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Abstract. An important problem for massive multiple-input multiple-
output (MIMO) systems operating with frequency-division duplexing
(FDD) is to accurately estimate the channel response with low pilot sig-
nal overhead. Most existing algorithms for efficient channel estimation
are based on compressive sensing (CS) and assume sparse structure of the
channel vector. Relying on it, they try to minimize estimation error and
reduce the number of required pilot signals. Utilizing real-world chan-
nel responses, we evaluate the performance of 11 state-of-the-art channel
estimation algorithms for FDD massive MIMO systems. Results from
simulation experiments with channel measurements for carrier frequency
in the 2.4 GHz and 5 GHz bands for three environments and two levels of
mobility are presented. Channel structures of theoretical and practically
measured channels are compared and it is shown that the latter does not
follow a specific sparse structure which leads to a significant increase in
estimation errors according to our results. A comprehensive analysis of
estimation quality and its dependence on signal-to-noise ratio (SNR) and
number of pilot signals is provided. The results demonstrate that some
algorithms perform well when applied to practical channels while others
do not provide confident results. The effects of pilot matrix choice and
angular domain channel representation are also studied and evaluated.

Keywords: Channel estimation · Massive Mimo · Practical channels ·
Frequency-division duplexing · Compressive sensing

1 Introduction

Up to the present moment, the amount of wireless communications has been
growing at an exponential pace for many decades [2]. In order to satisfy the vast
demands for mobile data rate and capacity, 5G techniques will be employed for
future wireless networks. One potential technology to support this growth is the
massive MIMO [9,16] which is a promising solution to handle several orders of
magnitude increase in wireless data traffic than current technologies [2]. In order
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to process the uplink (UL) and downlink (DL) signals and to fully exploit the
potential benefits for efficient spectrum and energy utilization, accurate infor-
mation about the channel responses is needed which presents one of the key
challenges in practical application of massive MIMO [2]. The channel responses
need to be estimated regularly and the current set of channel response realiza-
tions is called the channel state whereas the knowledge that the base station
(BS) has of them is referred to as the channel state information (CSI) [2].

The main method for CSI acquisition is pilot signaling. To estimate the
channel response from N transmitting antennas, N orthogonal pilot signals are
required in order to ensure signal separation which introduces overhead and
wastes resources [2]. In traditional systems, the BS sends pilots to user equip-
ments (UEs) which feedback the DL channel estimation to the BS which does
not scale well with the number of antennas at the BS [11]. In a system with K
users utilizing time-division duplexing (TDD), the channels in the UL and DL
are assumed to be reciprocal so the pilot overhead is proportional to K [2,17]. If
FDD is used, the channels in the UL and DL are different [17] which leads to a
pilot and feedback overhead of N +K/2 on average if the frequency resources are
divided equally between UL and DL and the system operates in the preferable
regime with N/K ≥ 4 [2]. Such overhead is prohibitive for mobile scenarios,
however designing and demonstrating an efficient FDD massive MIMO imple-
mentation is a great challenge which needs to be solved [2]. This is the reason
why our work is focused on evaluating efficient channel estimation algorithms
FDD systems.

1.1 Related Channel Estimation Techniques and Algorithms
for FDD Massive MIMO Systems

One major approach to reduce the pilot and CSI feedback overheads in FDD
massive MIMO systems is to exploit the hidden sparsity and low-rank proper-
ties of the massive MIMO channel via CS and sparse recovery methods [5,11,14].
According to CS, a signal which exhibits sparsity in some transformation domain
can be recovered from far fewer samples than those required by the classical
Shannon-Nyquist theorem [3]. Hence, channel estimation in massive MIMO sys-
tems can be realized by (i) transforming channel measurements into sparse matri-
ces, (ii) compressing the sparse signals into signals with far lower dimensions
than real channel estimates and (iii) recovering the original signals from the
compressed signals. The goal is to estimate large-sized channels from small-sized
measurements using few pilot signals by carefully designing the transformation
matrix.

