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Abstract. Bitcoin was launched in 2009, becoming the world’s first ever
decentralized digital currency. It uses a publicly distributed ledger called the
blockchain to record the transaction history of the network. The Bitcoin network
is structured as a decentralized peer-to-peer network, where there are no central
or supernodes, and all peers are seen as equal. Nodes in the network do not have
a complete view of the entire network and are only aware of the nodes that they
are directly connected to. In order to propagate information across the network,
Bitcoin implements a gossip-based flooding protocol. However, the current
flooding protocol is inefficient and wasteful, producing a number of redundant
and duplicated messages. In this paper, we present an alternative approach to the
current flooding protocol implemented by Bitcoin. We propose a novel protocol
that changes the current flooding protocol to a probabilistic flooding approach.
Our approach allows nodes to maintain certain probabilities of sending infor-
mation to their neighbours, based on previous message exchanges between the
nodes. Our experimental evaluation shows a reduction in the number of
duplicated messages received by each node in the network and the total number
of messages exchanged in the network, whilst ensuring that the reliability and
resilience of the system were not negatively affected.

Keywords: Bitcoin � Peer-to-Peer � Flooding � Cryptocurrencies �
Information propagation

1 Introduction

Cryptocurrencies, of which Bitcoin is the most popular, have risen greatly in popularity
in recent times. With the popularization of cryptocurrencies comes an increase in daily
users. As a result of this increase in daily users, countless more transactions are made
within the network leading to an increase in network resources and power consumption
by the systems in order to maintain the cryptocurrencies. For example, Bitcoin between
2011 and 2012 averaged approximately 7,000 transactions per day, but at the time of
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writing, Bitcoin currently averages approximately 270,000 transactions per day, with
the daily trading value estimated at approximately $700 million1.

Bitcoin uses a publicly shared distributed ledger known as the blockchain to
maintain the transaction history in the network. Transactions in the network are
grouped together and placed in blocks. Bitcoin uses proof-of-work (PoW) as its con-
sensus mechanism [1]. In PoW, participants in the network are challenged to solve a
computationally difficult problem, from which blocks are produced when solved. By
successfully completing the PoW puzzle, the newly created block is then added to end
of the already existing chain of blocks. The linking of the blocks to create the chain of
blocks ensures a serial and chronological ordering of transactions, allowing all the
nodes in the network to agree on a common ordering of transactions. The blockchain is
maintained in a decentralized manner by all the nodes participating in the network.

As the Bitcoin network is structured as a decentralized peer-to-peer network (P2P),
information is disseminated across the network through gossip-based flooding [2].
Nodes participating in the network do not have an entire view of the network. Instead
of having an entire view of the network topology, nodes are only aware of the other
nodes that they are directly connected to, known as their neighbours. Due to the
decentralized nature of the network, if a node wants to broadcast new information
across the network, they must follow Bitcoin’s implementation of the flooding pro-
tocol. By following the flooding protocol implemented by Bitcoin, nodes will broadcast
their desired information to each of their connected neighbours. Once received, the
node’s neighbours will then in turn broadcast the newly received information to their
neighbours, who will then broadcast it to their neighbours until eventually the infor-
mation is received by all the peers in the network [3]. However, this flooding protocol
for information dissemination is wasteful, producing a large number of redundant and
duplicated messages.

1.1 Our Contributions

In this paper, we present a novel protocol that aims to change the current flooding
protocol implemented by Bitcoin. The proposed protocol changes the flooding protocol
implemented by Bitcoin to a probabilistic flooding approach. The proposed proba-
bilistic flooding approach is based on the idea that nodes in the Bitcoin network have a
wide variance in the number of neighbours they are connected to. Therefore, if a node’s
neighbour is well-connected in the network, they are likely to already have the
transaction that the node was going to transmit to it, making the message redundant.
However, if a node’s neighbour is less connected in the network, they may likely not
have the transaction and may need the transmitting node to broadcast the transaction to
them. As a result of the wide variance in the number of neighbours a node may have,
we propose a probabilistic flooding approach where a node maintains a “probability of
sending” for each of their neighbours based on previous message exchanges between
the node and the neighbour. The main objective of the change in protocol is to reduce

1 https://www.blockchain.com/charts/estimated-transaction-volume-usd?daysAverageString=7timesp
an=all.
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the number of redundant and duplicated messages being generated in the network
whilst ensuring that the reliability and resilience of the system is not negatively affected
by the change in protocol.

