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Abstract. Apply the discrete chaotic sequence of Gingerbreadman System to
the only one control parameter of Nose-Hoover continuous chaotic system,
can get completely different simulation results. Namely, extracting a part of
sequence of Gingerbreadman discrete system randomly, and take this sequence
to control Nose-Hoover continuous chaotic system, then make analysis of this
new system. Dynamic analysis of the new system, which is based on Nose-
Hoover continuous chaotic system under the control of the discrete chaotic
sequence of Gingerbreadman system. Compared with the original system
carefully, find that phase diagram arising from new system produce obvious
changes. We also calculate Lyapunov exponents, compared with the Lyapunov
exponents computed from original system, find it also changed. It proved that
our new system has chaotic characteristics, provide new method for the chaotic
system which are used in the fields of cryptography, secure communication and
information security etc.
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1 Introduction

In recent years, chaos theory has been widely applied in the fields of cryptography,
secure communication and information security. It is reported that chaos coding
technology and decoding technology have entered the U.S. defense department [1].
Chaotic systems can be divided into continuous and discrete systems, and continuous
systems used for encryption often need to be discretized. Information security was
studied in the early 1990s [2].

Habutsu [3] firstly used the discrete chaotic dynamic system to construct the
encryption algorithm in 1991. Bianco [4, 5] used logistic map to generate a floating-
point sequence in 1991 and 1994, then converted it into binary sequence which is
Exclusive OR [XOR] with plain text. In 1991, Deffeyes [6] described a method to
generate a two-dimensional N-by-M region from a one-dimensional password, which is
similar to the generalized two-dimensional back-mapping in the long distance and
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mainly relies on geometry. and also the chaotic encryption methods based on syn-
chronization proposed by Caroll and Pecora [7–13], Cuomo and Oppenheim [14, 15],
Murali [16], Koearev [17], KHZ [18], Papadimitriou [19] et al. Bernstein and
Lieberman [20] established a pseudo-random sequence generator with chaos circuit in
1991, and Gutowicz [21, 22] described an encryption scheme based on one-dimensional
cellular automata. Firstly in 1994 and 1995, Pichler and Scharinger [23] introduced the
encryption method with two-dimensional discrete chaotic systems. In 1997, Götz et al.
proposed a new one-dimensional iterative method [24], and Kotulski proposed the
inverse iterative algorithm [25]. Study of continuous chaotic system is a hot topic in
recent years scientists to explore, from 1963 the American scientists Lorenz found
chaos, 1975 the Chinese scholars Tien-Yien Li and the American mathematician Yorke
published the famous article “period three implies chaos” [26] in “America Mathe-
matics” magazine, to now, there is no need to repeat because it is too familiar to us.

Due to the defects of the encryption algorithm itself or the insufficient security of
the inherent characteristics of the discrete chaotic system, the cryptographic system is
actually a process of reversible transformation from plaintext space to ciphertext space
determined by the key [27]. In recent years, people have stayed on the study of chaotic
attractors generated by a single continuous system with parameter changes, and further
analyzed on the basis of a system that has proved to be chaotic. Such as the research of
Wang Fanzhen et al. [28]. based on a four-wing attractor of Qi et al. [29], or fine-tuning
the original equation, increasing or decreasing the dimension to find new chaotic
phenomena, In the field of chaotic circuit engineering, many techniques have used non-
smooth nonlinear terms to generate multi-volume chaotic attractors [30–34]. Based on
the above considerations, the key question discussed in this paper is: Can a chaotic
sequence generated by a discrete system be used to control a certain parameter of a
continuous system, so that it can change with discrete sequences, and whether new
chaotic phenomena can be generated under such conditions? This paper gives a certain
dynamic analysis through calculation and simulation, and gives certain conclusions at
the end of the article.

The main method of time series chaos determination [35] analyzes the dynamic
characteristics of chaotic characteristics from different angles. This paper analyzes the
Nose-Hoover system controlled by the sequence generated by the discrete system from
the aspects of Lyapunov exponent analysis and direct observation of phase diagram
trajectory, and compares it with the simulation results of the original Nose-Hoover
system to analyze the phase diagram. The formation of the trajectory is used to
determine the effect of the sequence on the Nose-Hoover system.

So far, only a few literatures have studied and illustrated the phase diagram of the
Gingerbreadman discrete chaotic system. This paper adds a study on the variation of
the Lyapunov exponent with parameters. Discrete systems are analyzed on the basis of
logistic map, and one-dimensional chaotic maps are the most studied. The chaotic
behavior of logistic mapping was first proposed by American mathematical biologist
R. May. In 1976, he published a review article in the American magazine Nature [36].
This article will not describe the basic principles.

