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Abstract. This paper is based on the sparse representation of signals in
orthogonal space. Data collection and compressed are combined by compressed
sensing theory. The image signal can be reconstructed by fewer observations
which we obtained it under the measurement matrix. Compressive sensing
theory breaks through the limitation of data sampling. In the theory of com-
pressed sensing, the selection of measurement matrix plays a key role in whether
the compressed signal can be reconstructed or not. In this paper, different
measurement matrices are selected to achieve the compressive sensing and their
similarity coefficient matrices are analyzed to compare the different perfor-
mance. This paper focus on the coefficient selection of random measurement
matrix. To find the relationship between the image structure similarity coeffi-
cient and the other characteristic indexes. An algorithm for dimension design of
measurement matrix is proposed. A high performance algorithm for image
compression perception and image restoration is implemented.
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1 Introduction

Nyquist sampling theorem, also known as Shannon sampling theorem [1]. In this
theorem, two processes of signal sampling and reconstruction are described: Firstly, the
continuous time signal is converted to the discrete time signal, and then the discrete
signal is restored. The key theory in the sampling theorem is that the sampling fre-
quency must be higher than twice the maximum signal frequency [2]. Otherwise, the
signal will be aliased. However, in practical application, this method requires a lot of
computing resources.

Therefore, it is assumed that if a way can be found to realize the compression
process while sampling and retain the effective information of the original signal [3],
Moreover, it does not need to meet Nyquist’s limit on sampling frequency to complete
signal reconstruction, which can reduce the complexity of signal processing and the
cost of calculation. Compressed sensing theory provides a new idea for signal pro-
cessing [4]. Compressive sensing theory is to design a compression sampling algorithm
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aiming at the sparse nature of most signals in real life. Due to the sparse nature of
signals, only a small number of observation values can be used for signal recon-
struction during recovery.

Compressed sensing theory was proposed by Donoho et al. as a practical signal
sampling coding theory [5, 6], it has been widely applied. Mallat and Zhang proposed
the matching tracking algorithm (MP&OMP) in 1993, which was the first time to use
the super-complete dictionary for sparse decomposition of the original signal [7]. Tropp
proved that if select gaussian matrix or Bernoulli matrix [8], we can use the greedy
algorithm to reconstruct the signal [9, 10]. Candes proved that the measurement matrix
which is selected in compression observation should meet the property of finite
equidistant, so several common measurement matrices have been widely used in
compressive perception theory. Such as gaussian random matrix, Bernoulli measure-
ment matrix, partial hada code matrix and so on. The above research results are the
important foundation of CS theory. Based on OMP reconstruction algorithm [11], this
paper analyzes the influence of different measurement matrices on image compression
effect. Combined with the image feature information, we analyze the influence of
parameters on the reconstruction effect under the same measurement matrix [12]. In this
paper, a method for calculating the parameters of measurement matrix is proposed,
which can better take account of the sharpness of image and the complexity of
calculation.

2 Compressive Sensing Theory

If there are few non-zero elements in a signal, or the majority of signals in this signal
are zero, the signal can be considered as sparse. In practice, the signals we come into
contact with are generally not absolutely sparse, but they can be approximately sparse
in a certain transformation domain. In other words, as long as the sparse space that
meets the conditions is found, the data can be effectively compressed and sampled.

We set the length of the signal X is N, in the transformation domain, if there are
K coefficients is not zero or much greater than the other coefficients, and K � N. Then,
the signal is said to be K-sparse in the corresponding transformation domain. When we
obtain M observations ðK\M � NÞ. We can compress the signal. And this M obser-
vation can reconstruct the original signal X. Because the loss is some smaller coeffi-
cient, so we can get an approximation of X. Set the orthonormal basis of the
transformation domain is wi ¼ w1; . . .wnf g, X can be represented linearly by
h1; . . .hnf g:

X ¼
XN

i¼1

hiwi ¼ ws ð1Þ

Where w is a N � N matrix, h is N � 1 matrix. s is sparse coefficient. Domain
selection is the basis of signal sparse representation. At present, classical algorithms
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include discrete cosine (DCT) algorithm, Fourier transform (FFT) algorithm, wavelet
transform (DWT) algorithm, etc. DWT algorithm is used in this paper.

