
SOSE: Smart Offloading Scheme Using
Computing Resources of Nearby Wireless
Devices for Edge Computing Services

Ali Al-ameri(&) and Ihsan Alshahib Lami

School of Computing, The University of Buckingham,
Buckingham MK18 1EG, UK

{ali.al-ameri,ihsan.lami}@buckingham.ac.uk

Abstract. Offloading of all or part of any cloud service computation, when
running processing-intensive Mobile Cloud Computing Services (MCCS), to
servers in the cloud introduces time delay and communication overhead. Edge
computing has emerged to resolve these issues, by shifting part of the service
computation from the cloud to edge servers near the end-devices. An innovative
Smart Cooperative Computation Offloading Framework (SCCOF), to leverage
computation offloading to the cloud has been previously published by us [1].
This paper proposes SOSE; a solution to offload sub-tasks to nearby devices, on-
the-go, that will form an “edge computing resource, we call SOSE_EDGE” so to
enable the execution of the MCCS on any end-device. This is achieved by using
short-range wireless connectivity to network between available cooperative end-
devices. SOSE can partition the MCCS workload to execute among a pool of
Offloadees (nearby end-devises; such as Smartphones, tablets, and PC’s), so to
achieve minimum latency and improve performance while reducing battery
power consumption of the Offloader (end-device that is running the MCCS).
SOSE established the edge computing resource by: (1) profiling and partitioning
the service workload to sub-tasks, based on a complexity relationship we
developed. (2) Establishing peer2peer remote connection, with the available
cooperative nearby Offloadees, based on SOSE assessment criteria. (3) Migrat-
ing the sub-tasks to the target edge devices in parallel and retrieve results.
Scenarios and experiments to evaluate SOSE show that a significant improve-
ment, in terms of processing time (>40%) and battery power consumption
(>28%), has been achieved when compared with cloud offloading solutions.

Keywords: Offloading � Edge computing � Cooperative �
Mobile cloud computing

1 Introduction

The Smart Phone (SP) is continually being improved to have more and more com-
putational resources and connectivity, amongst many others such as memory, display,
sensors, battery, etc. Nevertheless, SP’s are still lacking behind in terms of performance
and battery capacity, which are the main desired features for SP subscribers [2]. SP’s
are now being used for running resource intensive MCCS, such as tracking humans or

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
M. H. Miraz et al. (Eds.): iCETiC 2019, LNICST 285, pp. 59–73, 2019.
https://doi.org/10.1007/978-3-030-23943-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-23943-5_5

animals in crowd sensing scenarios, or “manipulating blind persons” via IoT Sensors
[3]. Some of these MCCS require machine learning and AI algorithms to be executing
live. Current SP’s will run out of puff processing, and the battery will run flat when
running such MCCS.

We believe that there will always be a big gap between SP resource offerings and
developers of intensive processing MCCS. To fill this gap, many offloading solutions
exist that ship the processing of such MCCS to a central server in the cloud. This will
create large traffic in an already crowded spectrum. I.e. offloading the computation to
servers in the cloud, introduces time delay and communication overhead cost. Edge
computing has emerged to resolve these issues, by shifting the computation from
servers in the cloud to servers near the edge, to reduce both delay and communication
cost. However, edge computing servers normally are planned as part of the infras-
tructure of the cloud in the vicinity. SOSE overcomes this limitation! SOSE; a scheme
that forms an edge computing resource to execute such MCCS on-the-go, from
cooperative nearby edge devices. SOSE offloads the sub-tasks for computation, from
the MCCS host device/SP to a network of nearby SP’s/devices. Figure 1 shows SOSE
end2end scheme. It shows that, the cloud server is used to host SOSE_INTELLIGENT;
an intelligent engine to recruit cooperative end-devices and authenticate their avail-
ability when needed. Also, SOSE_INTELLIGENT engine provides the end-device
with decisions of the best scenario to partition and offload, to achieve a low processing
time and reduce the battery power consumption. It also shows the newly formed
SOSE_EDGE computing resource network, (dotted circle in the diagram).

