q

Check for
updates

A Discussion on Blockchain Software Quality
Attribute Design and Tradeoffs

John M. Medellin®™® and Mitchell A. Thornton

Darwin Deason Cyber Security Institute, Southern Methodist University, Dallas,
TX 75275, USA
johnmedellin@verizon.net, mitch@lyle. smu. edu

Abstract. The blockchain design pattern has many variations and is a concept that
will continue to lead many implementations in the years to come. New design and
implementation patterns are frequently being announced and the choices available
continue to expand. The design patterns imply tradeoffs which are reviewed.

We begin by describing the components of a blockchain; network nodes, blocks
and consensus in a concept. We further elaborate on the key characteristics of the
various design areas that are available adding emphasis to those used in private
blockchains.

The individual components can be designed in different ways and imply tradeofts
between such quality attributes as performance and security or availability. We
conclude with an initial tradeoff matrix that identifies the quality attributes that one
should look for in designing these software systems.

Keywords: Blockchain - Cyber-attacks - Secure software architectures -
Software architecture attributes + Software design tradeoftfs

1 Introduction

Blockchain has become a common “house-hold” word in the vocabulary of almost all
technology. This relatively new pattern of data sharing and encapsulated validation has
impacted many public and private organizations. What started with simple exchange in
values through crypto-currencies has become a veritable eco-system of different design
and implementation choices. An experienced designer must still consider the far-
reaching implications of selecting one course of action over another.

From its roots, deep in distributed operating systems and databases through current
implementation, the pattern for information hiding through encryption and sharing of
that information with other parties has continued and is continuing to evolve through
requirements that are sometimes unknown until implementation. The pattern has been
made famous by the implementation of bitcoin, a crypto currency. In a primary
objective, the pattern allows for transferring value between the peers through consensus
and encryption of results in a cumulative event ledger.

However, in addition to exchanging value concepts, the pattern is also very useful
for sharing secrets or other information between participants. This particular sharing
has been adopted by researchers and industry advocates for transmitting sensitive or

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved

M. H. Miraz et al. (Eds.): iCETiC 2019, LNICST 285, pp. 19-28, 2019.
https://doi.org/10.1007/978-3-030-23943-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23943-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-23943-5_2

20 J. M. Medellin and M. A. Thornton

private information between trusted parties in a group [1]. An example of this particular
sharing is the transmission of PKI (private key infrastructure) keys in a network where
only the intended receiver can decode such a transmission and by virtue of the
blockchain pattern cannot repudiate (negate receipt) of that specific information. Fur-
thermore, a block is mathematically bound with subsequent blocks through progressive
hashing. The cumulative effect of this is to make the transaction a permanent one in the
event registry.

This objective of this paper is to segment the key software quality attributes and
associated tradeoffs a designer should consider when architecting a solution with this
pattern in mind. As mentioned above, the standard is evolving and will continue to do
so for the foreseeable future. We discuss our assessment of these key tradeoff patterns
and provide a matrix that identifies the ones that should be especially considered in
software design. We however do remind the reader that these are only considerations
not to be omitted in addition to consideration of all software quality attributes for any
solution design.

2 Related Work

Many variations have been had to the famous Nakamoto [2] paper; the precursor to the
famous bitcoin series of crypto currencies. This first paper on the nature of exchange of
value through the blockchain design pattern has been adopted and now constitutes
several billion currency units of value in over 700 crypto exchanges around the world;
bitcoin being the most famous.

Since Nakamoto in 2008, most of the implementations of blockchain have had
crypto currency as their target. However, in recent studies, the design pattern has begun
to be adopted as a means to transmit data while preserving the key attributes of privacy
and encryption. Indeed, many technology implementations have begun to look at this
design pattern as a means to protect private exchange of information between interested
parties [3, 4].

A significant difference in implementation patterns exists when a private blockchain
is implemented versus a public blockchain [5]. In a public blockchain environment,
parties do not necessarily have to know or trust each other in order to exchange value.
Rather they can exchange by creating a block that is cryptographically validated by
others in the network known as miners who are incented to validate by receiving shares
of crypto currency for the one that validates the block first.

In contrast in a private exchange of data, the parties wish to know and trust each
other before the exchange happens. Some examples of private blockchains include
distribution of sign-on credentials [1] or authentication of agents delivering content on
a home [6]. In these cases, the “value” to be exchanged is a secret or information that is
only known to the sender and receiver [7] and potentially to other trusted parties in the
closed network of operation for the blockchain.

