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Abstract. The increasing maturity of the concepts which would allow
for the operation of a practical Cognitive Radio (CR) Network require
functionalities derived through different methodologies from other fields.
One such approach is Deep Learning (DL) which can be applied to
diverse problems in CR to enhance its effectiveness by increasing the
utilization of the unused radio spectrum. Using DL, the CR device can
identify whether the signal comes from the Primary User (PU) transmit-
ter or from an interferer. The method proposed in this paper is a hybrid
DL architecture which aims at achieving high recognition rate at low
signal-to-noise ratio (SNR) and various channel impairments including
fading because such are the relevant conditions of operation of the CR.
It consists of an autoencoder and a neural network structure due to the
good denoising qualities of the former and the recognition accuracy of
the latter. The autoencoder aims to restore the original signal from the
corrupted samples which would increase the accuracy of the classifier.
Afterwards its output is fed into the NN which learns the characteristics
of each modulation type and classifies the restored signal correctly with
certain probability. To determine the optimal classification DL model,
several types of NN structures are examined and compared for input
comprised of the IQ samples of the reconstructed signal. The perfor-
mance of the proposed DL architecture in comparison to similar models
for the relevant parameters in different channel impairments scenarios is
also analyzed.
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1 Introduction

The increasing effort to improve the applicability of modern telecommunica-
tions and introduce new generations of networks and services has significantly
accelerated the maturity of all concepts and functionalities of CR systems. This
tendency has also influenced the development of the spectrum sensing function
which allows for dynamic access to the spectrum that is not by default allocated
for the CR device but has incumbent (primary) users, the transmission of which
must be protected from intolerable levels of interference. For this reason it is
required for this function to be fast and accurate enough in order to determine
whether the frequency band is available (the incumbent users’ signals are not
present in it) or not [10]. In addition, it is desirable to have the possibility to
predict the amount of time during which the spectrum is expected to remain
unused by the primary users (PU) to avoid hampering their transmission. In
order to increase the utilization of the spectrum by the CR network it can be
beneficial for the equipment not only to detect the signal present in the spectrum
but also to identify its type. That is because the CR device is required to be able
to detect very weak signals to ensure that the primary user is distinguished from
the noise even at the edge of the PU network’s coverage [25]. As a result, the
cognitive equipment may confuse an interfering signal from the point of view of
the PU for the actual PU signal. In this case, the CR device will miss the oppor-
tunity to utilize a portion of the spectrum in which the incumbent user (IU) is
not in fact present. This is why studies on recognizing the type and source of
the received signal, are necessary. Consequently there have been multiple works
which attempted to achieve this [1,4,6,10,11,18,19,22,30]. Other applications
of signal recognition include identifying illegal transmitters or malfunctioning
equipment, TV white space access planning, improving the capabilities of Emer-
gency and Public Safety services, mapping spectrum occupancy, electrosmog
monitoring, location identification for military purposes, demodulation without
overhead information, reconnaissance and satellite relay selection [22,28].

Extensive research in the field of signal interception has led to the introduc-
tion of modulation classification (MC) as the most commonly employed tech-
nique for recognition of the received signal’s type [4]. There have been a large
variety of proposed algorithms for achieving efficient signal recognition but they
can in general be separated into two groups - likelihood [4,29] or feature [18,22]
based MC. The advantages of the former group of methods is the possibility to
recognize a large variety of signals with very little or none a priori data. Their
implementation in realistic receivers, however, could be problematic consider-
ing that they might need intolerable amount of time to estimate the necessary
parameters for signal classification [29]. The receiver devices themselves might
not be designed with the computational power to handle these complex opera-
tions. In contrast the concept behind the feature-based methods is the possibility
for near-instantaneous recognition of the modulation type of a received signal.
These algorithms use a supervised learning procedure like Machine Learning
(ML). Only in the recent years has the modern concept of Deep Learning (DL)
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been applied to the MC problem [1,2,9,13,16,18,19,21,22,30–33]. The char-
acteristic trait of these algorithms is the utilization of large amounts of pre-
processed data which is used for preliminary training a deep Neural Network
(NN) that afterwards will be able to recognize newly-received signals with suffi-
cient probability under specified conditions (most often the SNR level). At this
point the emerging obstacles before using DL for signal recognition are seen as
following. First of all, a sufficient volume of suitable data for the training of the
NN needs to be recorded or generated. Subsequently, the design of the NN itself
is not trivial as there are a few parameters which require careful and most often
empirical determination. Finally the training process typically has a high com-
putational cost on the host computer and can take a lot of time depending on the
amount of data and the choice of parameters of the NN. These considerations
will be explored in the subsequent sections of this paper. Section 2 presents the
review of available literature for MC using DL algorithms. The parameters for
dataset generation and the channel and noise models are described in Sect. 3.
Section 4 details the proposed architecture and the relevant parameters. In Sect. 5
the results in terms of recognition accuracy are analyzed and the conclusions are
discussed in Sect. 6.