Examples for CS-based algorithms are the classical orthogonal matching pur-
suit (OMP) [6], least absolute shrinkage and selection operator (LASSO) [4,11],
maximum likelihood (ML), expectation-maximization (EM), Turbo-CS [12] and
others. The classical OMP algorithm [6] is a straightforward extension of the
CS model to CSI estimation problems without assuming any common struc-
ture among channel responses of different users. The joint OMP (J-OMP) [14]
exploits the hidden joint sparsity structure in the user channel matrices due
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to the shared local scatterers in the physical propagation environment. The
select-discard simultaneous OMP (SD-SOMP) [10] is a universal robust recovery
algorithm under different joint sparsity models. Compressive Sampling Match-
ing Pursuit (CoSaMP) [6,13] is an iterative greedy algorithm which recovers
the channels individually without taking into account any particular sparsity
structure. The Distributed Sparsity Adaptive Matching Pursuit (DSAMP) [7]
leverages the spatially common sparsity of massive MIMO channels to jointly
estimate multiple channels associated with different subcarriers. The L1 LASSO
[4,11] is a �1 minimization problem which aims to introduce a sparse structure in
the recovered channel whereas the burst LASSO [11] assumes that the channel
response has a burst sparse structure. Both LASSO algorithms recover the chan-
nel response individually while the joint burst LASSO algorithm [11] exploits the
additional joint burst-sparse structure in MU massive MIMO channels. The EM
Bernoulli-Gaussian (BG) approximate message passing (AMP), EM-BG-AMP
[19], is a signal reconstruction algorithm which models the signal as i.i.d BG
with unknown prior sparsity, mean and variance, while the noise is considered as
zero-mean Gaussian with unknown variance. The signal is simultaneously recon-
structed while learning the prior signal and noise parameters [19]. The Turbo-CS
[12] algorithm is based on the turbo principle in iterative decoding. It consists of
a minimum mean squared error (MSE)—MMSE, and a linear MMSE (LMMSE)
estimators and assumes an i.i.d. prior distribution of the channel response. How-
ever, it cannot exploit the structured sparsity of massive MIMO channels and
the structured Turbo-CS [5] algorithm was proposed to overcome this limitation
by assuming a Markov prior. The conventional Least Squares (LS) method cor-
relates the received signal with the known pilot sequence, but suffers from lack
of orthogonality between desired and interfering pilots (pilot contamination).
Hence, the estimation performance is limited by the signal-to-interference ratio
at the BS [20]. The performance in terms of CSI recovery error of some of these
CS methods is experimentally verified in this work and the results are presented
in Sect. 4.

Other approaches to reduce the pilot and CSI feedback overheads in FDD
massive MIMO systems are to use channel parametrizations [2], the opportunis-
tic channel sounding policies [8] and methods exploiting machine learning and
artificial neural networks.

1.2 Contributions

This work evaluates the practical performance of state-of-the-art channel esti-
mation algorithms with real-world channel responses for application in FDD
massive MIMO systems. Simulation experiments to demonstrate the dependence
of CSI recovery error of the algorithms on SNR, number of pilot signals, pilot
matrix choice and channel response representation have been carried out. The
results are compared with a baseline for a realistic theoretical channel model.
The channel structures of the theoretical model and practical channel responses
are compared. To the best of the authors’ knowledge, such study has not been
considered in the literature before.
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1.3 Structure of the Paper

The rest of the paper is organized as follows. The system model is presented in
Sect. 2. A description of the measurement data and used methodology follow in
Sect. 3. In Sect. 4, analysis and discussions of the simulation results are provided.
Finally, Sect. 5 concludes the paper and highlights future research directions on
the topic.

2 System Model

In the present work, we consider a flat block-fading MU massive MIMO system
operating in FDD mode. There is one BS with N antennas serving K single-
antenna user terminals. The BS transmits a sequence of M pilot signals xH

t ∈
C

1×N , t = 1, . . . , M for estimating the downlink channel. User k receives the
signal yk ∈ C

M×1

yk = Xhk + nk, (1)

where X = [x1, . . . ,xM ]H ∈ C
M×N is a pilot matrix which is known in both the

BS and UE, hk ∈ C
N×1 is the channel response of user k and nk ∼ CN (0, σ2I) ∈

C
M×1 is the additive complex Gaussian noise at user k with each element having

zero mean and variance σ2.
In many related works (e.g., [11,14]), the pilot signals matrix X is selected to

have independent and identically distributed (i.i.d.) Gaussian elements. Never-
theless, as elaborated upon in [12], a partial orthogonal sensing matrix achieves
better performance under the Turbo-CS algorithm than an i.i.d. Gaussian sens-
ing matrix which is experimentally confirmed for various other algorithms in [5].
Therefore, the present work utilizes a partial discrete Fourier transform (DFT)
random permutation (PDFT-RP) pilot matrix modeled as presented in [5]. Nev-
ertheless, experiments have also been carried out with an i.i.d. Gaussian sensing
matrix to verify the performance gain.