The Offloader will ask SOSE_INTELLIGENT engine for decisions of nearest device,
that has the lowest load and the highest resources of processing and battery capacity, as
well as the best network connectivity to use. Then the Offloader will generate VMs,
(bundle them as APKs and JAR files), of all the partitioned sub-tasks and will establish
connectivity with all available Offloadees, as advised by SOSE_INTELLIGENT
engine. Finally, the Offloader will offload the VM’s to the Offloadees and retrieve the
results.

The novelty contributions of this paper are:

• Introduces SOSE; a unique scheme that forms the edge computing resource, on-the-
go, from nearby devices and share the execution of the MCCS in parallel among
them, via short-range wireless connectivity.

• The offloading between the devices of SOSE_EDGE is done intelligently by an
SOSE_INTELLIGENT engine based in the cloud. SOSE_INTELLIGENT engine
recruits cooperative device resources, monitors (processing capability, battery sta-
tus, and availability), and authenticates (access key, session key and engagement
status), so to advice on available device nearby when the Offloader needs to form
the SOSE_EDGE.

The rest of this paper includes: Sect. 2 that summarizes the recent literature on edge
computing implementations, while Sect. 3 presents the development of SOSE. Sec-
tion 4 presents the experiments, results and analysis. Finally, Sect. 5 presents the
conclusion and future work.

60 A. Al-ameri and I. A. Lami

2 Recent Literature of Edge Computing Implementations

Review of solutions that perform offloading to a centralised server in the cloud has
been published in our previous paper [1]. This review focuses on implementations/
solutions, that consider IoT intensive applications, which offload to nearby pre-setup
infrastructure of edge servers. SOSE proposes to deploy the SOSE_EDGE solution
on-the-go when needed. This is achieved by recruiting a group of available nearby
processing resources/devices in a local network, to form a cooperative sharing envi-
ronment using SOSE_INTELLIGENT engine.

IoT deployments have increased the amount of data generated to the cloud; the
amount of data hosted in 2018 is equal to the data gathered in all prior years [4]. This
has necessitated that data-handling tasks are shifted to the edge nearer to the IoT
sensors network, and so typical existing solutions focus on offloading between the edge
servers and the cloud. Running these services on cloud servers can have a negative
impact on the offloading process, due to network cost and bandwidth traffic. Therefore,
an advantage of edge computing is to provide resources near end-users/devices, so to
reduce long execution time and battery power consumption. A solution that facilitates
offloading the service from a SP to an edge computing server, has introduced a model
that provides the use of virtual resources in edge servers [5]. It achieves this, by shifting
the service sub-tasks from a SP to the edge server automatically, by dividing a single

Fig. 1. SOSE scheme

SOSE: Smart Offloading Scheme Using Computing Resources 61

task to 5 sub-tasks, using 0–1 integer liner programming. It marks the sub-tasks with a
value of (0, 1), where “0” stands for sub-tasks to run locally on the SP, such sub-tasks
that access SP local features or input and output tasks. Similarly, “1” stands for sub-
tasks to run on an edge server, which has multiple virtual resources to handle the
execution of the sub-tasks. This then followed by a “decision solver” engine to decide,
on which virtual resource to select for the incoming 5 subtasks, based on the virtual
resource “current queue and completion time”. Experiments have affirmed that per-
forming the execution in the edge servers can reduce the network cost and internet
traffic. However, this model requires pre-setup infrastructure, which is difficult to
predict for IoT network type computation and so we believe a more dynamic
model/solution that forms the edge computing resources on-the-go is needed, so to
achieve faster execution time.

Tracking humans or animals with drones in crowd sensing scenarios, like volcanos
or disasters are examples of nowadays IoT applications. These applications require
machine learning and AI algorithms engines to analyze streams of audio, video and
image data coming from many sensors. Such intelligent algorithms require significant
computational/processing resources that are not typically available at the edge, but
rather available in large data centers in the cloud. An offloading solution that balances
the computational workload between the cloud and the edge resources has been pro-
posed in [6]. It achieves this, by shifting the training and testing phases of the workload
to the cloud. I.e. the end-device will upload data, which are then labelled and tested by
multiple algorithms, then, based on the chosen decision, the model is retrieved, ster-
ilized and packed in a shared repository. Only the AI inference engine is positioned at
the edge, as a micro service that can be accessed through the shared repository. This
model is impressive in that it sends less data to the cloud, which reduces network cost
and bandwidth traffic. However, it lacks a dynamic partitioning algorithm that decides
if a task is executed in the cloud/edge servers, but rather depends on a pre-processing
developer analysis to decide where to execute every task. We believe that the concept
of letting the cloud be responsible of the overall decision-making in splitting the
computation workload between the edge and the cloud is commendable. We shall
deploy a similar concept, SOSE uses AWS services to perform the creation of the DB
and recognition using AWS rekognition service [7]. Only the recognition results of the
extracted faces are saved in a local DB shared repository using SQLite.