As previously mentioned, significant amounts of intellectual capital have been
spent on public blockchains. However, our focus is the private blockchain as a means
to guarantee key properties of secure transmission models. We have written about

A Discussion on Blockchain Software Quality Attribute Design 21

usage of this design patterns in previous work and have focused mostly on the con-
sensus architecture requirements and implementation [8].

Our previous work was dedicated to modeling different consensus algorithms and
their impact on resource consumption. Most of the literature compares those algorithms
to the Byzantine General’s Problem [9] since it has become a pseudo-standard for
measuring performance characteristics in newer algorithms. In this work however, we
expand the scope of our discussion to include the other aspects of the blockchain
architecture requirements in relation to Private exchanges. In a later section we discuss
the block, smart contract, network, consensus and cryptography aspects.

3 Design Considerations

There is some variability in the definition of components required for a successful
implementation. However, there is general agreement that the components required for
the pattern to work include:

e A block architecture; the contents and specifications of the actual block of data to be
transmitted [10].

e The scope and specifications of the smart contract; a smart contract is a reference to
a set of procedures that the block will operate or has been operated in an offline
fashion [11].

e The consensus model; the process whereby the participants agree in adding the new
block to the chain [12].

e The network of participants; the group of valid members that can perform the basic
operations of exchange and validation [13].

e The cryptography algorithm; the method for encrypting the block by carrying
forward necessary information, a mathematical formula result and a unique number
a “nonce” or number that is only used once [14].

3.1 General Architecture Requirements by Component

A brief description of each component was previewed above, this section discusses
them in more detail.

1. Block: this is the specific unit of information that is “chained” by reference to the
prior block. The block must be able to contain the following components (Fig. 1
below from ethereum.org):

a. A mathematical reference to the prior block, usually in a part of the encryption
result from that prior block.

b. A mathematical reference to a unique number included as input into the block
encryption algorithm (the “nonce”).

c. A mathematical reference to the actual data being encrypted.

The result of the encryption algorithm (for example RSA, or SHA-512 or SHA-256
[15]) as required by the overall parameters of the implementation and combining the
three previous components.

http://ethereum.org

22

J. M. Medellin and M. A. Thornton

Block Header Block Header

=I Prev Hash | | Nonce | =I Prev Hash | | Nonce | >

Merkle Root Merkle Root

Hash01 | Hash23 |

Merkle Branch for Tx3

Hash3

Tx3

Fig. 1. Blockchain architecture.

Smart Contract: this is an optional item but one which is quite popular in business
transaction processing. The smart contract is a block that defines a set of procedures
in the actual data payload or a reference to another part of the blockchain with those
references. The smart contract, when invoked by a special block-type, will produce
a result that operates on the input data of that other block. The smart contract may
contain the algorithm for processing the additional data or may reference a specific
location for those instructions [16].

Network: Network in this context means the group of members that are on-boarded,
validated, able to operate and off-boarded in the blockchain [17].

Consensus Model: This is the method whereby sufficient proof of validity is pro-
vided by a given set of participants in order to append the block and commit it to
permanent storage in the chain. The two most popular ones appear to be Proof of
Work (PoW) [18] in public blockchains and Byzantine Fault Tolerance Consensus
(BFTC) [19] in private. Discussion of these details is beyond this paper but in a
succinct explanation is that PoW deals with presentment of sufficient available
computation usage to validate the block while BFTC deals with validation of voting
by valid voter nodes [13].

Encryption Method: This pertains to the mathematical technique used to encapsu-
late the block into a number that is computationally inefficient to derive before the
next block is appended to the chain [20].

Next, we will describe each one of the above components in light of variations that

can be included in the implementation of those blockchains.

3.2 Key Variability Parameters by Architecture Component

Each of the architecture patterns has a variety of choices that ultimately influence the
achievement of objectives in the blockchain implementation. The major component
variabilities and impacts are discussed below.

1.

Block: the block architecture itself is a major influencer on the objectives. On one
hand, the block needs to be sized appropriately in order to include the necessary
data. On the other however, if the block is too large the impact is felt in encryption

A Discussion on Blockchain Software Quality Attribute Design 23

computation and latency of transmission [18]. Still on the other hand, a large block
provides by definition a larger cyber-attack surface.