The measurement M � N matrix is used to transform the original signal of N
dimension into the Y observation vector of M dimension. Then the signal information
can be restored as much as possible through reconstruction algorithm. It’s essentially
the projection of the original signal X onto the measurement matrix that we set up to get
the projection value Y. The purpose of the observation matrix design is to better realize
the reconstruction of the original signal or obtain the sparse coefficient vector. In order
to achieve this, the observation matrix must satisfy the RIP characteristics. The one-to-
one correspondence between the original space and the sparse space is guaranteed [13].
To meet the RIP characteristics, the measurement matrix / is required to be unrelated
to sparse basis w. In this way, two different K-sparse signals will not be mapped to the
same set. The expression of measured value is:

Y ¼ /X ð2Þ

Where / is M � N order matrix. According to formula (1), it can be obtained:

Y ¼ /X ¼ /wS ð3Þ

In the above formula, the number of equations is far less than the number of
unknowns, and the system should have infinite solutions. However, since the original
signal has been sparse transformed, there are only non-zero values and we know their
positions. So we can get the solutions when M[K. Then the original signal is
recovered by nonlinear reconstruction algorithm. In this paper, several measurement
matrices are compared and their parameters are further verified.

When the measurement matrix meets the RIP characteristics, we can decode the
projected value according to the method of solving the norm. Thus, the signal
reconstruction process is transformed into the process of solving the optimization of
norm, and the process of solving the minimization of norm is a linear process. At
present, reconstruction algorithms can be roughly divided into two categories. One is
greedy algorithm, including matching tracking algorithm and orthogonal matching
tracking algorithm. The second is convex optimization algorithm, which includes
gradient projection method, base tracking method, minimum Angle regression method
and so on. In this paper, we use the orthogonal matching tracking algorithm.

3 Measurement Matrix and Reconstruction

In the realization of compressed sensing, measurement matrix, as a very important part,
directly affects the accuracy of image restoration [14]. When selecting the measurement
matrix, in addition to meeting RIP principle [15], as the key to encrypt the information
to be processed, the measurement matrix also needs to have good randomness.
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Different measurement matrices with different randomness have different measurement
effects on different information sources. Therefore, when the image is projected by the
measurement matrix, some parameters will have a certain impact on the recovery effect
in the reconstruction process.

In this paper, random matrix, gaussian matrix and Parthadamard matrix are used as
measurement matrix. The elements in the random channel matrix are generated ran-
domly and have great uncertainty, so the confidentiality is also strong. In this exper-
iment, the dimension of semi-determined random channel is adopted. Gaussian matrix
is unrelated to the sparse basis of most signals. Besides these two matrices, it is also
widely used in the process of compressed sensing. In this paper, part of the hadamar
matrix is selected for comparative analysis with the above two matrices.

Lena grayscale map in the image standard database is selected as the information
source, and the implementation process is shown in Fig. 1.

The observation signal can be expressed as:

Y ¼ X � R ð4Þ

Where X is the sparse signal after DWT transformation, R is the measurement
matrix. Y is reconstructed by using OMP algorithm. The reconstructed signal is
transformed by inverse wavelet transform to get the restored image. In Fig. 2, (a) is the
original Lena diagram, (b), (c) and (d) are respectively recovered images obtained when
random matrix, gaussian random matrix and part of hadamar matrix are used as
measurement matrix. Judging from the visual observation effect, images are com-
pressed and reconstructed under all three measurement matrices, and some hadamar
matrices used in (d) have better effect. In order to quantitatively evaluate the recon-
struction effect of compressive perception, SSIM, the structural similarity coefficient,
was used as the index to compare the similarity coefficient between the reconstructed
signal and the original signal under different measurement matrices and observation
values, and to obtain the performance curve. Since the value of M is too small, the
restored picture is seriously distorted. Therefore, in this paper, the SSIM of the
reconstructed image and the original image was calculated from M ¼ 128. The sim-
ulation results are shown in Fig. 2.

source DWT 
transform

measure 
matrix OMP inverse 

sparse
obtain 
SSIM

Fig. 1. The principle diagram
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As can be seen from the graph, the similarity coefficient between the reconstructed
image and the original image under the measurement of PartHadamard matrix is larger
than the other two overall, so the performance of some hadamard matrices in pro-
cessing one-dimensional image information is better than that of other two random
measurement matrices. In addition, due to the absence of noise, the simulation results
of random gaussian channel and random channel are not different, and the performance
of the two channels is similar under the conditions set in this paper. Combined with the
reconstructed images above, we can more intuitively see that when some hadamard
matrices are used as measurement matrices, the restored Lena graphs have clearer
contour and clearer picture quality.