Nowadays, many theorems and inferences have been proposed for the prediction of
chaotic attractors [37, 38]. The method of this paper provides a new idea for judging

Dynamical Analysis of Nose-Hoover Continuous Chaotic System 171



the existence of chaos and analyzing the formation of chaotic attractors, and this
assumption is proved by calculation and simulation.

2 Dynamic Analysis of Discrete and Continuous Chaotic
Systems

2.1 Dynamic Analysis of Gingerbreadman Discrete System

The mathematical model of system Gingerbreadman is:

Xnþ 1 ¼ 1þ jXnj � aYn
Ynþ 1 ¼ Xn

�
ð1Þ

When the initial value of the system isX0 = 0.5,Y0 = 3.7, and a = 1,Gingerbreadman’s
attractor phase diagram on the x-y plane is shown in Fig. 1(a), The Lyapunov exponent
of the system is LE1 = 0.09054 and LE2 = -0.09054, the system is in a chaotic state. It
can be seen from Fig. 1(a) that the value of phase diagram parameter x is within the
interval (−4,8]. In this paper, the discrete sequence generated by Xn is shown in
Table 1.1 for simulation of Nose-Hoover system under the control of discrete sequences
in 2.1 and 2.2. the relationship curve of Lyapunov exponent of Gingerbreadman discrete
system with parameter a, as shown in Fig. 1(b). When the value of parameter a is
between [0.95, 5.5], the maximum Lyapunov exponent of the system is always greater
than 0, indicating that the system is in a chaotic state within this interval.

2.2 Dynamic Analysis of Nose-Hoover Continuous System

The modeling process and feature principle of the Nose-Hoover system can be found in
the specific literature [39].

(a) x-y plane phase diagram                (b) Lyapunov exponents with a

Fig. 1. Gingerbreadman system simulation
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The mathematical model of system Nose-Hoover is:

_x ¼ y
_y ¼ �xþ yz
_z ¼ c� y2

8<
: ð2Þ

When the initial value of the system is x0 = 0, y0 = 5, z0 = 0, c = 0.99, and the
simulation time step is 0.05 s, the attractor phase diagram on the x-y plane is shown in
Fig. 2(a). The Lyapunov exponent of the system is LE1 = 0.0218, LE2 = 0, and
LE3 = −0.0466, so the Lyaounov dimension can be calculated as 2.4678. As shown in
Fig. 2(b), you can see how the Lyapunov exponent of nose-hoover system changes
with parameter c. When parameter c is within the interval [0, 15], the Lyapunov
exponent always has a part greater than 0, which indicates that nose-hoover system
within this interval is in a chaotic state. It can be seen from this that system Ginger-
breadman’s discrete sequence is in the range where parameter c can make the system
have chaotic characteristics. In order to more accurately analyze the chaotic feature of
Nose-Hoover continuous system, a bifurcation diagram of the continuous system can
be made. The bifurcation diagram of Nose-Hoover system varying with parameter c is
shown in Fig. 2(c). By comparing the curve of Lyapunov exponent of the system
changing with parameter c with the bifurcation diagram of the system changing with
parameter c, it can be seen that when c = 8.5 and c = 12.13, the system has a periodic
window, and the system in the range of these two values is in a periodic state when c is
in the interval (0,6.05], the whole Nose-Hoover system is in the period doubling
bifurcation state. When c > 6.05, it enters the first bifurcation of the system, generates
three periodic states, and again appears the more obvious periodic window at c = 9,
and the second period-doubling bifurcation of the system at c = 11.28. In Fig. 2(b) and
(c) shows that the system’s Lyapunov exponent and bifurcation diagram is consistent,
further contrast C0 complexity and SE complexity of x vary with parameters c, as
shown in Fig. 2(d) and (e). Parameter c, for example, in the interval [7.852, 10.07],
when c > 7.852, with the increase of c value, the SE and C0 complexity of system as
the rising trend. When c > 10.07, with the increase of c value, the SE and C0 com-
plexity of system as the declining trend. When c is in the interval [10.07, 13.19], the
system enters into the anti-period-doubling-bifurcation state, which is consistent with
the results verified by the corresponding Lyapunov exponents and the bifurcation
diagram of the system. The stability of chaos dynamics of Nose-Hoover system can be
explained, which further proves that this continuous system can be used as the control
carrier of Gingerbreadman discrete sequence.