A solution that enhances the above offloading model, by including a dynamic
partitioning algorithm of tasks moved between the cloud and the edge, is achieved by
including an “optimal virtual machine selection technique” and a “dynamic task par-
titioning algorithm” [8]. These two algorithms offload the intensive tasks from end-
device to the edge server and/or the cloud server. It achieves this by (1) sort algorithm
that topologically analyze a “task graph”, to partition the tasks between edge and cloud
servers, to achieve a low computational complexity. (2) Then it ranks the available
virtual machines, based on the time it takes to execute. (3) Finally, it selects the
appropriate virtual machine and utilize the dynamic task partitioning algorithm, to
compute the minimum completion time for the executed task. However, it only con-
siders execution time as a metric to evaluate the proposed model, we believe other
metrics like, battery power consumption, communication and efficiency must be

62 A. Al-ameri and I. A. Lami

considered in the evaluation. We deploy a similar concept to execute the sub-tasks in
parallel on the nearby edge devices, so faster execution time can be achieved.

Some IoT apps required deep learning algorithms to extract accurate information
for classification, especially for IoT devices deployed in complex environments.
Nevertheless, such algorithms require a significant amount of processing, (i.e. each
deep learning extra layer can bring extra processing among its multilayer structure).
Therefore, Efficient scheduling mechanisms are needed to decide on how many layers
can run on the edge servers. A solution that facilities offloading to optimize the per-
formance of deep learning for IoT at the edge, has introduced a model that provides
offline and online scheduling mechanism [9]. It achieves this by, monitoring each
server capacity to decide how many layers each server can handle. I.e. the first input
layers are consisting of many processing compute layers, therefore, it is more beneficial
to run such layers in the cloud server. Then, when the dimension of the deep learning
network is reduced, and the size of the intermediate layers becomes smaller than the
input layer. This allows moving the processing of these lower layers to the edge server.
This proposed model uses AlexNet deep learning model which consists of 8 layers, the
first 5 layers are deployed in the cloud server and the last 3 layers are deployed in the
edge server. This model is unique in that it can generates less data transfer and reduces
the response latency. This inspired us to form SOSE, by forming a network of
resources from end-devices and schedule the sub-tasks among them. I.e. SOSE_IN-
TELLIGENT engine schedules the sub-tasks and selects the device with the lowest
load and has the highest resources, in terms of processing power and battery level.

Offloading the intensive processing tasks and sharing the end-user data to the cloud
or edge servers lead to an unsecure deployment inviting malicious activities. A solution
that proposes to secure the offloading process has introduced a model, that secures the
data being shared between the edge servers during offloading [10]. It achieves this by
(1) it segments and offloads the tasks to the edge server in a sequence order. (2) It syncs
to the edge server through a middleware that handles the communication. (3) It pro-
vides a security manager interface to encrypt, exchange security keys and verify the
data before offloading. It is responsible to monitor the offloading process and generate
alerts if a breach occurred, by observing all the edge devices. Despite the fact that, to
the best of our knowledge this proposed model is the first to addresses security issues
when offloading to the edge server. Nevertheless, it lacks details of the used mechanism
nor experiments to approve the novelty. Being said that, SOSE introduces; (1) a
SOSE_INTELLIGENT engine based in the cloud server that (monitors and approve)
the nearby end-devices for qualifying as being secure and fit before offloading.
(2) Partitions the tasks and distribute the sub-tasks among a variety of nearby edge
devices, so the shared data cannot be retrieved or invoked as a package, and so stealing
the sub-task will not impact the overall security of offloading. (3), We are using AWS
rekognition service, which is a highly secure service that uses access and secret keys to
authenticate the nearby devices. (4) We used nearby peer2peer API protocol [11] to
communicate the nearby devices, which is a secure middleware that provides fully
encrypted P2P data transfer between nearby edge devices.