Some works consider the channel transformed into the virtual angular domain
hω

k = Fhk where F ∈ C
N×N denotes the unitary matrices for the angular domain

transformation at the BS [5,11,14]. Resulting from the limited scatterers at the
BS, hω

k usually exhibits individual burst sparsity due to local scattering at the
BS and joint sparsity due to common scattering at the BS [11]. Assuming an
angular domain transformation, the received signal 1 can be rewritten as

yk = XFHhω
k + nk = Ahω

k + nk, (2)

which is a standard CS model with sensing matrix A and sparse channel hω
k .

3 Description of the Measurement Data and Methodology

Since the massive MIMO concept started to gain research interest around 2010,
a number of testbeds to demonstrate the feasibility of massive MIMO systems
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have been developed by academia and industry. Some of the first publications
describing practical design, realization, and evaluation of such systems are with
regard to the Argos prototype by Rice University [17,18]. A detailed analysis of
practically measured massive MIMO channels and their properties is presented
in [16]. With the help of the Argos system, the authors have conducted a compre-
hensive many-antenna multi-user (MU) MIMO channel measurement campaign
resulting in over 100 traces made publicly available for further research on [1].
The dataset spans 20 topologies providing over one billion channel measurements
and approximately 1 terabyte of data covering measurements across the UHF
(470–698 MHz), 2.4 GHz, and 5 GHz bands in diverse environments. At 2.4 GHz
and 5 GHz, up to 104 BS antennas are deployed to serve 8 UEs.

Throughout the present work, this measurement dataset was utilized for eval-
uating various CS-based channel estimation methods. It was selected because
it consists of a rich set of practically measured wireless channel responses in
multiple environments with various levels of mobility and at three frequency
bands. Moreover, this was the only publicly available massive MIMO measure-
ment dataset at the time of writing this paper to the best of the authors’ knowl-
edge. Specifically, we use the “Asilomar2016” dataset described in [16].

Out of the dataset, 8 traces with carrier frequency in the 2.4 GHz and 5 GHz
bands were selected for experimental analysis. They were conducted in three
environments—indoor line of sight (LOS) and non-LOS (NLOS), as well as out-
door with two types of mobility—static and environmental [16]. The reason
behind choosing only two types of marginal mobility is that our aim is to com-
pare and evaluate the performance of various channel estimation algorithms and
not to study the effects of mobility on channel correlation and aging. Neverthe-
less, aspects related to mobility can be further exploited for efficient channel
estimation techniques, such as the opportunistic method outlined in [8]. From
the selected 8 channel traces, only some subcarriers and frames were used in the
experiments in order to reduce computation time amounting to a total of around
3840 simulated channel responses.

The authors of ArgosV2 provide a channel measurement and analysis soft-
ware framework [1] which computes the actual frequency response of the wireless
channel. Using this framework, the normalized magnitude of three wireless chan-
nels is depicted in Fig. 1—the theoretical 3rd Generation Partnership Project
(3GPP) spatial channel model (SCM) [15] and two practically measured chan-
nels. The theoretical channel response (a) has a burst sparse nature and could
also be jointly burst sparse among users depending on the multipath environ-
ment [11]. On the other hand, the practically measured channel responses (b)
and (c) have many more significant elements and do not follow any certain spar-
sity structure, independent on the environment, scatterers located therein and
carrier frequency.
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Fig. 1. Comparison of normalized channel magnitude of various channel responses—
theoretical (3GPP SCM) and practically measured, for a BS antenna with 96 elements.

4 Simulation Results and Analysis

In this Section, the performance in terms of CSI recovery error of 11 CS-based
channel estimation algorithms is evaluated and compared by utilizing practi-
cally measured channel responses as described in Sect. 3. Ranging from well-
known estimators to algorithms tailored specifically to the massive MIMO chan-
nel response structure, the algorithms are listed with their specifics in Table 1.
The algorithms were selected based on their applicability to FDD massive MIMO
systems and reported low estimation error.