1.2 Paper Structure

The remainder of the paper is structured as follows: Sect. 2 presents an overview of
Bitcoin, Sect. 3 discusses the Bitcoin network and Information Propagation, Sect. 4
discusses related work, Sect. 5 presents our probabilistic flooding protocol, Sect. 6
evaluates our protocol and Sect. 7 concludes the paper.

2 Bitcoin Overview

Bitcoin was proposed in 2008 and launched in 2009, under the pseudonym Satoshi
Nakamoto in their paper entitled “Bitcoin: A Peer-to-Peer Electronic Cash System” [1].
The objective of Bitcoin is to create a means of exchange, without dependence on a
central authority, that could be transferred electronically in a secure, verifiable and
immutable way. The most important attribute of Bitcoin is the decentralization nature
of it - the lack of dependence on a central server or trusted parties. As mentioned in a
forum post shortly after Bitcoin was launched, Satoshi wrote that “The root problem
with conventional currency is all the trust that is required to make it work”2.

In the following subsections, we will describe the main building blocks of the
Bitcoin system.

2.1 Transactions

Transactions are the most important part of the Bitcoin system. Everything else in
Bitcoin is designed so that transactions are able to be created, propagated, validated and
added to the global distributed ledger used in Bitcoin (also known as the blockchain).

At an abstract level, a transaction essentially transfers bitcoins from one or more
source accounts to one or more destination accounts. Each account is created from a
public/private-key pair using public-key cryptography [3]. A Bitcoin address is derived
from the public key of an account. The Bitcoin address is used to uniquely identify an
account and is used as the destination account when receiving payment from other
users. Ownership of the private key allows full control of the Bitcoin address associated
with that private key. The private key can be used to move funds associated with the
corresponding Bitcoin address by creating the digital signature that is required by
transactions.

Transactions can be broken down into transaction outputs, transaction inputs and the
transaction ID. The transaction inputs are the accounts of the payers and the transaction
outputs is where the bitcoins are being sent to i.e. the payee’s account. The transaction ID
uniquely identifies each transaction [3]. Transaction outputs are fundamental in Bitcoin

2 http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source.
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transactions. Transaction outputs are indivisible chunks of Bitcoin currency that are
recorded on the blockchain and are seen as valid and spendable by the Bitcoin network.
Unspent Transaction Outputs (UTXO) are available and spendable transaction outputs.
A user’s Bitcoin “balance” is the sum of all the UTXO associated with the user’s Bitcoin
address.

Transactions consume UTXO which in turn creates new transaction outputs that
can be spent by the payee. Every output of a transaction will also contain one or more
inputs that indicates where the Bitcoin originated from before the transaction.

In order to transfer bitcoins to an account, the public key of the payee’s account
must be listed as the destination of the transaction. The payer must also sign the
transaction. They do this by digitally signing a hash of the previous transaction and the
public key of the next owner [1].

In order for a transaction to be valid, the following criteria must be fulfilled by the
outputs claimed and created:

– An output may be claimed at most once.
– New outputs are created solely as a result of a transaction.
– The sum of the values of the inputs has to be greater than or equal to the sum of the

values of the newly allocated outputs3 [3].

2.2 Blocks, Mining and Proof-of-Work

A block is a data structure that is composed of a set of transactions and a block header.
Blocks on the blockchain are identified via the block header hash. When a new
transaction is propagated through the Bitcoin network, it is stored in each node’s local
mempool. The Bitcoin mempool is a pool of unconfirmed transactions in the Bitcoin
network. Each node has their own mempool. The transactions in the mempool may be
valid transactions but are not yet confirmed by the Bitcoin network. The transactions
are not seen as confirmed transactions until they are included in a block that is on the
blockchain. The process in which transactions are taken from the mempool and
included in blocks is known as mining. As more miners join the network, the difficulty
of the PoW gets harder and harder4, in such a way the average time to mine a block is
approximately every 10 min [4].