When analyzing Nose-Hoover system, Wolf algorithm [40] was used to calculate
Lyapunov exponents, draw the spectrum graph of Lyapunov exponents changing with
system parameters, make bifurcation diagram, and analyze the complexity of the
system changing with parameter c. Through the above basic dynamics analysis, chaos
characteristics of Nose-Hoover system can be explained. The preliminary proof is
given for analyzing the control of discrete sequence based on this method.
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(a) x-y phase diagram of continuous system             (b) Lyapunov exponents with c

(c) Bifurcation diagram with c                             (d) SE complexity with c

(e) C0 complexity with c

Fig. 2. Simulation diagram of Nose-Hoover

3 The Nose-Hoover Continuous System Under the Control
of Discrete Sequence of Gingerbreadman System

3.1 Dynamical Analysis

In this paper, the basic mathematical model of nose-hoover system under Ginger-
breadman discrete sequence control parameters is shown in Eq. (3).
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_x ¼ y

_y ¼ �xþ bxy

_z ¼ c� y2

8><
>: ð3Þ

As can be seen from Eq. (3), a parameter b is introduced in the second line and the
second item of the original equation. If b is equal to 1, it is not fundamentally different
from the mathematical model of nose-hoover system. However, this part of this paper
also considers the influence of system parameter b. This article will illustrate the
advantages and disadvantages of the new system through the following introduction.
Gingerbreadman discrete system was numerically simulated to obtain a series of Xn
discrete sequences, some of which are shown in Table 1. When the time interval
t = 0.5 s is taken, the Lyapunov exponents of the system can be obtained by calcu-
lating that LE1 = 0.1295, LE2 = 0, and LE3 = −0.1411. The Lyapunov dimension of
nose-hoover system under the control of discrete sequence is further calculated to be
2.9179, and the parameter c under the control of discrete sequence is finally shown to
be 7.7. In the experimental simulation, it was found that when the time-varying
parameter c in the system was moved to the numerical solution algorithm of nose-
hoover equation, the parameter c did not change finally, but it affected the simulation
results, indicating that the stability of the chaotic system was affected by many factors.
Figure 3(a) shows the curve of Lyapunov exponents changing with parameter b, by
comparing Fig. 2(b) of the original Nose-Hoover system, it is found that the peak value
of Lyapunov exponents shown in Fig. 3(a) increases with parameter b, and Lyapunov
exponent value is always greater than 0, indicating that the Nose-Hoover system found
in this paper under the control of Gingerbreadman discrete system has better chaotic
characteristics. In addition, it can be seen that, in the same region [0, 15], the expo-
nential waveform of Lyapunov exponents in the range of [1.025, 8.15] as shown in
Fig. 3(a) is roughly the same as the waveform in the range of [0, 11.28] as shown in
Fig. 2(b). The exponential curve of the former is half as compressed as that of the
latter, and the entire change period is twice as long as that of the original system. By
referring to the bifurcation diagram of the system changing with parameter b, as shown
in Fig. 3(b), the time step is still 0.5 s. However, by comparing Figs. 3(b) and Fig. 2
(c), it is found that the chaotic characteristics of the system are different even under the
control of changing parameters. In order to study how this graph is formed, and under
two conditions (control parameters before numerical solution and control parameters
after numerical solution), the number of plot points is about 300*500, which can be
simulated in Fig. 3(b), and the trajectory shown, it can be seen that even if the same
parameter c, the value is located before or after the solution of the system numerical
value, it will affect the trajectory of the system, and finally the overall phase diagram of
the drawing will be different. We can see that the shape of the whole system has
changed, which is an attractor with two diamond-shaped torus, and from the basic
observation of chaotic attractors, it can be judged that the system still has chaotic
characteristics [41, 42].
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3.2 Comparative Analysis of the Nose-Hoover System Under
the Condition of Parameter c in Two Cases

It can be seen from the above analysis that the phase diagram of the Nose-Hoover
system has different chaotic characteristics under different conditions. The original
hypothesis can be proved: The Nose-Hoover continuous system under the discrete
sequence control of the discrete system Gingerbreadman has chaos characteristic.