2 State of the Art

The current works related to the field of DL-based MC can be summarized
according to the following aspects: the kinds of input given to the NN, the
amount of data vectors (or realizations of the signal) used for training and test-
ing, the DL architectures utilized for the classification and the channel model
which is used for generation of the testing data.

When it comes to the data used for the training of the NN, there are mostly
two types of input in regard to signal recognition - the vector of signal samples
[1,18,22,30], statistical features extracted from those samples [1,2,13,16,19,21,
28], or a combination of both [1]. Vast majority of the published works examine
cyclostationary and other kinds of statistical features derived from the signals
as inputs of the classifier. These are utilized for MC because they represent the
signal components which are resilient to the effects of noise. For this reason they
have gained popularity with likelihood-based algorithms and are consequently
explored in the studies of MC based on DL. The most often utilized input is the
high-order statistical features [1,13,19] which are easy to define mathematically
and they are not very computationally intensive [17]. Other features used are the
center points in the modulation constellation [1], more varied statistical features
like kurtosis, peak to average power ratio, etc. [13] and the amplitude, frequency
and phase of the signal which are estimated as part of the learning process of the
NN [21]. When the signal itself is fed into the NN, it is most often represented as
a matrix of 2 columns and N rows where N is the number of samples, the first
column contains the in-phase while the second - the quadrature components of
the input signal [18,22]. There is also a vast margin between the number of data
vectors utilized for training and testing varying from a few thousand to several
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hundreds of thousand realizations. It is apparent, though, that whenever larger
amounts of signal data vectors were used, they contained much less samples so
in terms of overall volume of data, there is not a big difference. The largest
database of 1.44 million signal realizations each composed of 1024 samples was
studied in [19].

All of the main DL structures have so far been studied in the literature for
application to the MC problem because they are all useful for recognition of
data which consists of sequential samples (like the signal representation in time
domain) [5]. These include Convolutional NN (CNN) [2,18,19,30], Recurrent
NN (RNN) [22], autoencoder (AE) [1,30] and Restricted Boltzmann Machines
(RBM) [16]. The most often utilized DL architecture is the CNN with different
number of layers1, normally consisting of from 2 to 4 [2,18,30] but can reach up to
7 [19]. CNNs employ convolution instead of multiplication in their layers and
are especially interesting because they can learn the features of the input data
without the need for them to be extracted separately [5]. Generally the number of
nodes (filters) in each convolutional sub-layer is in the order of hundreds. As for
the RNN, it normally consists of 2 long-short term memory (LSTM) [22] or gated
recurrent unit (GRU) layers and a fully-connected (FC) layer. Their structure is
based around cells which process the data through gates and are able to classify
sequential data. The AE has also been popular in recent works [1,30] because
of its property to learn and reproduce (encode and decode) the form of a given
input signal to its output with sufficiently low error [5]. Structures composed
of 2 hidden layers [1] or 3 to 4 convolutional AE layers [30] which combine the
traditional encoder/decoder of the AE with layers which are typically used in
CNNs. Similarly to the AE, the RBM models aim to reconstruct the input data
into its output but each node is connected to all the nodes in the consecutive
layer [5]. This model is used in [16] and it has 5 layers. The input data used
is images representing the spectral correlation function (SCF) of the signals.
Additionally, some papers examine more novel DL models like the hierarchical
residual network [19] or Extensible NN [21].