. Smart Contract: The nature of the smart contract has a very large impact on both

performance and attack resilience. By including a smart contract in the imple-

mentation complexity and additional overhead is acquired [13]:

a. If the contract is wholly contained in the design then by definition, some of the
prior blocks will need to be modified. A wholly contained smart contract is a
type of block that is mutable as it processes and receives the effect of
transactions.

b. If the contract has a reference to a third location, the attack surface is expanded,
performance could be impacted by additional steps to be taken in retrieval and
update of external entities and finally, for subsequent block encryption, this
result must be taken into consideration so the cryptography rules can continue
unimpaired.

. Network: the variability in the network aspect is the rules for adding/processing/

deleting nodes/actors in the chain. This might seem to be the most secure but it is
where Impostor and Sybil [7] attacks have most frequently come from. The vari-
ability in private blockchain comes as a function of the complexity to join versus the
usability of the method. A strict adherence to high trust necessitates high com-
plexity to belong in most cases. That additional overhead needs to be balanced with
the usability of the blockchain.

Consensus Model: this is the area of highest variability in the implementation
design. There are several dozen consensus models that have both computational
overhead and complexity required to ensure agreement without tampering. Several
discussions on these algorithms are out there [21, 22].

. Encryption Method: most of the blockchain patterns defined will use accepted

methods of cryptography and these are well documented [15]. The biggest issue
identified has been the potential for quantum computing usage to break those
algorithms. Several studies exist on post-quantum cryptography and we strongly
suggest incorporating some of those initial rules into the design [23].

3.3 Software Architecture Quality Attributes

The Software Engineering Institute (SEI) has published guidelines for designing
software systems with emphasis on architecture [24]. They are as follows:

S A i e

Availability; the system is there and ready for interaction.

Modifiability; the system is able to be altered.

Testability; includes facilities for validation of results.

Interoperability; able to interact with other systems.

Security; resilience to cyber-attack.

Performance; achieves SLA targets.

Usability; user able to use system for designated purpose.

(Optional) Extensibility; able to extend functionality beyond its original enterprise
level scope.

24 J. M. Medellin and M. A. Thornton

These attributes are key in determining the quality of the software system and
usually work against each other (for example, performance vs security). Our main
contribution in this paper is the focus of our next section; how do these tradeoffs work
to enhance or deter each other.

4 Quality Attribute Tradeoffs

Software Quality Attributes will drive decisions that will shape the final solution [25].
In this section, we discuss the overall tradeoff process while also elaborating on the
tradeoffs that are more prevalent in the blockchain design pattern.

4.1 Architecture Design Implies Tradeoffs

Architecture design implies tradeoffs between quality attributes in order to deliver a
solution that reasonably complies with stated requirements. Quality attributes are
typically in conflict with each other, for example, the testability attribute which
includes verbose output might be in conflict with the security attribute which aims at
hiding the attack surface (verbose output implies additional code that may be turned on
to describe what’s happening but this code could also be attacked). Another example
would be the conflict between interoperability and performance. If a system is designed
with very high level of interface abstraction and cohesion it might cause the system to
use more cycles and impact performance requirements. These tradeoffs are even more
specific for blockchain design and are discussed in the next section.

4.2 Key Blockchain Architecture Tradeoffs

These are some of the more important tradeoffs in blockchain architecture design. They
are complemented further from the list provided by [26-28]:

1. Storage vs Computation: the amount of storage required by the block will affect the
computation requirements; a larger block will require more computation to encrypt
since there are more elements to encrypt. The design tradeoff in this case is
Usability vs Performance.

2. Anonymity vs Trust: if the parties do not know each other they most likely need to
verify proper identities through the use of public/private keys. This additional step
will require a different design pattern. The design tradeoff in this case is Interop-
erability vs Security.

3. Incentive variations: by definition, the pattern requires distributed validation before
blocks can get appended. Participants are usually incented to validate in order to
carry out this function. In public chains, this means allocation of value to those
participants which implies tracking value in the network. Similarly, in private, the
incentive schemes vary, in the simplest form it could mean that the participant must
validate prior blocks before theirs gets appended. The design tradeoff in this case is
Extensibility vs Usability.

A Discussion on Blockchain Software Quality Attribute Design 25

4. Degree of Distribution: In traditional Nakamoto patterns, the participants keep
copies of the blockchain. However, there are different patterns which may require
that smart contracts reside offline, on the chain in a centralized or other node. The
design tradeoff in this case is Interoperability vs Extensibility.

5. Scalability vs Latency: These two attributes are closely tied into performance. In
most cases, systems are designed for fulfilling a certain return time to users that is
specified in requirements. When those limits are exceeded by larger scale (more
volumes) the processing of blocks begins to lag, in some cases well beyond the
expected requirements. The design tradeoff in this case is Availability vs
Performance.