Comparing phase diagram Fig. 2(a) with Fig. 3(a), it is found that the Nose-Hoover
system under discrete sequence control is more convergent. In order to further analyze
the trajectory changes of the Nose-Hoover system, the trajectories formed by the Nose-
Hoover system at different stages are successively simulated. The trajectory phase
diagrams drawn by different points in the simulation can be clearly understood and
formed as shown in the Fig. 2(a). Of cause the process of the attractor shown in Fig. 2
(a) can be judged based on the periodic orbital theory of chaotic attractors [42, 43].
When analyzing the formation of the phase diagram of the Nose-Hoover system,
as shown in Fig. 2(a), the trajectory first forms two cycles from the middle part

Table 1. The Xn sequence generated by the discrete system corresponds to the value of the
continuous system parameter Ci.

Xn(n = 1, 2, 3……) Continuous system corresponding parameter Ci (i = 1, 2, 3……)

0.5 C1 0.5
−2.2 C2 −2,2
2.7 C3 2.7
5.9 C4 5.9
4.2 C5 4.2
−0.7 C6 −0.7
−2.5 C7 −2.5
4.2 C8 4.2
7.7 C9 7.7
…… ……

    (a) Lyapunov exponents with b                  (b) Bifurcation diagram with b

0 5 10 15
b

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Ly
ap

un
ov

Ex
po

ne
n t
s

Fig. 3. Analysis of Nose-Hoover system under discrete sequence control
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(the number of drawing points is around 300–500), and then enters a cycle of the right
half (The number of drawing points is around 300–800), then the middle part is carried
out for five cycles, and then enters the left half (the number of drawing points is around
300–1300). After completing four cycles (the number of drawing points is around
300–1900), it starts to enter the three periods of the middle part (the number of drawing
points is around 300–2400), and then enters the period of the right half (the number of
drawing points is around 300–2600), then enter the middle part of the three cycles (the
number of drawing points is around 300–3150), then enter a cycle of the right half, then
enter the three cycles of the middle part, and then enter the middle part, which can be
repeated and a complete attractor phase diagram of the Nose-Hoover system as shown
in Fig. 2(a) is obtained. When the plotting points number of this system is about
300*500, 300*800, 300*1500, 300*1900, the trajectory of Nose-Hoover is shown
in Fig. 4(a), (b), (c), (d) respectively.

Comparing the trajectories of the Nose-Hoover system under discrete sequence
control Fig. 3(b) and the trajectory of the Nose-Hoover system Fig. 4(a), (b), (c), (d),
found by discrete system, it is found that the trajectory of Nose-Hoover system under
the control of sequence generated by discrete system is simpler, the graph is more
convergent, and the shape is more stable.

(a) Track at 300-500                             (b) Track at 300-800 

(c) Track at 300-1500                            (d) Track at 300-1900 

Fig. 4. Trajectory map of the formation process of Nose-Hoover system in each cycle
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4 Conclusion

When studying the chaotic characteristics of a certain system, it can be studied by
comparing the Lyapunov exponent, bifurcation diagram, complexity and other methods
of the system. It can also be directly observed and compared with the original ones that
have proved chaotic, and the formation process of the chaotic system can be under-
stood. Many mathematicians and scientists have specific research on the formation
control analysis of specific chaotic phenomena. For example, the literature [39] is the
discovery of the Nose-Hoover system and the preliminary analysis process. Based on
the original chaotic system, this paper makes further research and discovery by using
new methods and new developments in chaotic systems in recent years. The proof
process for specific mathematical models will not be described here.

The steady state value of the Lyapunov exponent of the Nose-Hoover system
mentioned in this paper is larger under the condition of discrete sequence control, and
the specific shape of the phase diagram also changes in macroscopic observation. An
idea can be put forward: in the process of a series of changes in parameters, the Nose-
Hoover system converges toward the periodic trajectory of the middle part of the Nose-
Hoover system in Fig. 4.

The above experimental simulations show that the chaotic characteristics of the
Nose-Hoover system change under the control parameters of the discrete sequence
generated by the discrete system Gingerbreadman, and a chaotic attractor phase diagram
different from the previous one is found in this sequence. The figure is in the shape of
two side by side diamonds. It is found that the Nose-Hoover system under the control of
Gingerbreadman discrete sequence has more stable chaotic characteristics. and has some
chaotic characteristics of Gingerbreadman discrete system and Nose-Hoover continuous
system as a whole. For example, it has the symmetry of the Gingerbreadman discrete
system to some extent. The Lyapunov exponent of the Nose-Hoover continuous sys-
tem changes with the parameters, the bifurcation diagram of the system with the
parameter changes, and the complexity of the system with the parameter changes have
certain similarity. However, in the detailed analysis, it is found that the continuous
system controlled by discrete sequence has larger Lyapunov exponent value and
better complexity under some discrete sequences, and the chaotic characteristics are
more stable.
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