The process of mining a block is a computationally difficult process. The nodes
which attempt to mine a block, known as miners, must find the solution to Bitcoin’s
PoW problem. The PoW problem consists of finding an integer value, known as a
nonce, that when combined with the block header, will provide a hash with a given
number of leading zeroes, known as the difficulty [3]. As cryptographic hashes are a
one-way function [5], the only solution for miners to find the nonce that will satisfy the
difficulty of the block is to use a brute-force approach, testing different values for the
nonce until a suitable hash is found. The nonce which satisfies the difficulty check of

3 If the inputs are greater than the required outputs, miners may collect the difference as a transaction
fee or may be sent back to the payee’s address as change.

4 It may also decrease in difficulty, depending on the average block creation rate of the previous 2,016
blocks.
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the block, known as the golden nonce, is therefore very difficult to find but once found,
is straight-forward to verify it.

Nodes within the network may sometimes have an inconsistent view of the
blockchain due to the decentralization nature of the Bitcoin network. This inconsis-
tency may occur when two nodes in the network discover and propagate different
blocks at approximately the same time. The two different blocks will propagate through
the Bitcoin network, arriving at nodes at different times. The nodes will accept the first
block that they received and reject but save the other block when they eventually
receive it [1]. Nodes in the network will now have a temporary inconsistent view of the
blockchain, as there are now two blocks claiming to be the blockchain head. In order to
resolve this inconsistency, nodes can work on either branch of the fork but are likely to
work on the block that they received first [7]. The fork would likely be decided when
the next block is mined and one branch becomes longer than the other. The longer
branch will become the legitimate one and nodes working on the other branch will then
switch to the longer one. This occurs as nodes always consider the longest chain to be
the legitimate one and will keep working on extending it [1].

2.3 The Blockchain

Thus far, when blocks are mined and transactions are placed in the blocks, the blocks
do not offer any synchronization or chronological ordering of the transactions. How-
ever, this changes when blocks are linked together sequentially, creating a chrono-
logical ordering over the blocks and therefore the transactions in the blocks [3]. This
sequential formation of blocks is known as the blockchain [8]. When a block is created
and propagated through the network, it is added to the blockchain by creating a
reference to the latest block (the previous block) on the blockchain. The chaining of
each block to the previous block is what creates a chronological ordering of transac-
tions in the network. The referenced previous block is known as the parent block.
Blocks may only have one parent block but can temporarily have multiple children
during a blockchain fork. As every block references the previous block, the blockchain
is made up of a single sequence of blocks from the first block, or the genesis block, to
the latest generated block [8]. The distance between a block and the genesis block is
referred to as its block height, and the block that is furthest away from the genesis block
is known as the blockchain head [3] (Fig. 1).

Fig. 1. Blockchain representation example [6]
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3 The Bitcoin Network and Information Propagation

The Bitcoin network is structured as a decentralized P2P network. In a P2P network,
nodes participating in the network are seen as peers. Peers are all treated as equal, with
shared responsibility in providing network services. The Bitcoin network consists of
over 10,000 nodes [9]. Each node in the network implements a version of the Bitcoin
protocol through the use of a Bitcoin client. Although there are several Bitcoin clients
available to use, the Bitcoin client used by the majority of the nodes in the network is
Bitcoin Core, also known as the reference client or the Satoshi client.

Although all the peers in the network are equal, they may have different roles based
on the different functions they support. For example, simplified payment verification
(SPV) nodes do not keep a copy of the full blockchain and do not participate in mining.
They are lightweight nodes that integrates the wallet and routing function, designed for
peers with limited resources. In contrast, full nodes may be either a full blockchain
node when it includes routing and full blockchain functions, or a solo miner when it
includes routing, the full blockchain and mining functions [9]. However, in order to
participate in the Bitcoin network, nodes must implement a routing function5. The
routing function includes network discovery of new peers, establishing inbound and
outbound connections, validating transactions and blocks and propagating information
through the network [9].

