
A Non-repudiable Dynamic Provable Data
Possession

Jun-Feng Tian1,2, Rui-Fang Guo1,2(&), and Xuan Jing1,2

1 School of Cyberspace Security and Computer Institute, Hebei University,
Baoding 071000, China

grf.skzxc@gmail.com
2 Hebei Key Laboratory of High Confidence Information Systems,

Hebei University, Baoding 071000, China

Abstract. With the widespread popularity of cloud storage, cloud storage
security issues have also received much attention. A provable data possession
(PDP) scheme can effectively help users to verify the integrity of data stored
remotely in the cloud. For this reason, the client’s PDP scheme is constantly
improving and developing. In view of the problem that the existing PDP scheme
pays less attention to the clients deceiving the cloud server, a non-repudiable
dynamic PDP scheme based on the Stern-Brocot tree (SB-NR-DPDP) is pro-
posed. We put forward a dynamic storage structure and dynamic operation
algorithm based on the Stern-Brocot tree, so that it can satisfy the client’s
dynamic data operations and realize the non-repudiation feature of the scheme.
This scheme can resist hash value attacks, delete-insert attacks and tamper with
cloud return value attacks. The theoretical analysis shows that the proposed
scheme has less computing and storage overhead than other schemes.

Keywords: Cloud storage � Provable data possession � Stern-brocot �
Dynamic operation

1 Introduction

As cloud storage can provide users with high-quality data storage and computing
services [1], cloud storage has gradually gained wide popularity among users. Cloud
storage not only provides convenience for users but also raises serious security prob-
lems for them. Cloud storage not only makes users relinquish physical control of the
data but also increases the risk of data being leaked by, tampered with and deleted by
cloud service providers. In addition, the security of cloud storage is threatened by
external attackers, hardware failures and other factors. Therefore, research on the
integrity verification of users’ cloud data is urgently needed.

A provable data possession (PDP) scheme can effectively help users to verify the
integrity of data stored remotely in the cloud. However, research on PDP has paid little
attention to user deception by cloud service providers. For example, a user once issued
an order to delete a certain piece of data to the cloud service provider, but the user
denied that order when authenticating the integrity and blamed the cloud service
provider, resulting in disputes between the user and the cloud service provider. For this

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 723–730, 2019.
https://doi.org/10.1007/978-3-030-21373-2_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_61&domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_61

reason, by introducing the Stern-Brocot tree type of dynamic data structure, this paper
proposes a non-repudiable dynamic provable data possession scheme (SB-NR-DPDP).

2 Related Work

To solve the problem of users checking cloud data integrity, researchers have proposed
a provable data possession (PDP) scheme. In 2007, Ateniese et al. [2] first proposed the
PDP scheme. To support user dynamic operations and to improve the scheme’s flex-
ibility of the scheme, the researchers proposed dynamic PDP scheme. For example, [1,
3, 4]. To eliminate complex key and certificate management and to improve PDP
scheme efficiency, Zhao et al. [5] proposed the first identity-based PDP scheme in
2013. To solve the problem of user unreliability and improve the credibility of both
parties in a PDP scheme, in 2014, Mo et al. [6] proposed a non-repudiation PDP
scheme based on the Merkle hash tree and timestamps. Feng [7] et al. found that the
existing dynamic data structure could not satisfy the non-repudiation feature of the PDP
scheme very well. By introducing a logical index table (ILT), they proposed the non-
repudiation and identity-based, non-repudiable dynamic PDP scheme (ID-NR-DPDP)
in cloud storage.

3 The System Model

An SB-NR-DPDP scheme model contains four primary entities: the private key gen-
erator (PKG), the data owner (User), the cloud server provider (CSP), and the unbiased
judge. As shown in Fig. 1, their functions are as follows.

• PKG: A trusted third party, which is called the private key generator. It can help
users generate private keys.

• User: The data owner who uses cloud storage services to outsource data to remote
clouds.

Fig. 1. SB-NR-DPDP scheme model

724 J.-F. Tian et al.

• Cloud server: A semi-trusted entity that stores and processes the user’s data. It can
prove data integrity to clients, but sometimes the cloud server can destroy data
integrity and trick clients into believing that the data are still intact in the cloud.

• Judge: A trusted third party that resolves disputes when they arise between the user
and the cloud service provider.