Table 2 presents an overview of the main simulation parameters. The Argos
system operates in TDD and it is assumed that the UL and DL channel responses
are perfectly reciprocal [2,16]. Hence, the channel response estimated by the
Argos system can be used as the channel response to be estimated in the DL in
Eqs. 1 and 2. The number of users K and of antenna elements in the BS array
N match the Argos testbed measurements. The pilot signals M and SNR values
are chosen in accordance with the widely used scenarios in recent works [5,11,14]
and larger bounds for M are considered in order to highlight algorithm behavior
in the borderline cases. The two selected carrier frequency bands are broadly
used in modern wireless communications below 6 GHz. The environments and
mobility levels selected for the simulation were outlined in Sect. 3. Although
the practically measured channel response by the ArgosV2 testbed is mainly
used, the CSI recovery error is compared with the results achieved with the
theoretical 3GPP SCM channel model. Some of the experiments also consider
the virtual angular domain channel representation hω to illustrate how it affects
estimation performance. Several experiments have also been carried out with
an i.i.d. Gaussian pilot signals matrix to compare estimation quality with the
PDFT-RP pilot signals matrix.

The normalized MSE (NMSE) of the estimated CSI was selected to serve
as the performance metric as it is well-established in the literature for ranking
algorithm performance [5,11,14,19,20]. The NMSE is defined as
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Table 1. Simulated channel estimation algorithms and methods.

Algorithm hk recovery Assumptions and comments References

Classical OMP individual A naive extension of CS to
CSI estimation

[6]

J-OMP joint Hidden joint sparsity is
exploited

[14]

SD-SOMP joint [10]

CoSaMP individual [6,13]

DSAMP joint [7]

L1 LASSO individual [4,11]

Burst LASSO individual Burst sparsity in the
structure of hk

[11]

EM-BG-AMP individual Apriori independent and
Bernoulli-Gaussian
distributed coefficients

[19]

Turbo-CS individual i.i.d. prior [12]

Structured Turbo-CS individual Markov prior to model the
structured sparsity of hk

[5]

Conventional LS individual ĥk = ykX
†, X† –

Moore-Penrose pseudoinverse
[14]

NMSE =
1
K

K∑

k=1

‖hk − ĥk‖2
‖hk‖2 , (3)

where ĥk ∈ C
N×1 is the estimated channel response vector. For clear repre-

sentation and better readability of the results, the NMSE in decibels defined
as NMSE(dB) = 10 log10 NMSE is depicted. It is of high interest to draw the
dependence of NMSE on M because the main goal of evaluated algorithms is
to minimize M while maintaining a feasible error. On the other hand, noise can
have detrimental effect on estimation errors, hence dependence of NMSE on SNR
is also studied.

4.1 Average NMSE as a Function of SNR

Figure 2 compares the NMSE of the estimated CSI in decibels depending on
the SNR of the received signal yk. The NMSE results have been averaged over
all environments, frames, subcarriers and carrier frequency bands described in
Sect. 3. An exception is made for the L1 and burst LASSO algorithms due to
the high computational complexity of the burst LASSO, therefore simulations
for only a single subcarrier and frame were carried out for these two algorithms.

The performance of analysed algorithms using the 3GPP SCM [15] is plotted
with dotted lines to serve as a reference. Based on the difference between NMSE
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Table 2. Simulation parameters.

Parameter Notation Modeling Value Dimension

Number of UEs K [16] 8 —

Number of BS antennas N [16] 96 —

Number of pilot signals M — 15–90 —

Carrier frequency bands f — 2.4; 5 GHz

SNR SNR — 0–40 dB

Channel response h [15,16] 3GPP SCM; ArgosV2 measured —

Pilot matrix X [5,11,12] PDFT-RP; i.i.d. CG —

Noise n [5,11] Additive complex Gaussian —

Environment — [16] Indoor (LOS, NLOS); outdoor —

Mobility — [16] Static; environmental —
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Fig. 2. Average NMSE of CSI in decibels versus SNR of analyzed algorithms for M =
45 pilot signals. Results achieved with the 3GPP SCM [15] are depicted as a reference.