When new transactions or blocks are created in the Bitcoin network, they must be
broadcasted to the entire network to inform the peers in the network of the new
transactions/block. As the Bitcoin network is a decentralized P2P network, there is no
central authority to distribute the transactions/blocks to every peer in the network. As
nodes in the network are only aware of their directly connected neighbours, Bitcoin
implements a gossip-based flooding protocol to propagate transactions and blocks
across the network.

When propagating information across the Bitcoin network, a node maintains a
message queue for all of their connected neighbours. This message queue may contain
different types of messages that a node may want to send to their neighbours, such as
transaction hashes or block hashes etc. Along with the message queue, there is a timer
associated with each neighbour. All the messages within the message queue will be
sent to the associated neighbour when the timer elapses. The time-out is calculated
using a Poisson distribution [10].

In order for a node not to send the same transactions or blocks that their neigh-
bouring peers may already have, transactions and blocks are not forwarded directly to
their neighbours. Instead, an INVentory message or INV message is sent to their
neighbours. The INV message transmits one or more inventories of objects known to
the transmitting peer and are now available to be requested from the transmitting peer if
the receiving node is missing one or more of the inventories of objects in the INV
message [3]. If the receiving node requires any of the transactions or blocks within the
INV message, they will respond to the sender node with a GETDATA message, which
contains the hashes of the information the node requires. Once the GETDATA message

5 Users may turn off the routing function in Bitcoin Core if desired.
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is received, the sender node will send the requested block or transaction via individual
block or tx messages [3]. However, if a node receives an INV message that contains
transactions and blocks that the node already possesses, the node will simply ignore the
INV message, and not respond with a message to the sender node.

Although sending INV messages to neighbouring peers will prevent the peers from
receiving duplicate transactions, peers may still receive duplicate INV messages for the
same transaction. This occurs as a node’s neighbours does not know which transactions
the node currently has or is missing. Therefore, if a node’s neighbour recently received
new transactions, they will add it to the INV message that will be sent to the node as
they assume the node might not have the transactions they just received. As every
node’s neighbours may think the same, a node may receive an INV message for the
same transaction from all of their connected neighbours (125 worst case) whereas 1
INV message would have sufficed to send the transaction to the node (Fig. 2).

4 Related Work

Fadhil et al. present a new protocol, Bitcoin Clustering Based Super Node (BCBSN) as
a mechanism to speed up information propagation in the Bitcoin network [13]. In this
protocol, the Bitcoin network is divided into geographically diverse clusters. Within
each cluster, there is a cluster head or super node responsible for maintaining the
cluster. Each peer is connected to a cluster head, and each cluster head is connected to
other cluster heads. The claim is that this would reduce the propagation delay as it
reduces the number of non-compulsory hops that blocks, or transactions require to
reach all the peers in the network. Nodes at each cluster are geographically localized,
with the hope of reduction in the link latencies between nodes at each cluster.
The BCBSN protocol resulted in a reduction of the transaction propagation time
variances, compared to that of the normal Bitcoin network. Possible limitations of the
BCBSN protocol may include a successful attack on a cluster head. By successfully
attacking a cluster head, the nodes in the associated cluster are unable to connect to

Fig. 2. Messages exchanged between two nodes for information propagation
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connect to the rest of the network as the cluster head was their means of contact to the
rest of the network. If the cluster head was infiltrated by a malicious node, they have
essentially partitioned the nodes within the cluster from the rest of the network and may
carry out an eclipse attack [15]. As nodes in the clusters are geographically localized,
this may make the network highly prone to partitioning.