4 The Dynamic Operation Algorithm of the Stern-Brocot
Tree

The Stern-Brocot tree [8] is a binary tree used to construct a set consisting of all non-
negative minimal fractions. It was discovered independently by German mathematician
Moritz Stern and French watchmaker Achille Brocot. The dynamic operation algorithm
in the Stern-Brocot tree includes an insert, delete and modify algorithm. Users and the
cloud server initialize the tree: the root node is 1

1 and is used to form a tree structure that
is symmetric to the root node. The left child of the root node is N

M, which is the seed
node. The right child is M

N . Using a seed, a Stern-Brocot tree with a symmetric root node
can be established. As shown in Fig. 2, all the fractions in the tree are in the simplest
form.

The algorithm calculates the height of the tree that needs to be established
according to the number of seeds and the number of data blocks n. Each leaf node in
the tree corresponds to a unique pointer variable, and each pointer variable points to the
user’s corresponding data block Fwx.

Insert algorithm: When data blocks Fwx need to be inserted, an update from the
most recent operation starts after the largest leaf node. The pointer variable wx cor-
responding to the appropriate insert block position is found. It then points to the file
block F0

wx. The number of blocks is updated at the same time.
Deletion algorithm: To delete the correspondence between pointer variables and file

blocks, it needs to delete the wx pointer to Fwx, and let wx ¼ 1 as failure node that is to
add wx as a global pointer variable for the dynamic operation algorithm. Finally,
update the number of blocks at the same time, n ¼ n� 1. The purpose of marking the
failure node is that when the tree is built again, wx conflicts with the global variable

Fig. 2. Partial Stern-Brocot tree with seed (N, M)

A Non-repudiable Dynamic Provable Data Possession 725

value, indicating that the position is the failure position. Continue to look for the
insertion position, so as to prevent the deletion - insertion attack. If the deleted position
is at the last block, a new block will be inserted after the newly deleted position to
avoid the delete - insert attack. When there are not enough leaves in the tree, a row will
be generated again and the global variable will be cleared after initialization.

Modify algorithm: First, it removes the relationship between the pointer variable
wx and the file block Fwx, and makes pointer variable value wx ¼ 1. It then adds wx as
a global pointer variable for the dynamic operation algorithm. Then, it follows the
insertion algorithm to find pointer variable wx0 corresponding to the insertion location,
and points to modify the file.

5 Details of the SB-NR-DPDP Scheme

The SB-NR-DPDP scheme include six algorithms: Setup, Extraction, Tagging,
Processing, Proof, and Judgement, which are described in detail in the following
sections.

5.1 Setup

This algorithm is executed by the PKG. Let G1;G2 be a cyclic multiplication groups
with prime order, and g be a generator of G1. The map e : G1 � G1 ! G2 is a bilinear
pairing. The PKG defines three hash functions: H : 0; 1f g�! G1, h : 0; 1f g�! Z�

q ,
h1 : 0; 1f g�! Z�

q ; a pseudo-random function: £key : key� 0; 1f g�! Z�
q ; and a

pseudo-random permutation: pkey : key� 0; 1f glog hð Þ! 0; 1f glog hð Þ. The PKG then
selects a random number c 2 Z�

q and computes C ¼ c � g. The identity-based signature
algorithm of Galindo and Garcia [9] where sign skID; fð Þ ! ‘ generates the signature for
the message, and verify ID; f; ‘ð Þ is used to verify the signature validity. PKG publishes
the public parameters Gg ¼ fG1;G2; q; g; e;H; h; h1;C; p;/; signðÞ; verifyðÞg and
keeps the msk ¼ c secret.

5.2 Extraction

The PKG selects a random number j 2R Z�
q and computes R ¼ j � g, Z ¼ jþ

c � hðIDjjR)mod q; therefore, skID ¼ R; Zð Þ. The PKG uses this algorithm to generate the
client’s secret key, skc, or the cloud server’s secret key, sks.