Finally there comes the important question of what channel model should be
chosen for the testing data as to determine the performance of the proposed solu-
tion in realistic environments. Some of the studies [30,33] include just additive
white Gaussian noise (AWGN) in their considerations but there are those that
introduce frequency and phase offset [1,19] as well as Rayleigh, Rician fading
or both [13,19,21]. A few [2,18,19,22] have utilized real-world recorded signals
produced using software-defined radio (SDR) transceivers and the GNU Radio
[26] package which are publicly available.

As a result of the analysis done in this section, the contributions of this
paper are the following: design of a multi-layered architecture which combines
an AE (Denoising AE or DAE) for the purpose of recovering distorted signals

1 The term “layer” in the context of CNNs throughout this paper, is understood in
the sense described in [5], i.e. each “complex” convolutional layer is composed of
sub-layers which can, because of the coherence of their functions, be denoted as a
single unit.
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and a NN classifier with improved optimization algorithms; comparison between
the performance of a CNN and of an RNN classifier with the inclusion of three
(CNN and RNN-based) DL models presented in the literature which have shown
very good recognition accuracy in low SNR levels (<5 dB) [22,30]. In addition to
testing the NN performance with signals in AWGN and Rayleigh fading channels,
the effects of non-Gaussian noises and generalized fading on the precision are
also explored. Some of the most often considered modulation types are used for
input of the DL model.

3 Dataset Generation

This Section gives an outline of the way in which the input signals are gener-
ated and the channel models are simulated. This is done in MATLAB and the
resulting signal data is saved in files to be later used as an input of the NNs.

There are 11 modulation types considered in this study - BPSK, QPSK,
PSK8, 16QAM, 64QAM, PAM4, AM-DSB, AM-SSB, GFSK, OFDM-16 (OFDM
symbols with 16QAM modulated bits) and OFDM-64 (with 64QAM). All of
them are generated with the same parameters as follows. Each data vector con-
sists of a matrix composed of two vectors, 2048 samples each, the first containing
the real while the other - the imaginary component of the signal. The sampling
frequency is 1 GHz, the carrier frequency is 100 MHz, each bit is represented by
8 samples, bandwidth is 25 MHz. The length of the cyclic prefix of the OFDM
signals is 15% of the length of each symbol, the modulation depth for the ampli-
tude modulations is 30% and the standard deviation for the Gaussian filter used
to form the GFSK signals, is equal to 6. There are 4096 realizations of each
modulation for training and 512 for testing. The test set contains the same 5632
realizations (512 per modulation type) for each SNR level in the range [−20; 20]
dB. There are 6 test sets which contain signals corrupted by different combina-
tions of channel distortions.

As it was stated in Sect. 2, to the best of the authors’ knowledge, signals
corrupted in complex fading and non-Gaussian channels have not been studied
in works examining MC based on DL. Therefore, some channel impairments
studied in signal detection literature are described here.

3.1 Middleton Noise

The Middleton Class A is a narrowband impulse noise model which describes
the “coherent” interference created by man-made sources (mostly unintended
radiations by various appliances, antennas, etc.) [3,24]. This form of the noise
has been used in some signal detection and reception performance studies to
model impulsive distortions [3,24]. It can be presented analytically and it is
thus convenient for simulations. The probability density function (PDF) of the
Middleton A noise used to describe it and the relevant parameters are found
in [24].
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3.2 Cauchy Noise

The Cauchy noise has also been studied in signal detection literature [8,27]
due to its attributes which make it viable for describing impulse distortions in
the propagation environment. These are created by normal human activities, the
mechanical operation of machines, natural phenomena and others [27]. The PDF
of the Caucy noise is given in [8]. In order to define the SNR levels for both the
Cauchy and Middleton noises, the generalized expression for the SNR defined in
[27] is used.