Following on from BCBSN, Fadhil et al. proposed a proximity-aware extension to
the current bitcoin protocol, named Bitcoin Clustering Based Ping Time Protocol
(BCBPT) [14]. Based on their previous work BCBSN, which placed nodes in clusters
based on their geographic location, BCBPT will place nodes in clusters based on their
ping latency. Nodes that are geographically close could be quite far away from each
other on the physical internet [14]. The results of BCBPT show that the protocol
maintains an improvement in variances of delay over their previous work, BCBSN.
This may be due to the fact that in BCBSN, clusters are based on geographic location,
meaning they could be close geographically but far away on the physical internet. By
creating clusters based on ping latencies, Fadhil et al. concluded that proximity
awareness in the physical internet improves delivery latency with a higher probability
than clusters based on geographic locations. The protocol is split into two phases:

1. Distance Calculation
2. Cluster Creation and Maintenance

4.1 Distance Calculation

In the distance calculation phase, each node is responsible for gathering proximity
knowledge regarding discovered nodes. This is done by calculating the distance in the
physical internet between the node and the discovered nodes. Proximity is defined as
how far a node is from another node in the physical internet.

4.2 Cluster Creation and Maintenance

When joining the network for the first time, a node N will learn about other available
Bitcoin nodes in the network from a list of DNS services. The node N will calculate the
proximity distance to each of the discovered nodes. The node N will then send a JOIN
request to the closest node K of the discovered nodes. Once node N establishes a con-
nection with nodeK, it will receive a list of IPs of nodes that is in the same cluster as node
K. NodeNwill then connect to all the nodes in the cluster. If nodeN discovers a node that
is physically closer than the current cluster, node N will leave to join the nearer cluster.

Although the transaction propagation time and variances are lowered in the pro-
posed protocol, the same issues from BCBSN can be applied to the proposed protocol.
As mentioned by Fadhil et al., they identify that eclipse and network partition attacks
have great potential due to the clustering based on countries. An attacker might con-
centrate a number of bad peers within a cluster in order to create a malicious cluster on
the network [14].

Marcal [10] proposes a new protocol for the dissemination of transactions in the
Bitcoin network. The protocol proposes a bias to disseminate transactions to neighbours
that are more likely to reach miners quickly, as miners are the nodes that need knowledge

36 H. Vu and H. Tewari



of the transactions in the network as they are responsible for placing the transactions in
blocks, and subsequently placing the block on the blockchain.

The protocol encompasses three changes to the Bitcoin dissemination protocol:

1. Nodes maintain for each of their neighbours, a list of transactions sent by their
neighbour and how long it took for these transactions to be included in a block.

2. Nodes maintain for each of their neighbours, the time it took to disseminate a new
block to the node.

3. Use the metrics collected above to rank their neighbours and prioritise the dis-
semination of transactions based on the rankings.

The proposed protocol was able to reduce the bandwidth usage by 10.2% and
reduce the number of messages exchange in the network by 41.5%. Some issues with
the aforementioned protocol is that the commit time of transactions may increase as
transactions are reaching miners, but may not necessarily reach the miner who is going
to mine the next block [10].

Other related works focus on exploiting the current dissemination protocol in order
to gain an advantage for the attacker or put the victim at a disadvantage. For example,
Courtois and Bahack [11] indicate miners could have a specific mining strategy known
as selfish mining. In selfish mining, nodes purposely withhold mined blocks from the
network, only revealing the mined block(s) in a selective way which benefits the selfish
miners. Eyal and Sirer [12] show that through the use of selfish mining, the selfish
pool’s reward exceeds its share of the networks computational power.

5 Probabilistic Flooding

As described in Sect. 3, when propagating a transaction through the network, an INV
message will be sent to the node’s neighbours 100% of the time. This flooding
mechanism implemented by Bitcoin produces many duplicated INV messages being
received by nodes in the network.

The solution and protocol change that we propose changes the current flooding
mechanism approach that was described above to a probabilistic flooding approach. Our
approach aims to maintain a probability for each of the node’s neighbours. This proba-
bility is the probability that a node will send an INVmessage to the associated neighbour.
The probability is calculated based on the number of INVmessages sent to the neighbour
and the number of GETDATA messages received in return from the neighbour.