5.3 Tagging

Given an F, the client chooses a random file name NI from some large domain and splits
the file into n blocks, F ¼ F1 F2k k. . .Fn, givenFx; 1� x� n,Fx ¼ Fx1 Fx2j jj j. . .Fxs. Then,
the client selects s random values u1; u2; . . .us 2 G1;U ¼ u1; u2; . . .usð Þ, and then ini-
tializes the tree by the dynamic operation algorithm of the Stern-Brocot tree to obtain wx.
It then calculates the signature ‘c and label Twx, where ‘c ¼ sign skc;NI Uj j nj jj j N;Mð Þð Þ
and Twx ¼ Zc � H NI wxj jj jUð Þþ PS

K¼1 Fwx;k � uk
� �

. Then, the client uploads

726 J.-F. Tian et al.

Fwx; Twx; NI, U, n, N,Mð Þf g to the cloud server. Next, the cloud server uses equations
e
Pn

x¼1 Twx; g
� � ¼ eðPn

x¼1 H NI wxj jj jUð ÞþPs
K¼1

Pn
x¼1 Fwx

� � � uk;Rcþ hðIDcjjRcÞ � CÞ
and 1 ¼ verify IDc;NI Uj j nj jj j N;Mð Þ; ‘Cð Þ to check the validity of Twx, 1� x� nð Þ and
‘c. If one of them does not hold, the operation stops. Otherwise, the cloud server stores
them, computes the signature ‘s ¼ sign IDs; ‘cð Þ, and returns ‘s as a receipt to the client.
The client receives the receipt from the cloud server, and then checks the validity of the
receipt ‘s by using the equation 1 ¼ verify IDs; ‘s; ‘cð Þ. If it is invalid, the operation stops.
Otherwise, the client stores NI; n; N,Mð Þ; ‘s; ‘cf g and deletes data blocks and tags from
local storage.

5.4 Processing

• Insert

The client wants to insert a new block F0. First, the client obtains the pointer variable wx0

corresponding to the new insertion location and the number of file blocks n by using the
dynamic operation algorithm. Then, the file F0 is divided into s sections, F0 ¼
F0
1 F0

2

�� ��. . .F0
s

� �
. The client computes the new label T 0

wx and signature ‘0c, by using the

equations T 0
wx ¼ Zc � H NI wx0j jj jUð Þþ Ps

k¼1 F
0
k � uk

� �
and ‘

0
c ¼ signðskc; IN NIj jj j

wx0jjnÞ. Next, the client uploads IN; F0; T 0
wx;U, n, ‘

0
c

� �
, to the cloud server. Then, the

cloud server checks the validity T 0
wx and ‘0c, by using the equations 1 ¼

verifyðIDc; IN Uj jj jwx0jjn; ‘0cÞ and e T 0
wx; g

� � ¼ eðH NI wx0j jj jUð Þþ Ps
k¼1 F

0
k � uk;Rc þ

hðIDCjjRcÞ � CÞ. If one of them does not hold, the operation stops; otherwise, the cloud
server updates n, ‘0c. Then, the signature ‘0s ¼ sign IDs; ‘

0
c

� �
is computed and ‘0s is

returned as a receipt to the client. The client receives the receipt from the cloud server and
then checks the validity of the receipt ‘0s by using the equation 1 ¼ verify IDs; ‘

0
s; ‘

0
c

� �
. If it

is invalid, the operation stops; otherwise, the client updates n, ‘0c; ‘0s, and deletes F
0; T 0

wx
from local storage.

• Delete

The client wants to delete block Fwx. First, the client obtains the pointer variable wx
corresponding to the delete location, and the number of file blocks n by using the
dynamic operation algorithm. The client computes the signature ‘0c, by using the
equation ‘0c ¼ sign skc;NI Uj j wxj jj jnð Þ. Then, the client uploads NI;U; n;wx; ‘0c

� �
to the

cloud server. Next, the cloud server checks the validity by using the equation
1 ¼ verify IDc;NI Uj j wxj jj jn; ‘0c

� �
. If it holds, the cloud server updates n, ‘0c. Then, the

signature ‘0s ¼ sign IDs; ‘
0
c

� �
is computed and ‘0s is returned as a receipt to the client. The

client receives the receipt from the cloud server and then checks the validity of the
receipt ‘

0
s by using the equation 1 ¼ verify IDs; ‘

0
s; ‘

0
c

� �
. If it is invalid, the operation

stops; otherwise, the client updates n, ‘0c; ‘
0
s.

A Non-repudiable Dynamic Provable Data Possession 727

• Modify

The client wants to modify the file block value into F0. First, the client obtains the
pointer variable wx0 corresponding to the new insertion location of the new block by
using the dynamic operation algorithm. Then, the file F0 is divided into s sections -
F0 ¼ F0

1 F0
2

		 		 . . .j j		 		F0
S

� �
. The client computes the new label T 0

wx and signature ‘0c, by
using the equations T 0

wx ¼ Zc � H NI wx0j jj jUð Þþ Ps
k¼1 F

0
k � uk

� �
and ‘0c ¼ signðskc;

NI Uj jj jwx0jjnÞ. Then, the client uploads F0; T 0
wx;NI;U;wx0; n; ‘0c

� �
to the cloud server.