6. Immutability vs Process Functionality: This happens mainly on implementation of
smart contracts. One of the key tenants of the architecture is that it is a permanent
record. The inclusion of smart contracts can either violate (by having data offline or
modifying previous blocks) or preserving it (by restating the smart contract, pre-
vious states and the of new state). The design tradeoff in this case is Security vs
Usability.

7. Consensus Algorithm Selection: This tradeoff relates to the selection of the con-
sensus approach to validation. In Nakamoto for example, the PoW constitutes both
a security approach (51% of the omputation) and validation of the block
(encryption/finding the “nonce”) while in other approaches, this could be varied to
provide a level of accuracy and protection that may not be as computationally
intense. The design tradeoff in this case is Security vs Performance.

4.3 Architecture Tradeoff Matrix

We next proceed to defining the tradeoff attribute matrix. The numbers in cells refer to
the discussion number in 4.2 above.

Availability Interoperability Modifiability Performance Security Testability Usability Extensibility

Availability x 5

Interoperability x 2 4
Modifiability X

Performance 5 x 7 1

Security 2 7 x 6

Testability x

Usability 1 6 X 3
Extensibility 4 3 x

Fig. 2. Key architecture quality attribute tradeoff matrix

26 J. M. Medellin and M. A. Thornton

5 Tradeoff Discussion

Bearing in mind that a holistic view of all quality attributes is best practice [24] one
should design for all quality attributes (by usage of patterns that facilitate them and
embed in design [29]). However, some quality attributes are key in different archi-
tectures and will typically require additional tradeoff analysis to solve [30]. Figure 2
above depicts the major quality attribute tradeoffs identified in earlier sections of this
document.

5.1 Key Attribute Tradeoff Discussion

From a purely numeric perspective, it is evident that performance, security and
usability are the most impacted attributes. This intuitively makes sense since perfor-
mance is taxed by adding requirements for security and usability (both of which require
additional resources and potentially more design impacting performance decisions).
Interoperability and extensibility are a close second in this tradeoff analysis. This also
intuitively makes sense since blocks are dependent on each other to deliver function-
ality and the variety of design patterns requires extensibility to enable design those
additional features. Finally, availability (although only one tradeoff is noted) is a very
important quality attribute since if the blockchain system is unavailable or underper-
forms (as in the case of some crypto currencies) it will render the system unusable.
The modifiability and testability attributes do not seem to have specific tradeoffs
(beyond those normal software systems require). This also intuitively makes sense
since to our knowledge there are no specific requirements to modify code or test that
code beyond what would be required in normal transactional or other types of systems.

5.2 Use of the Key Attribute Tradeoff Matrix

As mentioned above, all attributes should be considered in the design decisions (most
design patterns incorporate them [31]). The objectives of this document are to convey
which quality attributes seem to be more important from our research. The matrix
should be used as an additional checkpoint to ensure these key issues are considered by
the designer of blockchain systems.

References

1. Li, D., Du, R., Fu, Y., Au, M.H.: Meta-key: a secure data-sharing protocol under blockchain-
based decentralized storage architecture. IEEE Netw. Lett. 1(1), 30-33 (2019)

2. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. www.bitcoin.org. Accessed
19 Mar 2019

3. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: BLOCKBENCH: A
Framework for Analyzing Private Blockchains. https://arxiv.org/pdf/1703.04057.pdf.
Accessed 19 Mar 2019

http://www.bitcoin.org
https://arxiv.org/pdf/1703.04057.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

A Discussion on Blockchain Software Quality Attribute Design 27

. Dorri, A., Kanhere, S.S., Jurdak, R.: Towards an optimized blockchain for IoT. In: 2017

IEEE/ACM Second International Conference on Internet-of-Things Design and Implemen-
tation (IoTDI), pp. 173-178 (2017)

. Medellin, J., Thornton, M.: Simulating resource consumption in three blockchain consensus

algorithms. In: MSV 2017 International Conference on Modeling, Simulation & Visualiza-
tion Methods, pp. 21-27 (2017)

. Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and

privacy: the case study of a smart home. In: 2017 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618-623
(2017)

. Salman, T., Zolanvari, M., Erbad, A., Jain, R., Samaka, M.: Security services using

blockchains: a state of the art survey. IEEE Commun. Surv. Tutorials 21(1), 858-880 (2019)