Formula for Calculating a Neighbours Probability

neighbour Probility ¼ total ttet Data FromNeighbour
total Inv sen to Neighbour

The idea of sending INV messages based on probability is centered around the fact
that nodes in the Bitcoin network have a large variance in the number of connected
neighbours. A node may be well-connected, and in the best case, have 125 neighbours
whereas another node may have as low as 8 neighbours. The node with 125 neighbours is
more likely to have already received the transactions contained in the INVmessage that it
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received and therefore will not reply to the INVmessagewith aGETDATAmessage. The
idea of the protocol change to a probabilisticflooding approach is based on the criteria that
well-connected nodeswill already have the transactions contained in an INVmessage and
will not need to receive an INV message 100% of the time, whereas a node that is less
connected may need to receive an INV message the majority of the time.

For example in Fig. 3, node A will send an INV message to node B with a higher
probability than sending an INV message to node C. This is due to the fact that node
B has a total of three neighbours and is less connected than node C, who has a total of
five neighbours. As node C is more well-connected, it is more likely that node C may
already have the transactions contained in the INV messages, whereas node B is less
likely to have the transactions as it has two less neighbours than node C. The proba-
bility is based on previous message exchanges between the nodes. Node A may have
previously sent 54 INV messages to node C and may have only received 34 GET-
DATA messages in return. In this case, the probability that node A will send an INV
message to node C, based on the formula mentioned above, will be 63% (34/54). The
probability of sending an INV message from node A to node B is also based on the
exchange of previous messages between the two nodes. In this case, node A sent 77
INV messages to node B, whilst receiving 64 GETDATA messages in reply. Based on
the formula of calculating neighbour probability, the probability node A will send an
INV message to node B will be 83% (64/77).

From the example, node B replies to INV messages more times than node C, and
therefore will have a higher probability of receiving an INV message in the future from
node A. The higher probability can be attributed to the fact that node B only has three
neighbours and is not as well-connected as node C, who has five neighbours. As node
B has fewer neighbours, this leads to fewer options for which it may receive an INV
message for certain transactions in the network, leading to a higher GETDATA
response rate when it receives an INV message. Conversely, node C is better connected
than node B, having five neighbours. This leads to more avenues for which node C may
receive INV messages, therefore leading to a lower response rate to INV messages. As
node C has more neighbours, this leads to a higher probability that they have already
received the transactions contained in the INV message.

Fig. 3. Probabilistic flooding example
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6 Evaluation

In order to test our protocol changes we ran a number of simulations. Joao Marcal’s
bitcoin-simulator6 [10] supports the newest versions of Bitcoin and recorded a number
of important metrics that would be vital to compare and contrast the current Bitcoin
protocol, and the proposed probabilistic flooding approach. The metrics recorded by
the Bitcoin simulator were as follows:

– Average number of INV messages sent per node
– Average total number of sent messages per node
– Percentage of duplicated messages received per node
– Total transactions created
– Percentage of transactions created and committed
– Total number of forks created

The simulator is an event-driven simulator, where the behaviour of each node in the
network is defined by a deterministic state machine, that consumes events and produces
events. Each cycle in the simulation represents a second in real-time. The default
settings and the settings for which the results are formed are based on the following
configurations:

– Number of nodes in the network - 625
– Number of miners - 5
– Minimum neighbourhood size of each node - 8
– Number of cycles - 208800

Algorithm 1 represents how the probability of sending an INV message to a specific
neighbouring node is calculated.

Algorithm 1. Function to calculate the probability of sending INV message to
each neighbouring node
1: function get probability(myself, neighbouring node)
2: total inv sent ← get total inv sent(myself, neighbouring node)
3: total getdata received ← get total getdata received(myself, neighbouring  node)
4: probability to send ← total getdata received/total inv sent
5: return probability to send

Algorithm 2 is the function that will determinewhether or not a nodewill send an INV
message to its neighbouring node. Algorithm 2 is called every cycle for every node, as
long as the adjusted probabilistic flooding mechanism is enabled in the simulation.
Algorithm 2 will firstly get the current time of the simulation. For each of the node’s
neighbours, the algorithm will receive the calculated probability of sending an INV
message to that specific neighbour based on Algorithm 1. Associated with each neigh-
bouring node is a timer which is calculated using a Poisson distribution [10]. The node
will receive the timer for the neighbouring node and will determine whether or not the

