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Abstract. In this paper, a memristive band pass filter chaotic circuit system was
designed based on a band pass filter circuit. The system numerical solutions
were calculated by using the Adomian decomposition (ADM) algorithm. On this
basis, the dynamical characteristics of the system were analyzed by means of
bifurcation diagram, Lyapunov exponent spectrum, phase diagram of chaotic
attractor, Poincaré section, SE (spectral entropy) and C0 complexity algorithm.
The results of analysis show that the fractional-order memristive chaotic system
has richer dynamical behaviors compared with the integer order system. This
paper provides a theoretical basis for the application of fractional-order mem-
ristor chaotic circuits in the fields of secure communication and information
security.
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1 Introduction

Memristor is the fourth basic electrical element besides resistance, capacitance and
inductance. The chaotic circuit constructed by memrisor can be widely used in the
fields of physics, biomedicine, secure communication and information security [1–3],
so the construction of well-performing memristor chaotic circuits has attracted exten-
sive attention of scholars [4–6]. Memristor is a device that describes the relationship
between charge and magnetic flux, which is generally divided into charge-controlled
memristor and magnetic-controlled memristor. The main difference is the difference in
the dominant quantity, the dominant quantity of the charge-controlled memristor is the
charge, and the magnetic-control memristor plays the dominant volume is the magnetic
flux [7, 8]. At present, although commercial memristor has not yet begun to be applied,
the study of equivalent circuit to achieve the function of memristor has been vigorously
carried out. So far, many chaotic circuits based on memristor have been proposed.
Among them, Ye et al. designed a hyperchaotic system based on the Venn-bridge self-
oscillating circuit, and analyzed the dynamic characteristics of the system by using SE
and C0 complexity algorithms [9]. A hyperchaotic memristor circuit based on Lorentz
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system was constructed by Ruan et al. and its dynamical characteristics was analyzed
[10]. Compared with integer order memristor chaotic system, fractional-order mem-
ristor chaotic system often has more complex dynamic characteristics. In recent years,
the research on fractional-order memristor chaotic systems has become a hot topic. The
definition of fractional calculus mainly includes Riemann-Liouville and Caputo. Up to
now, there are three main methods to solve fractional-order chaotic systems, namely
frequency-domain analysis [11], predictive correction [12] (ABM) and Adomian [13]
algorithm (ADM). Among them, ADM algorithm has the superiority like high accu-
racy, fast convergence, does not need discrete processing, and occupies less computer
memory. So ADM algorithm is widely used in the analysis of fractional-order chaotic
systems. Sun et al. made a detailed analysis of the dynamic characteristics of fractional-
order simplified unified chaotic system by means of direct observation of phase dia-
gram, calculation of power spectrum and other methods [14]. Numerical solution of the
fractional-order diffusionless Lorentz system was analyzed by He and others using
ADM algorithm. [15]. Xu et al. used ADM algorithm to analyze the dynamic char-
acteristics of simplified unified fractional-order chaotic system [14]. These studies
show that fractional-order chaotic systems usually have more complex dynamic
characteristic than integer-order chaotic systems. And the SE and C0 complexity
algorithms can be used to evaluate the randomness of the system [15, 16]. Bao et al.
designed a simple third-order memristor chaotic circuit and analyzed its chaotic
characteristics in detail [17], but the fractional-order system is not analyzed. Therefore,
based on this circuit, a new fractional-order memristor band-pass filter chaotic circuit
system is designed and its dynamic characteristics are analyzed in detail in this paper.

In this paper, the dynamic characteristics of fractional-order memristor band pass
filter chaotic circuits are analyzed. In the first part, a fractional-order memristor chaotic
circuit is defined based on the third-order memristor band pass filter chaotic circuit. The
second part describes the ADM algorithm in detail, and analyzes the parameter iterative
relation of fractional-order memristor chaotic circuit, as well as the numerical accurate
solution of the system. In the third part, the dynamic characteristics of the fractional-
order system are analyzed. The fourth part is the conclusion.