(a)   (b) 

Original image random matrix

(c) (d) 

Gauss matrix PartHadamard matrix

original image recover image

recover image recover image

Fig. 2. Image recovery under three matrices
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4 Dimension Selection Algorithm of Measurement Matrix
Based on Edge Density

In compressive sensing theory, the selection of observation matrix has an important
impact on reconstruction performance [13]. In the previous simulation, the observation
matrix is a semi-random matrix of parameters, where is an adjustable parameter. The
larger the size, the better the recovery, but the longer the program takes to run. Lena
diagram and Lake diagram in the standard grayscale image library were still selected
for experiment. PartHadamard matrix was selected as the measurement matrix,
parameters were adjusted, and structural similarity coefficient data of two images were
simulated and analyzed, as shown in Table 1.

120 140 160 180 200 220 240 260

M

0.55

0.6

0.65

0.7

0.75

0.8

0.85

S
S

IM

rand

Gauss

PartHadamard

Fig. 3. SSIM of the three matrices is compared with the line graph

Table 1. Structural similarity coefficient

SSIM Lena Lake

M = 128 0.6007 0.4542
M = 136 0.6207 0.4886
M = 144 0.6522 0.507
M = 152 0.6766 0.5346
M = 160 0.6974 0.5572
M = 164 0.7063 0.5739
M = 168 0.7169 0.5884
M = 176 0.7352 0.6057
M = 184 0.751 0.6302

(continued)
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Table 1. (continued)

SSIM Lena Lake

M = 192 0.766 0.6466
M = 200 0.7779 0.6645
M = 208 0.7898 0.6821
M = 216 0.7997 0.6961
M = 220 0.8043 0.7025
M = 224 0.8095 0.7131
M = 232 0.8214 0.7238

(a) (b)       
Original image Reconstructed image

(a) (b) 
Original image                         Reconstructed image

original image recover image

original image recover image

Fig. 4. The comparison between the two images under the m-value
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It can be seen that, with the increase of M, the structural similarity coefficient
between images also increases, which is reflected in the clearer image after recon-
struction. Usually, the value of M is selected empirically. Among the edge information,
edge density is an important method to evaluate the edge information. Therefore, this
paper designs a dimension selection method of measurement matrix based on edge
density. Define the function f(x):

f ðxÞ ¼ kXþ q ð5Þ

For different images, there is always M value range suitable for them to achieve a
certain recognizable effect in reconstruction. Different images have different M value
range.

Lena diagram used in this experiment has an edge density of 72.6808, and 164 is
taken according to the formula M. The edge density of the Lake graph is 99.6158.
According to the formula, when M is equal to 220. Lena and Lake were compressed
and reconstructed with the designed M value. As can be seen from the comparison in
Fig. 4, the picture quality of the reconstructed signal is clear, which can fully reflect the
information of each part of the image for clear identification. The validity of the
dimension selection algorithm of measurement matrix based on edge density is verified
in this paper.

5 Conclusion

In recent years, compressive sensing theory has been studied and improved, great
progress has been made in practical application. By introducing the analysis of mea-
surement matrix, this paper finds that when processing one-dimensional image infor-
mation, PartHadamard matrix have better performance than others. Under the same
matrix dimension, the original image can be recovered better by the measurement
matrix. This paper studies the problem that the dimension value of random matrix can
only be determined empirically. We designs the dimension selection principle of
measurement matrix based on edge density and determines the M value through the
integer of defined linear function. Simulation experiments show that each part of the
image can be clearly identified under the dimension of the measurement matrix
designed under this criterion, so we can extend the application of compressed sensing
in image processing.
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