6 https://github.com/JoaoBraveCoding/bitcoin-simulator.
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timer elapsed for sending a message to the neighbouring node, based on the current time
received at the start of the algorithm. If the timer elapses and the probability of sending an
INV message is satisfied, the node will send the INV message to the neighbouring node
and increment the INVmessages sent to that neighbour counter. This is to ensure that the
data used in Algorithm 1 to calculate the probability of sending an INV message to
neighbouring nodes is up to date. However, if the timer elapsed but the probability of
sending is not satisfied, the INV message scheduled to be sent to the node is ignored.

As each cycle represents a second in real-time, the experiments were run for a
simulation time of 58 h. The first five hours and the last five hours of the simulation
were discarded in order to study the system in a stable state. The simulator is tuned to
generate blocks at the Bitcoin desired rate of 1 block per 10 min, as well as creating 2
transactions per second.

Algorithm 2. Broadcast Inventory Messages
1: function broadcast invs  prob  flooding(myself )
2: now ← get current time()
3: for neighbour in neighbourhood do
4: probability to send ← get probability(myself,neighbour)
5: time to send ← get time to send(neighbour)
6: timeout ← now > time to send
7: send inv based on prob ← random.random() < probability to send
8: if timeout and send inv based on prob then
9: sim.send(myself, neighbour, IN V message)

10: myself.increaseInvSentT oN eighbour(neighbour)
11: if timeout and not send inv based on prob then
12: myself.increaseIgnoredMessagesCount()

The most relevant and important metrics when comparing the two protocols are:

– Percentage of Committed Transactions is the most vital metric when comparing
the two protocol changes. The percentage of committed transactions indicates
whether or not every transaction that was created during the simulation period was
eventually committed into a block. As Bitcoin is the most popular cryptocurrency
and has a market cap of approximately 72$ billion, it is essential that every
transaction that is created is eventually committed in a block to maintain the reli-
ability of the system. The main objective of the protocol change is to reduce the
number of redundant messages being exchanged on the network. However, if the
protocol change negatively impacts the percentage of committed transactions,
reducing the 100% commitment rate of transactions then regardless of the potential
reduction of redundant messages, a less then 100% committed transactions rate
would be detrimental to the system and unacceptable.

– Total Number of Messages Sent Per Node is an important metric when comparing
the two protocols. As the main objective of the probabilistic flooding approach is to
reduce the number of redundant messages exchanged on the network, comparing
the total number of messages sent per node between the two protocols would
indicate exactly how many messages were saved as a result from the protocol.
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– The Commit Time of Transactions is also an important metric to consider when
comparing the two protocols. The commit time represents the time between when a
transaction was created to when it was placed in a block. As commit times of trans-
actions is an extremely important aspect in cryptocurrencies, having an increased
commit time when implementing the proposed probabilistic flooding approach may
not be worth the trade off in potential messages saved within the network.

6.1 Percentage of Committed Transactions

As mentioned previously, the most important metric when comparing the proposed
probabilistic flooding protocol to the current Bitcoin flooding protocol is the percentage
of committed transactions. Both protocols produced a 100% transaction commitment
rate, committing every transaction to a block during the simulation period. We can
conclude from these results that the adjustment of the flooding protocol to a proba-
bilistic flooding approach did not have an adverse effect on the number of committed
transactions during the simulation. A 100% transaction commitment rate ensures that
the system remains reliable when the probabilistic flooding approach is implemented.

6.2 Transaction Commit Time

Another important metric that was previously discussed when comparing the two
protocols is the time taken to commit a transaction. Figure 4 represents the average time
taken for a transaction to be committed into a block for the two protocols. As you can see
from Fig. 4, the time taken to for a transaction to be committed into a block for both
protocols were very similar. The small difference between the two protocols is negli-
gible. This is very important as the results indicate that changing the flooding protocol to
a probabilistic flooding approach does not have a negative effect on the transaction
commitment time. As transaction commit time is an extremely important aspect for
cryptocurrencies, if there was a significant increase in transaction commit time when
changing to the probabilistic flooding approach, the potential reduction in redundant
messages may not be worth the trade-off in increased transaction commit time.