. Medellin, J., Thornton, M.: Performance characteristics of two blockchain consensus

algorithms in a VMWare hypervisor. In: 2018 International Conference on Grid & Cloud
Computing and Applications “GCA 2018, pp. 10-17 (2018)

. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4(3), 382-401 (1982)

Liang, X., Wu, T.: Exploration and practice of inter-bank application based on blockchain.
In: The 12th International Conference on Computer Science & Education (ICCSE 2017),
pp. 219-224 (2017)

Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet of things.
IEEE Access 4, 2292-2303 (2016)

Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In:
Proceedings ATC 2014 USENIX Annual Technical Conference. USENIX (2014)
Muralidharan, S., Murthy, C., Nguyen, B., et al.: Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. https://arxiv.org/pdf/1801.10228.pdf.
Accessed 19 Mar 2019

Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering Design Principles and
Practical Applications. Wiley Publishing Inc, Indianapolis (2010)

Stallings, W.: Cryptography and Network Security, Principles and Practice, 7th edn. Pearson
Education Limited, London (2018)

Daniel, F., Guida, L.: A service-oriented perspective on blockchain smart contracts. IEEE
Internet Comput. 23(1), 46-53 (2019)

Xia, Q., Sifah, E.B., Asamoah, K.O., Gao, J., Du, X., Guizani, M.: MeDShare: trust-less
medical data sharing among cloud service providers via blockchain. IEEE Access 5, 14757—
14767 (2017)

Fullmer, D., Morse, A.S.: Analysis of difficulty control in bitcoin and proof-of-work
blockchains. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 5988-5992
(2018)

Golosova, J., Romanovs, A.: The advantages and disadvantages of the blockchain
technology. In: 2018 IEEE 6th Workshop on Advances in Information, Electronic and
Electrical Engineering (AIEEE), pp. 1-6 (2018)

Johnsonbaugh, R.: Discrete Mathematics, 8th edn. Pearson Education Inc, New York (2018)
Ehmke, C., Wessling, F., Friedrich, C.M.: Proof of property — a lightweight and scalable
blockchain protocol. In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB), pp. 48-51 (2018)

Ceccetti, E., et al.: Solidus: Confidential Distributed Ledger Transactions via PVORM CCS
2017, pp. 1-23, 30 October— 3 November 2017

Li, C.-Y., Chen, X.-B., Chen, Y.-L., Hou, Y.-Y., Li, J.: A new lattice-based signature
scheme in post-quantum blockchain network. IEEE Access 7, 2026-2033 (2019)

https://arxiv.org/pdf/1801.10228.pdf

28

24,

25.

26.

27.

28.

29.

30.

31.

J. M. Medellin and M. A. Thornton

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice: The SEI Series in
Software Engineering, 3rd edn. Addison Wesley, Upper Saddle River (2012)

Cervantes, H., Kazman, R.: Designing Software Architectures; A Practical Approach:
The SEI Series in Software Engineering. Pearson Education, Boston (2016)

Scriber, B.A.: A framework for determining blockchain applicability. IEEE Softw. 35(4),
70-77 (2018)

Xu, X., Weber, 1., Staples, M., Zhu, L., et al.: A taxonomy of blockchain-based systems for
architecture design. In: Proceedings 2017 IEEE International Conference on Software
Architecture, pp. 243-252 (2017)

Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology:
architecture, consensus, and future trends. In: 2017 IEEE International Congress on Big Data
(BigData Congress), pp. 557-564 (2017)

Booch, G.: Object-Oriented Analysis and Design with Applications. Addison Wesley
Longman, Inc., Reading (1994)

Tian, J.: Software Quality Engineering; Testing, Quality Assurance and Quantifiable
Improvement. IEEE Computer Society (2005)

Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development, 3rd edn. Pearson Education Inc, Upper River (2005)

	A Discussion on Blockchain Software Quality Attribute Design and Tradeoffs
	Abstract
	1 Introduction
	2 Related Work
	3 Design Considerations
	3.1 General Architecture Requirements by Component
	3.2 Key Variability Parameters by Architecture Component
	3.3 Software Architecture Quality Attributes

	4 Quality Attribute Tradeoffs
	4.1 Architecture Design Implies Tradeoffs
	4.2 Key Blockchain Architecture Tradeoffs
	4.3 Architecture Tradeoff Matrix

	5 Tradeoff Discussion
	5.1 Key Attribute Tradeoff Discussion
	5.2 Use of the Key Attribute Tradeoff Matrix

	References