SOSE: Smart Offloading Scheme Using Computing Resources 63

3 SOSE Architecture

There are two distinct engines that make SOSE function. The SOSE_INTELLIGENT
engine and the SOSE_EDGE.

3.1 SOSE_INTELLIGENT

This engine is based in the cloud. Its main functions are:

1. Identify and recruit suitable devices that can be used when needed by
SOSE_EDGE. This process is continuous, and we envisage that such devices, as a
principle, are SP’s that are willing to contribute to help other SP’s when running
demanding MCCS. We propose that such devices are assigned certain credits that
they will be able to use when running the MCCS. A suitable arrangement for
controlling this will need to be in place as in [12], but out of the scope of this paper.
Therefore, this engine will have a database of such devices, their local localisation,
their resources, typical usage, availability and current load.

2. When contacted by the SOSE_EDGE Offloader, this engine will: (a) perform
profiling and partitioning of the MCCS, if not already done in a previous request.
(b) Try to establish if such MCCS has been run elsewhere to learn from that
experience, (resource required, time to execute, and dependency between tasks).
(c) Provide a list of potential available SPs/devices near the location of the Offloader
together with their capability. (d) Advice the Offloader with the MCCS profiling and
partitioning decisions. This information will help the Offloader to generate the
Virtual Machines (VMs) that will form the sub-tasks to be offloaded to nearby
devices.

3.2 SOSE_EDGE

This engine performs various stages resulting in forming the edge computing resource,
that will execute the MCCS and is led by the SP that is hosting the MCCS (named the
Offloader here). Any participating device in helping to run the sub-tasks are named the
Offloadee. The process of SOSE_EDGE is as follows:

1. The Offloader will generate VMs (bundle them as APKs and JAR files) of all the
partitioned sub-tasks, based on the instructions provided by the SOSE_INTELLI-
GENT engine. Note that, the choice of having the profiling and partitioning of the
MCCS in the cloud was to save battery of the Offloader, and source knowledge of
the MCCS provided by the developer is more accessible to the cloud.

2. The Offloader will establish connectivity with all available Offloadees as advised by
the SOSE_INTELLIGENT engine. Note that, the connectivity will be wireless, and
that SOSE_INTELLIGENT engine will advise on the best wireless technology to
use (e.g. Wi-Fi or BT, or Cellular) for each Offloadee device.

3. The Offloader will offload the VM’s to the Offloadees and communicate the results
from this process appropriately, including the termination of the contact.

4. The Offloader will also be executing its own share of the sub-tasks, as when it is not
busy with the other sub-tasks.

64 A. Al-ameri and I. A. Lami

5. When the MCCS run is completed, a summary record of this experience is feedback
to SOSE_INTELLIGENT engine, to train and update it for future execution if
needed by any other Offloader.

Details of each of these steps will be detailed as part of the experiments we have
done to prove the concept of SOSE. For example, all wireless connectivity is done on a
peer2peer protocol, etc.

4 Experiments, Results and Analysis

The following experiment scenarios is used to prove that SOSE_EDGE can provide an
on-the-go (dynamic) edge resource from available nearby devices, and will perform as
good as, or better than, a structured pre-setup edge computing server. The details of the
implementation of SOSE_INTELLIGENT engine and the automation of the process
will be documented elsewhere as being not the focus of this paper.

4.1 MCCS Choice: Face Detection Service (FDS)

FDS is chosen to demonstrate the computational complexity and the benefits of
offloading, (typically used by police or at an airport mobile search activities). It
involves a variety of complex tasks, including face detection and feature extraction. We
developed FDS using Android studio platform and Dlib library, which is an open
source library for image detection and recognition. It obtains a face bounding box using
coordinators of the face in the image. Then it detects and draw 68 coordinators in the
face, and finally, it extracts the face features. Asysnc class is basically used to run the
heavy part of FDS algorithm on another thread so no pressure on the main thread that is
also handling the GUI. FDS uses mface.train function to train the algorithm to perform
the face detection process. Then it uses recognizeAsync function to execute the
algorithm. Full details about the specification and experimental devices are illustrated
in Sect. 4.2.

