsNqNs!μNs+Nq
p0. (44)

Recall that

r =
λ

μ
=

ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac
(45)

and
ρ =

r

Ns
=

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
. (46)

After substitution in (40)–(44) we obtain

Y q = p0

(
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
.

1
Ns !

· 1
[1 − ofr.Fq .Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns ]2

·
[ (

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
− 1

)

·
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq

(Nq + 1) + 1

−
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq+1]

, (47)

where

p−1
0 =

Ns−1∑

n=0

(ofr.Fq .Y s)n

n!(crr.Fs + Fis + Fns + Fbr + Far + Fac)n

+
Ns+Nq∑

n=Ns

(ofr.Fq Y s)n

Nsn−NsNs !(crr.Fs + Fis + Fns + Fbr + Far + Fac)n
. (48)
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Ys+q = p0

(
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
.

1
Ns !

· 1
[1 − ofr.Fq .Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns ]2

·
[ (

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
− 1

)

·
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq

(Nq + 1) + 1

−
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq+1]

+
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac
(1 − Pbq). (49)

Ts+q =

[
p0

(
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
.

1

Ns !

· 1

[1 − ofr.Fq .Y s
(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

]2

·
[ (

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
− 1

)

·
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq

(Nq + 1) + 1

−
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq+1]

+
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac
(1 − Pbq)

]
.

1

ofr.Fq(1 − Pbq)
. (50)

Tq = p0

(
ofr.Fq Y s

crr.Fs + Fis + Fns + Fbr + Far + Fac

)Ns

· ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

· 1

Ns !
(
1 − ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)2
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·
[ (

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns
− 1

)

·
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq

(Nq + 1)

+ 1 −
(

ofr.Fq Y s

(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns

)Nq+1]

· 1
ofr.Fq(1 − Pbq)

. (51)

Pbq =
(ofr.Fq Y s)Ns+Nq

NsNq Ns !(crr.Fs + Fis + Fns + Fbr + Far + Fac)Ns+Nq
.p0. (52)

5 Conclusion

The conceptual model of overall telecommunication system with queue described
here in details is a base for the development of analytical model of the network.
The analytical model can be used to solve important teletraffic tasks such as
dimensioning and redimensioning of the network and predicting the QoS. The
analytical expressions obtained in Sect. 4 for the parameters of the queuing sys-
tem are the first step in the development of the analytical model.

In our future work, we shall use the conceptual model described in the present
paper and the expressions for the parameters of the queuing system to obtain
a system of equations for the dynamic parameters. We shall propose numerical
methods for solving the resulting non-linear system.
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