2 Memristive BPF Chaotic Circuit System

An improved charge-controlled memristor equivalent circuit is shown in Fig. 1, which
is composed of a capacitor, two multipliers, three resistors and two op-amplifiers. V and
I represent the voltage and current at the input port, respectively. V0 represents the
voltage across the integral capacitor C0, and g is the proportional coefficient between
the multipliers. The memristor can be expressed as:

i ¼ WðV0Þv ¼ 1
Rc
ð1� gV2

0 Þv
dV0
dt ¼ f ðV0; vÞ ¼ � 1

RbC0
V0 � 1

RaC0
v

(
ð1Þ

Figure 2(a) shows a band-pass filter circuit consisting of 4 resistors, 2 capacitors
and an op-amplifier. The filter circuit is similar to a typical Venn oscillating circuit, but
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the topological structure is different. Replace the resistor R in Fig. 2(a) with the
improved charge-controlled memristor W shown in Fig. 1, the chaotic circuit of
memristive band-pass filter as shown in Fig. 2(b) will obtained. The third-order
memristor chaotic circuit consists of 6 resistors, 3 op-amplifiers, 3 capacitors and 2
multipliers.

According to the model of memristor and the memristor circuit, based on Kirch-
hoff’s law and ohm’s law, the circuit equation of the system can be obtained as:

dV0
dt ¼ � 1

RbC0
V0 � 1

RaC0
V1

dV1
dt ¼ 1�gV2

0
ðk�1ÞRcC2

V1 � 1
R1
ð 1
C1

þ 1
kC2

ÞV2

dV2
dt ¼ kð1�gV2

0 Þ
ðk�1ÞRcC2

V1 � 1
R1
ð 1
C1

þ 1
C2
ÞV2

8>><
>>: ; ð2Þ

Where, k = 1 + R2/R3, V0, V1, V2 are the potentials of the three nodes in the circuit,
let x = V0, y = V1, z = V2, u = du/ds (u � x, y, z), C1 = C2 = C, s = t/R1C, a = R1C/
RbC0, b = R1C/RaC0, c = R1/Rc. By substituting them into Eq. (2) and doing dimen-
sionless processing of the circuit parameters, the dimensionless system equation can be
obtained as:

_x ¼ �ax� by
_y ¼ cð1� gx2Þy=ðk � 1Þ � ðkþ 1Þz=k
_z ¼ kcð1� gx2Þy=ðk � 1Þ � 2z

8<
: : ð3Þ
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Fig. 1. Improved charge-controlled memristor
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Fig. 2. BPF chaotic circuit and memristive BPF chaotic circuit
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Let a = 8, b = 80, c = 500/3, g = 0.1, k = 21. The attractor phase diagram is
shown in Fig. 3. The Lyapunov exponents of the system is (1.0893, 0, −6.2240), while
the Lyapunov dimension DL = 2.175, which indicates that the system is in chaotic
state.

3 Numerical Analysis of Fractional-Order Memristor
Chaotic Circuit

3.1 Adomian Decomposition Algorithm

For a certain fractional-order chaotic system �Dq
tox tð Þ ¼ f x tð Þð Þþ g tð Þ. where, x tð Þ ¼

½x1 tð Þ; x2 tð Þ; . . .; xn tð Þ�T is the system state variable. For a autonomous systems, g tð Þ ¼
½g1 tð Þ; g2 tð Þ; . . .; gn tð Þ�T is a constant. f(x(t)) contains linear part and nonlinear
part. Then, the system equation can be decomposed into:

�Dq
t0xðtÞ ¼ LxðtÞþNxðtÞþ gðxðtÞÞ

xðkÞðtþ0 Þ ¼ bk; k ¼ 0; 1; 2 � � �m� 1

m 2 N;m� 1\q�m

8><
>: ; ð4Þ

Where, �Dq
to is a q-order Caputo differential operator, and L and N are the linear and

nonlinear parts of the system respectively. The bk is the initial value. The solutions of
equations as follows can be obtained after applying Riemann-Liouville fractional
integral operator Jqto on both sides of the equations.

x ¼ Jqt0Lxþ Jqt0Nxþ Jqt0gþ
Xm�1

k¼0

ðt � t0Þk
k!