The cloud server checks the validity T 0
wx and ‘0c, by using the equations 1 ¼

verifyðIDc;NI Uj jj jwx0jjn; ‘0cÞ and e T 0
wx; g

� � ¼ e H NI wx0j jj jUð Þþ Ps
k¼1 F

0
k � uk;Rc þ

�
hðIDcjjRCÞ � CÞ. If one of them does not hold, the operation stops; otherwise, the cloud
server updates ‘0c. Then, the signature ‘0s ¼ sign IDs; ‘0c

� �
is computed and ‘0s is

returned as a receipt to the client. The client receives the receipt from the cloud server
and checks the validity of the receipt ‘0s by using the equation 1 ¼ verify IDs; ‘0s; ‘0c

� �
.

If it is invalid, the operation stops; otherwise, the client updates ‘0c; ‘0s, and deletes the
file block and its labels.

5.5 Proof

The client wants to verify the integrity of the file NI. First, the client selects a random
number i, where 1� i� n and s1; s2 2 R Z�

q . The client computes S2 ¼ s2 � g; ‘̂c ¼
signðskc;NI s1j jj jS2jjiÞ and sends the challenge chal ¼ i; s1; S2;NI; ‘̂c

� �
to the cloud

server. Upon receiving the challenge, the cloud server stops the dynamic operations of
this file, selects s3 2 R Z�

q , computes S3 ¼ s3 � g, S ¼ s3 � S2, Y ¼ fy ps1 qð Þð Þj1
� q� ig, ay ¼ /S yð Þ, y 2 Y, F̂k ¼

P
y ayFyk , 1� k� s, T ¼ P

y2Y ay � Ty, ‘̂s ¼
sign sks; S3 nj j N;ðjjð MÞj F̂1

		 		jF̂2 . . .j j F̂S

		 				 		T̂Þ, and sends re ¼ S3; n; N;Mð Þ; F̂1; F̂2; . . .
�

F̂s; T̂; ‘̂sg to the client as a response. Then, the client computes S ¼ s2 � S3,
Y ¼ fy ps1 qð Þð Þj1� q� ig, ay ¼ /S yð Þ, and y 2 Y, and then checks the validity

of response by using the equations e T̂ ; g
� � ¼ e

P
y2Y ay � H NI yj jj jUð Þþ Ps

k¼1

�

F̂k � uk;Rc þ hðIDcjjRcÞ � CÞ and 1 ¼ verify IDs; S3; n; N;Mð Þ; F̂1; F̂2; . . .F̂s; T̂; ‘̂s
� �

.

When the equations are true, the data are proven to be complete.

5.6 Judgement

When there is a dispute between the client and the cloud server, they each send the

latest data information to the judge. The cloud server sends the latest chal ¼
i; s1; S2;NI; ‘̂c

� �
and response re ¼ S3; n; N;Mð Þ;wx0; F̂1; F̂2; . . .; F̂s; T̂; ‘̂s

n o
, s3; ‘c to

the judge. Then, the judge checks the validity of ‘s. If it is invalid, the cloud server is
the winner. Otherwise, the judge checks the validity of ‘c and re. If one of them is
winner, the client is the winner.

728 J.-F. Tian et al.

6 Efficiency Analysis

We perform an efficiency analysis of the storage and computational overhead of the
scheme, and compare it with two of the best alternative schemes. Let
TH ; Tadd ; Tmul; Tp; Texp denote the running time of a hash function instruction, an
addition instruction in G1, a multiplication instruction, a bilinear pairing instruction,
and an exponentiation instruction. The PRF, PRP and other operations are omitted in
our evaluation, because their computational costs are negligible. Suppose the data are
split into n blocks. Each block of data is divided into s parts, and the number of
challenge blocks is c. Table 1 presents the comparisons between our scheme and two
other schemes [1, 7].