for practically measured channel responses and for channels generated with the
3GPP SCM, it can be concluded that all algorithms perform better when using
the burst sparse channel response provided by the 3GPP SCM. With this model,
all CS-based methods apart from the J-OMP provide a negative NMSE of down
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to −16 dB at SNR > 10 dB . Lowest NMSE is achieved with the structured
Turbo-CS algorithm for SNR < 20 dB, while conventional LS provides lowest
NMSE for higher SNR. EM-BG-AMP, SD-SOMP and Turbo-CS also perform
moderately well at high SNR. Notably, highest error under this channel model
is achieved by the CoSaMP, burst LASSO and J-OMP algorithms. The J-OMP
algorithm exploits the hidden joint sparsity among user channel vectors in order
to recover CSI with a smaller error [14]. As demonstrated in Fig. 1, such joint
sparsity is not present in the measured channel responses. This could explain the
low performance of J-OMP which would perhaps be further improved by fine-
tuning algorithm parameters. This assumption is valid for all algorithms—the
achieved results depend on the particular settings of algorithm-specific param-
eters. It is important to note that the structured Turbo-CS algorithm does not
perform well at the highest simulated SNR = 40 dB setting. Such errors can be
observed in other results described further in the work and could be based on
slow convergence or ill-conditioning.

Figure 3(left) illustrates only the algorithms whose performance is feasible for
practical implementation, i.e., which achieve NMSE < 0 dB. The conventional LS
algorithm achieves best performance with a NMSE of down to around −2.8 dB
followed by the burst LASSO and Turbo-CS (both in its canonical and structured
variants) algorithms. However, at low SNR ≈ 0 dB, the LS algorithm recovers
the channel vector with an unacceptable error. The L1 LASSO and EM-BG-
AMP algorithms provide higher error while the dependence of EM-BG-AMP
on SNR is inconsistent. The algorithms based on message passing, such as the
EM-BG-AMP and structured Turbo-CS, learn the required channel statistical
parameters automatically by the EM framework as pointed out in [5].

Both Figs. 2 and 3 show that the achieved error does not drop significantly
when increasing the SNR after 20 dB. This is the reason why this setting was
chosen for estimating the dependence of algorithm performance on the number
of pilot signals M .

4.2 Average NMSE as a Function of the Number of Pilot Signals M

Figure 4 demonstrates the dependence of algorithm performance in terms of
NMSE of CSI in decibels on the number of pilot signals M . The averaging
explained in Subsect. 4.1 was applied. Achieved NMSE when using the 3GPP
SCM [15] is plotted with dotted lines with NMSE down to almost −20 dB
for M = 90 and the LS algorithm with all other algorithms achieving similar
performance except the CoSaMP, J-OMP and burst LASSO. However, J-OMP
performs well after M = 70 pilot signals. All simulated methods confirm the
negative exponential dependence of NMSE on the number of pilot signals which
leads to lower error as M grows. As pointed out in the previous discussions, the
structured Turbo-CS algorithm does not perform well at M = 50 and M > 65
settings while the conventional LS algorithm leads to high error at the highest
simulated M = 90 setting.

Figure 3 (right) illustrates only feasible algorithms with NMSE < 0 dB. The
conventional LS algorithm performs best at M ≤ 85 followed by the burst
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Fig. 3. Average NMSE of CSI in decibels versus SNR (left, M = 45 pilot signals)
and number of pilot signals M (right, SNR = 20 dB). Only algorithms achieving
NMSE < 0 dB are shown.

LASSO and Turbo-CS algorithms. The L1 LASSO and EM-BG-AMP algorithms
also provide acceptable results for M ≥ 50. It is noteworthy to mention that in
order to reduce the pilot and feedback overhead, values of M > 65 do not make
much sense in a practical FDD massive MIMO scenario due to the increased
overhead.