: ð5Þ

According to the principle of Adomian decomposition method, the nonlinear part
can be decomposed into:

Ai
j ¼

1
i!
½ d

i

dki
Nð

Xi

k¼0
ðkÞkxkj Þ�k¼0; ð6Þ
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Fig. 3. Attractor phase diagram (a) x-y plane, (b) x-z plane, (c) y-z plane
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Where, i = 0, 1, …, j = 0, 1, … n. Thus, the nonlinear term can be expressed as:

Nx ¼
X1
i¼0

Aiðx0; x1; x2; . . .; xiÞ; ð7Þ

Therefore, the solution of Eq. (4) is:

x ¼
X1
i¼0

xi ¼ Jqt0L
X1
i¼0

xi þ Jqt0
X1
i¼0

Ai þ Jqt0gþ
Xm�1

k¼0

ðt � t0Þk
k!

: ð8Þ

And its operation relation is:

x0 ¼ Jqt0gþ
Pm�1

k¼0

ðt�t0Þk
k!

x1 ¼ Jqt0Lx
0 þ Jqt0A

0ðx0Þ
x2 ¼ Jqt0Lx

1 þ Jqt0A
1ðx0; x1Þ

. . .

xi ¼ Jqt0Lx
i�1 þ Jqt0A

i�1ðx0; x1; . . .; xi�1Þ

8>>>>>>>><
>>>>>>>>:

: ð9Þ

3.2 Numerical Solutions to the System Equations

From the system (3), the system equation of the fractional-order memristor chaotic
circuit can be obtained by

�Dq
t0x1 ¼ �ax1 � bx2

�Dq
t0x2 ¼ cð1� gx21Þx2=ðk � 1Þ � ðkþ 1Þx3=k

�Dq
t0x3 ¼ kcð1� gx21Þx2=ðk � 1Þ � 2x3

8><
>: ; ð10Þ

Where, q is the order of the system, x, y and z represent the state variable of the
system. Based on the Adomian algorithm, the linear and nonlinear parts of the system
can be decomposed as:

Lx1
Lx2
Lx3

2
4

3
5 ¼

�ax1 � bx2
cx2=ðk � 1Þ � ðkþ 1Þx3=k
kcx2=ðk � 1Þ � 2x3

2
4

3
5;

Nx1
Nx2
Nx3

2
64

3
75 ¼

0
�dx21x2
�kdx21x2

2
4

3
5;

g1
g2
g3

2
4

3
5 ¼

0
0
0

2
4

3
5

ð11Þ
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Where, d = cg/(k − 1). Therefore:

A2 ¼ �dx21x2;A3 ¼ �kdx21x2 ð12Þ

The nonlinear term x1
2x2 is decomposed according to the Eq. (6), and the first 5

items are intercepted on the premise of ensuring the calculation accuracy, which can be
expressed as:

A0
2 ¼ �x02ðx01Þ2;

A1
2 ¼ �x12ðx01Þ2 � 2x02x

1
1x

0
1;

A2
2 ¼ �x22ðx01Þ2 � 2x12x

1
1x

0
1 � 2x02x

2
1x

0
1 � x02ðx11Þ2;

A3
2 ¼ �x32ðx01Þ2 � 2x22x

1
1x

0
1 � x12ðx11Þ2 � 2x12x

2
1x

0
1 � 2x02x

3
1x

0
1 � 2x02x

1
1x

2
1;

A4
2 ¼ �x42ðx01Þ2 � 2x32x

1
1x

0
1 � x22ðx11Þ2 � 2x22x

2
1x

0
1 � 2x12x

2
1x

1
1 � 2x12x

3
1x

0
1 � 2x02x

4
1x

0
1 � 2x02x

3
1x

1
1 � x02ðx21Þ2

8>>>>>>><
>>>>>>>:

ð13Þ

A0
3 ¼ �x02ðx01Þ2;

A1
3 ¼ �x12ðx01Þ2 � 2x02x

1
1x

0
1;

A2
3 ¼ �x22ðx01Þ2 � 2x12x

1
1x

0
1 � 2x02x

2
1x

0
1 � x02ðx11Þ2;

A3
3 ¼ �x32ðx01Þ2 � 2x22x

1
1x

0
1 � x12ðx11Þ2 � 2x12x

2
1x

0
1 � 2x02x

3
1x

0
1 � 2x02x

1
3x

2
3;

A4
3 ¼ �x42ðx01Þ2 � 2x32x

1
1x

0
1 � x22ðx11Þ2 � 2x22x

2
1x

0
1 � 2x12x

2
1x

1
1 � 2x12x

3
1x

0
1 � 2x02x

4
1x

0
1 � 2x02x

3
1x

1
1 � x02ðx21Þ2:

8>>>>>>><
>>>>>>>:

ð14Þ

x11 ¼ ð�ax01 � bx02Þ ðt�t0Þq
Cðqþ 1Þ

x12 ¼ ½cð1� gðx01Þ2Þx02=ðk � 1Þ � ðkþ 1Þx03=k� ðt�t0Þq
Cðqþ 1Þ

x13 ¼ ½kcð1� gðx01Þ2Þx02=ðk � 1Þ � 2x03� ðt�t0Þq
Cðqþ 1Þ

8>>><
>>>:

ð15Þ

Equation (17) is obtained from the initial conditions, where x0j j ¼ 1; 2; 3ð Þ is the
initial value of the system (4) and h = t − t0. Similarly, the remaining three terms can
be obtained, so the numerical solution of the system is

~xjðtÞ ¼ x0j þ x1j þ x2j þ x3j þ x4j ð16Þ

Let

c01 ¼ x01
c02 ¼ x02
c03 ¼ x03

8><
>: ð17Þ

c11 ¼ �ac01 � bc02;

c12 ¼ cc02=ðk � 1Þ � ðkþ 1Þc03=k � dc02ðc01Þ2
c13 ¼ kcc02=ðk � 1Þ � 2c03 � kdc02ðc01Þ2

8><
>: ð18Þ
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c21 ¼ �ac11 � bc12
c22 ¼ cc12=ðk � 1Þ � ðkþ 1Þc13=k � d½c12ðc01Þ2 � 2c02c

1
1c

0
1�

c23 ¼ kcc12=ðk � 1Þ � 2c13 � kd½c12ðc01Þ2 � 2c02c
1
1c

0
1�

8><
>: ð19Þ

c31 ¼ �ac21 � bc22;

c32 ¼ cc22=ðk � 1Þ � ðkþ 1Þc23=k � dc22ðc01Þ2 � d½ð2c12c11c01 þ c02ðc11Þ2Þ Cð2qþ 1Þ
C2ðqþ 1Þ þ 2c02c

2
1c

0
1�

c33 ¼ kcc22=ðk � 1Þ � 2c23 � kdc22ðc01Þ2 � kd½ð2c12c11c01 þ c02ðc11Þ2Þ Cð2qþ 1Þ
C2ðqþ 1Þ þ 2c02c

2
1c

0
1�

8>><
>>:

ð20Þ

c41 ¼ �ac31 � bc32

c42 ¼ cc32=ðk � 1Þ � ðkþ 1Þc33=k � d½c32ðc01Þ2 þ 2c02c
3
1c

0
1 þ c12ðc11Þ2 Cð3qþ 1Þ

C3ðqþ 1Þ�
þ ð2c22c11c01 þ 2c12c

2
1c

0
1 þ 2c02c

1
1c

2
1Þ Cð3qþ 1Þ

Cð2qþ 1ÞCðqþ 1Þ

c43 ¼ kcc32=ðk � 1Þ � 2c33 � kd½c32ðc01Þ2 þ 2c02c
3
1c

0
1 þ c12ðc11Þ2 Cð3qþ 1Þ

C3ðqþ 1Þ�
þ ð2c22c11c01 þ 2c12c

2
1c

0
1 þ 2c02c

1
1c

2
1Þ Cð3qþ 1Þ

Cð2qþ 1ÞCðqþ 1Þ

8>>>>>>>>><
>>>>>>>>>:

ð21Þ

Therefore, the Eq. (16) is same as Eq. (22) as follow:

~xjðtÞ ¼ c0j þ c1j
ðt � t0Þq
Cðqþ 1Þ þ c2j

ðt � t0Þ2q
Cð2qþ 1Þ þ c3j

ðt � t0Þ3q
Cð3qþ 1Þ þ c4j

ðt � t0Þ4q
Cð4qþ 1Þ ð22Þ

In the process of solving, the integral interval needs to be divided into small
sections (tk, tk+1), and the result obtained will be the initial value of the next section
(tk+1, tk+2). Let h = (tk − tk−1), a total of (tk+1 − tk)/(h – 1) iterations is required.

4 Dynamic Analysis of Fractional-Order Memristor Chaotic
Circuits

4.1 The Influence of Parameter a on the Dynamic Characteristics
of the System

Let q = 0.9, and initial value x0 = [0, 0.000006, 0], h = 0.001, the phase diagram of the
system is shown in Fig. 4. In this point the Lyapunov exponent is (1.8255, 0,
−12.9251), with the Lyapunov dimension DL = 2.14. The system is in a chaotic state at
this time, due to a positive Lyapunov exponent. And the maximum Lyapunov exponent
is larger than the maximum Lyapunov exponent of integer order. So the system has
more complex chaotic characteristics.

If q = 0.9, the bifurcation diagram of the system when a changes from 7 to 11 is
shown in Fig. 5(a). It can be seen from the bifurcation diagram that, when the
parameters a 2 (7, 7.172) and a 2 (8.925, 11), the system is in a periodic state.
However, when a 2 (7.172, 8.925), the system is in a chaotic state.
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Based on the ADM algorithm, QR decomposition method is used to calculate the
Lyapunov exponent spectrum of the system varying with parameter a, as shown in
Fig. 5(b). It can be seen from the figure that when a 2 (7.172, 8.925), the Lyapunov
exponent of the system is positive and the system is in a chaotic state, which is
corresponding to the bifurcation diagram. In particular, when 7.809 < a < 7.875, the
Lyapunov exponent of the system is small and the randomness of chaotic sequence is
weak. The maximum Lyapunov exponent of the fractional order is greater than 2, while
the maximum Lyapunov exponent of the integer order is less than 2. Therefore, the
dynamic characteristics of the fractional order chaotic system are better than that of the
corresponding integer order chaotic system.
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Fig. 4. Attractor phase diagram of system with a = 8 and q = 0.9 (a) x-y plane, (b) x-z plane,
(c) y-z plane
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In order to further characterize the dynamic characteristics of the chaotic system,
SE and C0 complexity algorithms were used to obtain the complexity of the system
varying with parameter a, as shown in Fig. 5(c) and (d). When a 2 (7.172, 8.9), system
is periodic state, both SE and C0 values are small. And when the system enters chaotic
state, the complexity of the system increases and the fluctuation amplitude is large. The
system enters the periodic state again when a in the (8.9, 11). In this time SE and C0

both change gently and gradually approach 0, which indicate the complexity of system’
sequence decreases, that is, the randomness of chaotic sequence decreases.