To illustrate more sub-tasks, we developed a complex version of FDS, we named it;
FDSC. This includes recognition functions. As shown in Fig. 2, the main GUI of
FDSC contains three main buttons, which are Offloader, Offloadee and server. The
Offloader button is to specify whether to run the tasks locally on Offloader or remotely
on Offloadees. It shows a drop-down list of Offloadees (0–3), (we used up to 4 devices
in this experiment, (note that the maximum number of devices to be used is 7, because
the BT protocol only allows 7 actual devices to connect to one master node [13])). The
“0” means the tasks run locally on the Offloader, while (1–3) specify the number of
Offloadees. The Offloadee button is to represent the participated Offloadees. The server
button is for running the tasks remotely on the server, (we have decided to use 2 servers
in this experiment, the first one is a cloud AWS EC2 server, and the second is a local
Edge WAMP server), it requires a server IP address to start the connection.

We developed a simple algorithm to distribute the images among the Offloadees
and the servers. Firstly, we divide the number of images (n) equally among the total
devices. After that we find the remaining number of images, if the remaining images

SOSE: Smart Offloading Scheme Using Computing Resources 65

are equal to 0, then the algorithm starts distributing the images. If the remaining images
are > 0, then it distributes the remaining images one by one to the Offloadees. (For
example, if the number of connected devices = 4, number of images = 10, then 10/4,
so initially each device gets 2 images, then for the remaining 2 images, it assigns one
by one to the devices, so Offloader = 2, Offloadee1 = 3, Offloadee2 = 3, Offload-
ee3 = 2 and so on).

We used a third-party tool (AWS rekognition service) that uses storage-based API
operations to create the DB, to compare with the Offloader new images. It gets the
images from FDSC local repository root, then it calls Detectface request, call-
FaceDetails, and Detectfeatures functions to build a client-side index.

4.2 Experimental Scenarios

In this section, the various scenarios for the experiments that have been done to
illustrate the overhead of forming the edge resource are described. The aim of these
scenarios is to examine the benefit of SOSE when offloading in terms of processing
time, and battery power consumption, when FDS & FDSC sub-tasks are executed by
various devices together with the Offloader. In the experiments, we have focused on
comparing the processing time of sub-tasks, as well as battery power consumption for
this period, as being the quality of service parameters along with the accuracy and
efficiency of SOSE. Full details about the processing time cost and battery power
consumption cost, with the equations can be found in our SCCOF paper [1]. There
are many equations developed that calculate offloading time as a whole, based on
the above and including amount of computation and communication [14, 15].
However, we did not find a significant impact of all these parameters on the trend of the

Fig. 2. Screenshots of FDSC

66 A. Al-ameri and I. A. Lami

described experiments as explained in Sect. 4.3. These scenarios are referred, as Edge
Server Scenario (ESS), Edge Offloadees Scenario (EOS) and Cloud Server Scenario
(CSS), in this paper, as shown in Fig. 3.

4.2.1 The Offloader Sends (FDS & FDSC) Sub-tasks to a Local Edge
Server (ESS)
In this scenario, we have created a WAMPSERVER 3.1.0, which acts as a local nearby
edge server. Both Offloader and server are connected through an IP address. If the
decision is to run the tasks on ESS, the decision engine triggers the distribution
algorithm to partition the images between the Offloader and ESS. The Offloader gen-
erates a serializable interface and decides on the images to be offloaded. Then it
invokes the remote manager, to connect to the server using IP address and post API and
offloads the images in parallel. The edge server waits and listens to any incoming tasks,
it runs the requested sub-tasks when receives the images, records the time, converts it to
JSON format, and sends the results back to the Offloader as will be stated later in
Sect. 4.3. We used BroadbandChecker tool [16] to profile the network and make sure it
is stable when offloading.