3.3 Generalized Gamma Fading

The generalized Gamma (also known as Stacey or α − μ) distribution is a basis
out of which several of the most commonly used fading models can be derived.
It consists of a non-linear sum of the multipath components and represents the
small-scale fluctuations of the received signal [7]. The distribution of this fading
model as well as the applicable parameters to describe it are taken from [7].

4 Proposed Architecture

This Section describes the proposed DL algorithm’s structure, the methodology
of training and testing, and how the input which consists of signal vectors in time
domain is processed. First, the DAE learns the shape of the training signal data
vectors (they do not have any channel impairments added to them) and after-
wards, reconstructs the signals from the corrupted testing set. For all DL models
examined in this study the training dataset is randomly shuffled. The recovered
test data vectors are then saved into files and the classifier NN is trained with
the same training set as the DAE was. Finally the reproduced testing set is
given to the classifier which gives the probability for correct recognition between
all modulation types for each SNR level. All of the algorithms were run on a
NVIDIA TITAN X (Pascal) graphical processor unit which was kindly donated
by the NVIDIA Corporation. They were implemented using Tensorflow.

4.1 Denoising Autoencoder

As it was stated earlier, this study explores how the DAE’s capability to reduce
the effect of noise by recovering the signal’s shape, influences the performance
of the NN classifier. A representation of the DAE’s structure is shown in Fig. 1.
It is composed of two layers, the first having 64 nodes and the second - 32.
Both of them operate by simple matrix multiplication (Eq. (1)) use the sigmoid
activation function. Increasing the number of layers leads to degradation in the
performance. Using only two layers is also established in other works which study
the AE structure [1,33].

Y = xW + b, (1)
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where the output Y is obtained by multiplying the input vector x by the matrix
of weights W , and adding the biases b.

The Minimum mean square error (MMSE) method is used to reduce the cost
function and the optimization is performed by the popular and effective Adam
algorithm [12]. Empirically it was deduced that the autoencoder reconstructs
shorter sequences with greater precision than long ones and therefore the input
is divided into signals composed of 256 samples2 (it is for this reason that the
DAE has 256 input nodes). After the reconstruction is done the signals x̃ are
reshaped again into series of 2048 samples. Another experimental observation is
that the DAE provides the lowest error when the input signals are normalized
in the [0, 1] interval, whereas if the data is not normalized, the error becomes
too high for viable reconstruction to be achieved. Faster convergence (in this
case, obtaining the lowest cost function possible) is achieved by utilizing low
learning rate (0.001) and batch size (11264 for the DAE, which means that the
number of batches into which the training set will be divided is 64). Combining
low values of both of these parameters is also commonly used in DL algorithms
[5,18,20,22]. With this configuration, the training is performed in about 30 min.

4.2 Convolutional Neural Network

The first deep NN classifier the performance of which is analyzed in this paper, is
the CNN. It learns from the training set and afterwards takes the reconstructed
test sets which include the same signal data vectors for all SNR levels in the
[−20, 20] dB interval and all fading and noise scenarios as described in Sect. 3.
Then, the CNN gives the classification accuracy for each SNR level and each
scenario. The structure of the model is illustrated in Fig. 2

As it is seen in Fig. 2, the CNN contains four 2-dimensional convolutional
layers, each one composed of convolution sub-layer, rectified linear unit (ReLU)
and a 2-dimensional max-pooling sub-layer (using the terminology described
in [5]), a ReLU layer and a class-prediction layer. Essentially, all convolution