4.3 Effect of Pilot Matrix Choice and Channel Representation on
CSI Estimation Errors

As discussed in Sect. 2, a pilot matrix X comprised of PDFT-RP elements was
reported to perform better than an i.i.d. Gaussian pilot matrix under various
CS-based algorithms [5,12]. This was experimentally confirmed in our simula-
tions and the results for indoor LOS environment at 2.4 GHz are presented in
Fig. 5(top). Notably, the Turbo-CS algorithm, both in its canonical and struc-
tured version, performs much better with a PDFT-RP pilot matrix as the
NMSE of both Turbo-CS algorithms with an i.i.d. Gaussian pilot matrix is
around 40 dB. The performance difference for other algorithms is not so strongly
expressed, however the EM-BG-AMP performs much better with an i.i.d. Gaus-
sian pilot matrix which might be due to the i.i.d BG assumption on the signal
model. This is in line with the described results in [5].
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Fig. 4. Average NMSE of CSI in decibels versus number of pilot signals M of analyzed
algorithms for SNR = 20 dB. Results achieved with the theoretical 3GPP SCM [15]
are depicted as a reference.

All simulations described in the previous subsections suggest CSI estima-
tion according to Eq. 1. However, considering Eq. 2, i.e. the transformed channel
response into the virtual angular domain hω

k , might introduce additional sparsity
in the channel vector as elaborated upon in Sect. 2. The usual definition of such
transformation is hω

k = Fhk where F ∈ C
N×N is a DFT matrix [5,11]. Simu-

lation experiments with such transformation were carried out for indoor NLOS
and static outdoor environments at 2.4 GHz and the results are depicted in Fig. 5
(bottom). For most algorithms except the J-OMP, the channel in angular domain
leads to higher CSI recovery error, however the differences are minor.
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Fig. 5. NMSE of CSI in decibels versus SNR (left, M = 45) and number of pilot signals
M (right, SNR = 20 dB) of analyzed algorithms depending on pilot matrix (top,
averaged for indoor LOS) and channel representation (bottom, averaged for indoor
NLOS and static outdoor environments) at 2.4 GHz.

5 Conclusions and Future Work

In this work, we evaluate the performance of 11 CS-based channel estimation
algorithms utilizing real-world channel responses in the context of FDD massive
MIMO systems. Most of the analysed algorithms assume some sort of sparse
structure in the channel response vector and rely on it to reduce the number of
required pilot signals and minimize estimation error. We show that the examined
practically measured channels do not follow such structure. For the simulation
experiments, channel measurements for carrier frequency in the 2.4 GHz and
5 GHz bands for three environments with two levels of mobility were selected
from the publicly available measurement dataset recorded by the ArgosV2 sys-
tem. Performance with the theoretical 3GPP SCM is used as a baseline and
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it clearly shows a reduction in estimation error due to the burst-sparse chan-
nel response structure. NMSE of the estimated CSI is the chosen performance
metric and its dependence on SNR and number of pilot signals is studied.

The results show that the conventional LS algorithm achieves lowest NMSE
followed by the burst LASSO and Turbo-CS (both in its canonical and struc-
tured variant) with the L1 LASSO and EM-BG-AMP algorithms also providing
good results. The OMP, J-OMP, SD-SOMP, CoSaMP and DSAMP algorithms
provide practically prohibitive results for most settings. Considering the good
performance of burst LASSO, as part of a future research it would be interesting
to evaluate the performance of its joint modification defined in [11]. Although the
chosen pilot signals matrix is a PDFT-RP, its advantages to the i.i.d. Gaussian
counterpart are quantitatively shown. Representation of the channel response
in the angular domain is also evaluated and the results prove that using such
transformation leads to minor performance differences, however the CSI recovery
error is higher when exploiting the transformed channel.

For future wireless networks operating in mmWave bands, even larger
antenna arrays with reduced number of RF chains will be used at both the BS
and UEs which makes designing new and efficient methods for accurate chan-
nel estimation and feedback an open question. Performing verification of these
methods with practical mmWave channels remains a topic of importance for
future research. Other novel approaches for efficient CSI estimation and feed-
back, such as opportunistic channel estimation, should be further investigated
and their feasibility for realistic channels needs to be proven in practice. In order
to precisely estimate the performance of existing and future channel estimation
techniques, it is vital to work with accurate and realistic channel models for mas-
sive MIMO propagation. Such models could benefit from the already available
real-life channel measurement data which were gathered by various testbeds. It
would be also interesting to practically determine the dependence of channel
estimation quality on the number of BS and UE antennas, and particularly the
effects of reducing the number of BS antennas. For this purpose, the dataset
utilized in this work could be further examined.
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