4.2.2 The Offloader Sends (FDS & FDSC) Sub-tasks to Nearby Edge
Offloadees (EOS)
In this scenario, we performed offloading to cooperative nearby edge-devices on-the-
go. We used one Offloader and a maximum number of 3 Offloadees, full specifications

Fig. 3. SOSE architecture

SOSE: Smart Offloading Scheme Using Computing Resources 67

of the conducted devices are shown in Table 1. All the devices are connecting through
nearby API, which is a peer2peer networking API that allows apps to connect, share, and
exchange data in order to communicate over a local area network. We have used nearby
connections type, since it offers unlimited payload to be shared and it supports sensitive
data, by encrypting the data for secure payload exchange. We have defined 5 classes to
establish the communication between edge Offloadees, these are; Start Discovery (), Start
Advertising (), Endpoint Discovery Callback (), Request Connection (), and Payload
Callback (). When the device is selected as an Offloadee, the Offloader starts accepting
incoming connections, (the number of incoming connections is equal to the number of the
Offloadees). When we select more than 0 in the drop-down list, the Offloader starts
advertising itself to accept incoming connection from nearby Offloadees. The Offloadees
then discovers the Offloader and sends a request to connect. The Offloader accepts the
connection and adds the incoming Offloadee to the connected devices list. Then the
connection is established, and devices are ready to exchange images between them.

We developed a simple algorithm to distribute the images among Offloadees, as
explained in Sect. 4.1. (For example, if the Offloader selects 20 images to execute, each
device executes 5 images in parallel and performs the required sub-tasks, then each device
sends the results back to the Offloader). The Offloadees wait and listen for any incoming
tasks, run the sub-tasks, record the time and send the results back to the Offloader. A total
of 100 images to perform offloading between a variety of edge devices are used. The
images are set to have the same resolution (700 � 700), and have a maximum size of
300 KB, and tests are repeated 5 times to examine stable and unstable network when
offloading. The results are calculated (an average of 5 runs) in terms of processing time,
battery power consumption, and offloading gain as illustrated in Sect. 4.3.

4.2.3 The Offloader Sends (FDS & FDSC) Sub-tasks to a Cloud Server
(CSS)
In this scenario, we have created a server in the cloud using Amazon AWS services,
namely t2.micro Amazon Linux 2 AMI EC2 server. We created the credentials (secret,
access, and IAM keys), to authenticate the server with (FDS & FDSC), so it can
connect and push images to the cloud server. We have also used FileZilla and Putty
tools to install and migrate the necessary PHP files to the server. We created a S3
bucket to save the offloaded images, if needed for future execution and/or to train
SOSE_INTELLIGENT engine. If the decision is to run the tasks on the server, the
Offloader connects to the server and starts to offload the images through an IP address
and POST API. The server waits and listens to any incoming tasks, it runs the requested

Table 1. Experimental (Offloader & Offloadees) specifications for EOS

Devices specification CPU RAM OS Battery

Samsung S2 Sm-T710 1.3 GHz 3 GB Android 7.0 4000 mAh
Lenovo TB-7304F tablet 1.3 GHz 1 GB Android 7.0 3500 mAh
LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh
LG Nexus 4 1.5 GHz 2 GB Android 5.1.1 2100 mAh

68 A. Al-ameri and I. A. Lami

sub-tasks when receives the images, records the time, converts it to JSON format, and
sends the results back to the Offloader as will be stated later in Sect. 4.3.

4.3 Results and Discussion

This section presents all the results achieved from the conducted various experiments
for the scenarios we designed to illustrate the concept of this SOSE solution.

Figure 4 shows the processing time of executing FDS for ESS, EOS and CSS we
described in Sect. 4.2. Offloading to ESS and CSS has reduced the burden on the
Offloader by 83.4% due to their unlimited resource capability. Note that the results are
testimony that having an edge server is the correct decision, since it will be less
overhead when communication traffic is taken into consideration. It is also clear that
offloading to a single Offloadee is costly with an increase of 14.3%, due to the overhead
not meeting the crossover point of being advantageous. However, offloading to >1
Offloadee has significantly improved the Offloader resource capability (21.3% & 40.2%
for 2 & 3 Offloadees respectively).