2 Consequently, the number of data vectors in both the training and test sets will be
8 times higher than it was originally.
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sub-layers and the prediction layer implement Eq. (1). The input of the CNN is 4
dimensional tensor with dimensions [Batch Size , 2 , 2048 , 1] because as explained
in Sect. 3, each signal realization is composed of a [2 × 2048] matrix. As seen in
Fig. 2, the first convolution sub-layer has a kernel with dimensions [256 × 128],
the second with [128 × 64], third - [64 × 32] and fourth with [32× 16]. All max-
pooling sub-layers have kernel sizes of [2 × 2] and strides with dimensions of
[2 × 2]. At the end of the CNN there is a softmax layer which is a widely-used
activation function. Such depth of the NN structure is employed to increase the
capability of the model to learn sophisticated functions such as signals corrupted
by noise and fading. As it was the case for the DAE, the Adam optimizer is
utilized but it is also enhanced with a weight-decay algorithm which adapts
the weights with small gradients [15]. This modification allows for separation of
the weight decay and the gradients’ update in order for the regularization to
be applied properly for the Adam optimizer. Recognition accuracy is computed
using MMSE. The weight decay factor is 0.0001 [30], the exponential decay rates
are β1 = 0.9 , β2 = 0.999 and the stability constant ε is 10−8 [15]. As for the
learning rate and batch size, they are usually chosen to both have small values
(around 0.001 and 40 or more times smaller than the training set’s size) but
in this work, the recently proposed in the field of image classification, opposite
direction is followed [23]. The authors in [23] conclude that using batch size
around 10 times smaller than the training set and high learning rate can produce
roughly the same results as in the alternative case but reach convergence much
faster. For this reason, the values chosen for the learning rate and batch size are
0.1 and 4096 (number of batches is 11), respectively. Preliminary experiments
showed that very similar results are achieved if small learning rates and batch
sizes are used but, as expected, after much slower training. Increasing the depth
of the model does not give any significant performance gains as well. The time
needed for training of the CNN is discussed in Sect. 5.

4.3 Recurrent Neural Network

The performance of the deep CNN is compared to a mutli-layered RNN which
is described here. It is trained with the same training set but it was shown that
it cannot recognize any of the reconstructed test datasets even after rigorous
training. Thus, this classifier uses the noisy test data that is provided to the
DAE, i.e. no denoising is performed on it.
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The model takes an [2 × 2048] input and is composed of 5 LSTM layers, a
ReLU and a class prediction layer at the end in the same way as the CNN. A
recently developed modification of the LSTM layers based on the Independently
RNN (IndRNN) is used [14]. These LSTM layers are called IndyLSTM and they
differ from the traditional ones by the way their states are updated. Instead
of multiplication the new input by the previous state, the Hadamard product
of these two is found. This alteration introduces some important advantages
to the training of the RNN, namely, independence of the nodes in each layer,
efficient training due to LSTMs being enhanced for robustness against gradient
decay and ability to handle much longer series of data. Additionally, construct-
ing multi-layered RNNs is also much more viable [14]. As it is recommended
in the reference, the IndRNNs require low learning rate in order to converge,
however large batch size can still be used for faster training. After preliminary
experiments, optimal results were achieved for the following parameters. The
learning rate is 0.001, batch size is 4096, the number of nodes in each layer is
128 and the forget bias of the IndyLSTMs is 1. Again, the Adam optimizer with
weight decay is employed in this classifier with the same parameters. Training
is performed in about an hour.

5 Results

This Section presents a thorough analysis of the results in terms of recognition
accuracy for the two proposed DL classifiers in six channel scenarios:

Scenario 1: AWGN
Scenario 2: Additive white Gaussian, Middleton and Cauchy noises
Scenario 3: AWGN and generalized Gamma fading
Scenario 4: AWGN and Rayleigh fading
Scenario 5: Additive white Gaussian, Middleton and Cauchy noises, and

generalized Gamma fading
Scenario 6: Additive white Gaussian, Middleton and Cauchy noises, and

Rayleigh fading.

In addition, three NN classifiers from [22,30] are used for reference. They
follow the structure described in the respective papers that proposed them and
are indicated as “Reference RNN” [22], “Reference Convolutional AE” and “Ref-
erence CNN” [30]. For better clarity, the graphical representations of the results
for every two scenarios in the case in which the input is the signal vectors in
time domain, are shown in a common plot in Figs. 3, 4 and 5. The effective SNR
range of [−20; 20] dB which is relevant for CR applications, is considered in all
experiments.