Fig. 4. Average time taken to commit a transaction.
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6.3 Total Sent Messages

As mentioned in Sect. 1, the main objective of changing the current Bitcoin flooding
protocol to the probabilistic flooding approach is to reduce the number of redundant
and duplicated messages that are currently being generated in the Bitcoin network.
Figure 5, represents the number of total sent messages gathered from our simulations
for the two protocols.

The results show that when running the probabilistic flooding approach, there was a
significant decrease in the total number of messages sent per node during the simulation.
When running the Bitcoin flooding protocol, the simulation showed that there was
approximately 790,000 total messages sent per node, whereas when the simulation was
run with the probabilistic flooding protocol implemented, there was approximately
675,000 total sent messages per node. This results in a 15% reduction in the total number
of messages sent per node during the simulation period. As the 115,000 reduction in
messages mentioned are the amount of messages saved per node, the total number of
messages saved throughout the entire network can be estimated at approximately 70
million messages as there are 625 nodes participating in the network during the simula-
tion. Figure 6 represents the aforementioned statistics between both protocols.

The limitations of using simulations when testing the proposed protocol are as
follows:

– The current simulator does not take into account other factors that may affect
transactions being included into blocks such as incentives i.e. transaction fees.

– Each node in the simulation network has a wide variance of the number of neigh-
bours they are connected to, with 8 neighbours being the minimum. However, an
important characteristic of the Bitcoin P2P network is that nodes are able to join and
leave the network as they desire. A node may receive a low probability of being sent
an INV message as they are highly-connected in the network, however, many of their
neighbours could potentially leave the network. This leads to the node still receiving
a low probability of being sent an INV message, even though they may be less-
connected than before. An area of future work could be to run further simulations.

Fig. 5. Average total sent messages per node.
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– where the probabilities of each neighbours are reset after a certain period of time.
This allows for nodes who were initially well-connected but then as their neigh-
bours leave the network, become less-connected, and vice versa, to receive updated
probabilities from each of their peers.

– The simulator is tuned to create 2 transactions per second (TPS), leading to a daily
average of 172,800 transactions, which were the number of daily transactions
created when the simulator was created. However, Bitcoin can handle up to 7TPS
[16] but currently has a daily trading volume of approximately 4TPS7.

7 Conclusion

In this paper, we proposed a novel protocol that aims to reduce the number of redundant
messages being generated by the current flooding protocol. The proposed protocol
changes the current flooding protocol implemented by Bit-coin to a probabilistic flooding
approach. The proposed probabilistic flooding approach presented in this paper is based
on the idea that well-connected neighbours will more likely not respond to an INV
message compared to a node that is less-connected, therefore the probability of sending an
INV message to a less-connected node is higher than that of a well-connected node.

As we have shown in Sect. 6, the proposed protocol is able to significantly reduce
the total number of messages being exchanged on the network, whilst maintaining the
reliability of the system. The number of INV messages sent per node and the total
number of messages sent per node decreased by 29% and 14% respectively when
running the probabilistic flooding protocol. During the 58 h simulation period, the total
number of messages saved when running the probabilistic flooding approach when
compared to the current flooding protocol was approximately 70 million messages.

Fig. 6. Table representing the aforementioned statistics.

7 https://www.blockchain.com/charts/n-transactions.
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The proposed protocol met the objectives that it aimed to achieve - reducing the
number of redundant messages on the network whilst maintaining the reliability and
resilience of the system. We have shown that the current flooding protocol imple-
mented by Bitcoin for the dissemination of information across the network is inefficient
and wasteful, and have proved that the mechanism can be improved upon whilst
maintaining the reliability and integrity of the system. This leads to many possible,
alternate flooding solutions to the current flooding protocol for future work.
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