Figure 5 shows the processing time when running FDSC for ESS, EOS and CSS. It
shows an increase of the complexity of the FDC, by adding more intensive sub-tasks,
such as matching the extracted features with a DB. This highlights the importance of
SOSE, where the processing time became liner for all ESS, EOS and CSS. This means
that the overall cost of SOSE is much less than having the offloading done to the cloud,
without the network traffic caused by transporting the data to the cloud. For 20 images

Fig. 4. Processing time of FDS

SOSE: Smart Offloading Scheme Using Computing Resources 69

with 4 edge end-devices, we achieved 10.13% in comparison to running the sub-tasks
locally, while 12.1% for the cloud scenario, which indicates that, SOSE will outper-
form offloading to the cloud solution when complex sub-tasks are executed on more
participated edge end-devices.

The battery power consumption measured when executing FDSC for ESS, EOS,
and CSS is shown in Fig. 6, it clearly shows that same saving pattern is achieved with
processing time. The behavioral trend we observed is, when only 2 devices are exe-
cuting the FDSC, the battery power consumption cost increased by 19.52%. However,
when the number of Offloadees increases in EOS, we record a power saving of 28.8%
for 4 Offloadees running FDSC in parallel, which is almost similar with ESS and CSS
which record 31.8% power saving. To the best of our knowledge, none of the reviewed
solutions performed offloading of FDSC sub-tasks to nearby edge offloadees. However,
to compare ESS and CSS with Thinkair [17], that performs offloading of FDS sub-tasks
to a cloud server, we have achieved improvements of 12.48% and 38.4%, in terms of
processing time and battery power consumption respectively.

Figure 7 shows the processing time of FDS sub-tasks for ESS, EOS, and CSS, it
shows that the feature extraction task is the most intensive task compared to other tasks.
Also, it shows, the processing time dropped down continuously, almost up to 81.2%
saving when more Offloadees run FDS. To measure the accuracy of SOSE, we used
Rekognition confidence score of similarity. The confidence score is between (0–100),
that expresses the probability of the detection, if the face is predicted correctly. We
achieved up to 99% accuracy as almost all the selected images are recognized

Fig. 5. Processing time of FDSC

70 A. Al-ameri and I. A. Lami

successfully. We compared the accuracy rate achieved by SOSE, with the work in [18],
that used facial recognition service. We achieved an increase of 23.75%.

Fig. 6. Battery power consumption of FDSC

Fig. 7. Processing time of FDS sub-tasks

SOSE: Smart Offloading Scheme Using Computing Resources 71

5 Conclusion and Future Work

The discussion and analysis of the experiments in the above section concludes that we
can form a network of Offloadees on-the-go as needed, that will, even small number of
devices of 4 Offloadees will perform as good as an edge computing server with
unlimited resources. Our future study on this thread will focus on the granularity and
partition of the sub-tasks, so to maximize the benefit from the Offloadees without
having to run their battery to the ground or increasing the local connectivity traffic with
them. For sure having only a single Offloadee to help with the MCCS is not an option.

The impact of connectivity between our local edge resource network and the cloud
is significant and depends on the location of the Offloader. For example, if the cloud
server is only accessible by cellular link, then the overheads will be 10x more than if a
Wi-Fi connectivity is available to the server. This will give much more importance to
SOSE as we can form P2P connectivity with all Offloadees, including using a Wi-Fi
P2P link.

For automating all the decisions on the offload or not, sub-tasks sizes, Offloadee
choices and so on, an automatic partitioning and profiling are required instead of
manual profiling. As a next step, we will implement the controller engine, all the end-
devices connect to the engine, and exchange a report of features including; location,
battery level, processing capability, etc. In CloudSim simulator, the broker role is to
decide where to offload the service workload, based on simple broker policies such as
nearest VM, fastest VM or dynamic VM. We shell deploy our engine as so, to take the
broker policy in deciding where and what to offload, based on SOSE assessment
criteria as described in Sect. 3. An intelligent engine is very important to achieve
efficient offloading. The various variations for the type of intelligence algorithms, (such
as genetic algorithm and/or Markov model) is the next study phase of this project.

Acknowledgment. Gratitude to the University of Basra, and MOHESR (Ministry of Higher
Education and Scientific Research) for sponsoring this work.