4.2 Dynamic Characteristics of the System Varying with Order q

Set a = 8, q varying from 0.5 to 1, and keep other parameter values unchanged, the
bifurcation diagram of the system is shown in Fig. 6(a). As can be seen from Fig. 6(a),
when q > 0.709, the system enters a chaotic state through period-doubling bifurcation.
Figure 6(b) shows the Lyapunov exponent spectrum of the system changing with the
order q. Chaos characteristics of the system are mainly affected by the maximum
Lyapunov exponent, so in order to show clarity, the minimum Lyapunov exponent
curve is omitted from Fig. 6(b). It can also be seen from the Fig. 6(b) that the Lya-
punov exponent increases with the increase of order q, and the minimum order of chaos
generation is 0.709, which is completely corresponding to the bifurcation diagram.
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spectra (c) C0 complexity, (d) SE complexity
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To further analyze the dynamic characteristics of the system, the C0 and SE
complexity of the system when the order q changes is analyzed, as shown in Fig. 6(c)
and (d). It can be seen from the figure that when 0.5 < q < 0.709, the system com-
plexity is low, and when q > 0.709, the system enters the chaotic state system and the
complexity increases, and the dynamic characteristics of the system are more complex.

The Fig. 7 shows the phase diagram of the system in the y-z plane and the Poincaré
section of the y-z in the plane x = 1 when a = 8, q = 0.65 and a = 8, q = 0.8. When
a = 8 and q = 0.65, the phase diagram of the system shows a limit cycle and the
Poincaré section shows limit discrete point. When a = 8 and q = 0.8, chaotic attractors
appear in the system. Poincaré section is the dense point of fractal structure, which
corresponds to the bifurcation graph and Lyapunov exponent spectrum.

4.3 Dynamic Characteristics of the System When Parameters
a and Order q Change Simultaneously

Let the initial value be x0 = [0, 0.000006, 0], h = 0.001, and keep other parameter
values unchanged. Based on SE and C0 algorithms, 2D SE and C0 complexity contour
lines can be obtained, as shown in Fig. 8(a) and (b). This figure represents the com-
plexity of the system with different parameter a and q, and provides a reference for
selecting appropriate system parameters and order numbers for better application. In
Fig. 8, different colors indicate different complexity. The darker the color represents the
higher the complexity and the higher the randomness of chaotic sequences. The
maximum complexity of SE is 0.3712, corresponding a = 7, q = 0.8243, and the
maximum Lyapunov exponent is 3.419. The maximum complexity of C0 is 0.1113,
a = 7, q = 0.7207, and the maximum Lyapunov exponent is 6.3243. It should be
pointed out that when a = 7, 0.7207 < q < 0.8, C0 complexity is small, and in practical

y

z

-0.6 -0.4 -0.2 0 0.2

-4

-3

-2

-1 b

-0.6 -0.4 -0.2 0 0.2

-3

-2

-1

0

y

z

d

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-6

-4

-2

0

2

4

6

y

z
c

-0.4 -0.2 0 0.2 0.4 0.6
-6

-4

-2

0

2

4

y
z

a

Fig. 7. Phase diagram and Poincaré section of the system in the y-z plane (a) Phase diagram of
system on the y-z plane when a = 8, q = 0.65; (b) Poincaré section on the y-z plane when a = 8,
q = 0.65; (c) Phase diagram of system on the y-z plane when a = 8, q = 0.8; (d) Poincaré section
on the y-z plane when a = 8, q = 0.65
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applications should avoid taking values in this range. In general, when a = 7,
0.8 < q < 0.9, chaos sequences within the range of this region should be selected as far
as possible because the system has a good stochastic performance.

5 Conclusion

In this paper, a novel memristor band pass chaotic filter circuit is constructed and the
numerical solution of fractional-order memristor chaotic circuit is calculated based on
Adomian algorithm. The dynamic characteristics of the system are analyzed by means
of phase diagram, Poincaré section, bifurcation diagram, Lyapunov exponent spectrum,
SE and C0 complexity algorithms. The results show that the dynamical characteristics
of fractional-order memristor band pass chaotic circuit system are more complex than
its corresponding integer order system and more suitable for the application of secure
communication and other fields. When a = 7, 0.8 < q < 0.9, the system chaotic
sequence has the best randomness and the highest security. The research results of this
paper provide a theoretical basis for the application of memristor band pass filter
chaotic circuit in secure communication and other fields and have high theoretical and
application value.
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