The most notable characteristics exposed in all graphics are those of the
CNN classifiers (the proposed CNN, the reference convolutional AE and CNN).
In Figs. 3, 4 and 5 it is seen that for reference CNN the recognition accuracy is
constant for the whole SNR range. The convolutional AE and proposed CNN
models show some insignificant variations in the results. This effect is related
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Fig. 3. Recognition accuracy in Scenarios 1 and 2 with signal input

Fig. 4. Recognition accuracy in Scenarios 3 and 4 with signal input

to the training of the CNNs which showed that at every run, the NN gets to a
certain accuracy for the noiseless test sets very quickly and at that point, it does
not show any alternation in its learning process. Consequently, all test datasets
have the same classification accuracy as the one obtained during training. For
that reason, the results are collected in the following manner. Each CNN is



224 A. Ivanov et al.

Fig. 5. Recognition accuracy in Scenarios 5 and 6 with signal input

trained 13 times and the average of the achieved accuracy values, is taken for
all test sets and in all scenarios. Thus, the model is trained in about two hours
which combines all 13 runs of the classifier. It is evident that the “Reference
Convolutional AE” has more noticeable fluctuations than the proposed CNN and
the reference CNN and they demonstrate a linearly-ascending trend. However,
this model still shows the worst performance. In the results for the proposed
CNN, there is some insignificant variation where as the “Reference CNN” has
the best accuracy but it is yet poor.

The effects of the channel on the classification accuracy can be explored in
much greater depth using the curves of the proposed and reference RNNs. In
almost all channel scenarios, the RNN presented in this study shows much greater
performance gains in comparison to its alternative. Figures 3 and 5 illustrate an
interesting trend in that the accuracy experiences a significant decline in high
SNR levels (>10 dB). This tendency is not present in the scenarios which exclude
impulse noises so naturally, it can be attributed to them. The reason can be
found in the distortions that these noise components introduce into the signal.
Their impulsive nature reduces the classification efficiency of the RNN because
it dramatically changes the shape of the signal. The deterioration in high SNR
rates can be ascribed to the way that the SNR is calculated for the impulse noises
(as explained in Sect. 3). As a consequence, the peaks added to the signal in high
SNR, even though they are much smaller than the signal’s amplitude, still have
significant presence when it comes to recognition accuracy. In contrast, when the
impulses are comparable to the signal’s amplitude (around SNR = 0 dB), the
classifier shows better performance. Thus, it is evident that the influence of the
noise is much greater than that of the fading. However, as seen from Figs. 4 and 5,
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there is a considerable degradation in the classification effectiveness when the
generalized Gamma fading model is adopted. The performance decline in high
SNR levels is not observed in the scenario which combines impulsive noises and
generalized Gamma fading for the reference RNN. This can be attributed to
the model having less layers and thus, being able to process the particular test
dataset more efficiently.

6 Conclusions and Future Work

This paper presents a study on the signal recognition capabilities of a hybrid DL
framework composed of an AE and a NN classifier. The input data is composed of
a large volume of signal vectors in time domain. The test datasets contain signals
corrupted with complex generalized channel fading and non-Gaussian impulse
noise models. The influence of these impairments on the classification perfor-
mance is explored and the comparison between the proposed CNN and RNN
classifiers and three other reference NNs. On the basis of the results obtained
during the simulations there are a number of aspects which pertain to the type
of input data and the DL architecture, that are important and may guide further
steps in the development of algorithms for MC. When it comes to the input data,
an important consideration is how the particular model performs depending on
whether the data is normalized or not. A significant difference in recognition
accuracy is not observed in the proposed CNN and RNN models but it is a
crucial factor in the efficiency of the AE. As for the CNN and RNN classifiers it
is shown that the RNN has better performance even though it is not tested on
the denoised testset of signals. As for the parameters of each NN model, there
are useful guidelines in the recent studies but the need for empirical adjustment
during training and testing is ever-present. In view of this fact, the adaptation
of the learning rate and batch size during training has real potential.
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