References

1. Al-ameri, A., Lami, I.A.: SCCOF: smart cooperative computation offloading framework for
mobile cloud computing services. In: the 8th Annual International Conference: Big Data,
Cloud and Security (2017)

2. Saad, S.M., Nandedkar, S.C.: Energy efficient mobile cloud computing (2014)
3. Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people:

current status, challenges, and future directions. Sensors 17(3), 565 (2017)
4. Dwivedi, A., et al.: Internet of Things’ (IoT’s) impact on decision oriented applications of

big data sentiment analysis. In: 2018 3rd International Conference on Internet of Things:
Smart Innovation and Usages (IoT-SIU). IEEE (2018)

5. Wei, X., et al.: MVR: an architecture for computation offloading in mobile edge computing.
In: the IEEE International Conference on Edge Computing (2017)

6. Calo, S.B., et al.: Edge computing architecture for applying AI to IoT. In: 2017 IEEE
International Conference on Big Data (Big Data). IEEE (2017)

72 A. Al-ameri and I. A. Lami

7. Amazon Rekognition: Developer Guide. http://docs.aws.amazon.com/rekognition/latest/dg/
rekognition. Accessed January 2019

8. Chen, X., et al.: Thriftyedge: resource-efficient edge computing for intelligent IoT
applications. IEEE Netw. 32(1), 61–65 (2018)

9. Li, H., Ota, K., Dong, M.: Learning IoT in edge: deep learning for the internet of things with
edge computing. IEEE Netw. 32(1), 96–101 (2018)

10. Ko, K., et al.: DisCO: a distributed and concurrent offloading framework for mobile edge
cloud computing. In: 2017 Ninth International Conference on Ubiquitous and Future
Networks (ICUFN). IEEE (2017)

11. Nearby Connections API. https://developers.google.com/nearby/connections/android/exchange-
data. Accessed July 2018

12. Wang, X., Chen, X., Wu, W., An, N., Wang, L.: Cooperative application execution in
mobile cloud computing: a stackelberg game approach. IEEE Commun. Lett. 20, 946–949
(2016)

13. Sirivianos, M., et al.: Dandelion: cooperative content distribution with robust incentives.
In: USENIX Annual Technical Conference, vol. 7 (2007)

14. Thu, M.S.Z., Htoon, E.C.: Cost solving model in computation offloading decision algorithm.
In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON). IEEE (2018)

15. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save
energy? Computer 43, 51–56 (2010)

16. BroadbandChecker. http://www.broadbandspeedchecker.co.uk. Accessed November 2017
17. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: ThinkAir: dynamic resource

allocation and parallel execution in the cloud for mobile code offloading. In: 2012
Proceedings of the IEEE INFOCOM (2012)

18. Luzuriaga, J., et al.: Evaluating computation offloading trade-offs in mobile cloud
computing: a sample application. In: Proceedings of the 4th International Conference on
Cloud Computing, GRIDs, Virtualization (2013)

SOSE: Smart Offloading Scheme Using Computing Resources 73

http://docs.aws.amazon.com/rekognition/latest/dg/rekognition
http://docs.aws.amazon.com/rekognition/latest/dg/rekognition
https://developers.google.com/nearby/connections/android/exchange-data
https://developers.google.com/nearby/connections/android/exchange-data
http://www.broadbandspeedchecker.co.uk

	SOSE: Smart Offloading Scheme Using Computing Resources of Nearby Wireless Devices for Edge Computing Services
	Abstract
	1 Introduction
	2 Recent Literature of Edge Computing Implementations
	3 SOSE Architecture
	3.1 SOSE_INTELLIGENT
	3.2 SOSE_EDGE

	4 Experiments, Results and Analysis
	4.1 MCCS Choice: Face Detection Service (FDS)
	4.2 Experimental Scenarios
	4.2.1 The Offloader Sends (FDS & FDSC) Sub-tasks to a Local Edge Server (ESS)
	4.2.2 The Offloader Sends (FDS & FDSC) Sub-tasks to Nearby Edge Offloadees (EOS)
	4.2.3 The Offloader Sends (FDS & FDSC) Sub-tasks to a Cloud Server (CSS)

	4.3 Results and Discussion

	5 Conclusion and Future Work
	Acknowledgment
	References