From Table 1, we can see that our scheme’s computational overhead is the same as
scheme [7], so the computational cost is mainly compared with scheme [1]. Our
scheme is more efficient because we use a bilinear pairing operation with less com-
putational overhead instead of using exponential operations, and the time expended by
TH ; Tadd ; Tmul; Tp is less than Texp: On the other hand, we can see that when the value of
n is fixed, the computational cost of the two schemes is linear with the number of s.
Moreover, as the s grows, the growth rate of tag generation computational overhead in
scheme [1] is significantly higher than ours. Though comparison, we found that the
computational overhead of our scheme is reduced, so our scheme is more efficient.
Since both schemes [1, 7] need to maintain the table structure, the scheme, the clients
and cloud server do not need to maintain the table structure, and the storage overhead is
fixed. Only the number of data blocks n and the seed of the tree can be stored, and the
storage overhead is independent of the file size. For this reason, the storage overhead of
our scheme is significantly lower than that of the schemes [1, 7], which reduces the
storage overhead of the clients and the cloud server.

7 Summary

The scheme enables the clients and the cloud server to dynamically manipulate out-
sourced files, making the PDP solution more suitable for practical application. The
program supports identity authentication, enabling the PDP solution to eliminate
complex certificate management. The program supports non-repudiation and solves the

Table 1. Comparison with other schemes.

Schemes Ref. [7] Ref. [1] Ours

Computational cost
in tag generation
phase

Client
side

nsþ 2ð ÞTmul þ nsTadd
þ nþ 1ð ÞTHash

nsTmul þ nTHash
þ n sþ 1ð ÞTexp

nsþ 2ð ÞTmul
þ nsTadd þ nþ 1ð ÞTHash

Computational cost
at generates proof

Cloud
side

2cþ 4ð ÞTmul þ c� 1ð ÞTadd
þTHash

2c� 1ð ÞTmul
þ c� 1ð ÞTadd þ cTexp

2cþ 4ð ÞTmul
þ c� 1ð ÞTadd þTHash

Computational cost
at verifying the proof

Client
side

cþ sþ 4ð ÞTmul þ cþ sþ 2ð ÞTadd
þ 3THash þ Tp

cþ s� 1ð ÞTmul þ cTHash
þ cþ sþ 1ð ÞTexp

cþ sþ 4ð ÞTmul
þ cþ sþ 2ð ÞTadd þ 3THash þTp

Storage cost ITL list ORT list Fixed

A Non-repudiable Dynamic Provable Data Possession 729

disputes between the client and the cloud server. the proposed scheme has less com-
puting and storage overhead than other schemes. As such, it has high efficiency.

References

1. Yan, H., Li, J., Han, J., et al.: A novel efficient remote data possession checking protocol in
cloud storage. IEEE Trans. Inf. Forensics Secur. 12(1), 78–88 (2017)

2. Ateniese, G., Burns, R., Curtmola, R., et al.: Provable data possession at untrusted stores. In:
ACM Conference on Computer and Communications Security, pp. 598–609. ACM (2007)

3. Yang, K., Jia, X.: An efficient and secure dynamic auditing protocol for data storage in cloud
computing. IEEE Trans. Parallel Distrib. Syst. 24(9), 1717–1726 (2013)

4. Barsoum, A.F., Hasan, M.A.: Provable multicopy dynamic data possession in cloud
computing systems. IEEE Trans. Inf. Forensics Secur. 10(3), 485–497 (2017)

5. Zhao, J., Xu, C., Li, F., et al.: Identity-based public verification with privacy-preserving for
data storage security in cloud computing. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 96(12), 2709–2716 (2013)

6. Mo, Z., Zhou, Y., Chen, S., et al.: Enabling non-repudiable data possession verification in
cloud storage systems. In: IEEE, International Conference on Cloud Computing, pp. 232–239.
IEEE, (2014)

7. Wang, F., Xu, L., Wang, H., et al.: Identity-based non-repudiable dynamic provable data
possession in cloud storage. Comput. Electr. Eng. 69, 521–533 (2017)

8. Graham, R., Knuth, D., Patashnik, O.: Specific Math: A Foundation for Computer Science.
Posts & telecom press, Beijing (2013)

9. Galindo, D., Garcia, F.D.: A Schnorr-like lightweight identity-based signature scheme. In:
Proceedings of Second International Conference on Cryptology in Africa (AFRICACRYPT
2009), 21–25 June, pp. 135–148 (2009)

730 J.-F. Tian et al.

	A Non-repudiable Dynamic Provable Data Possession
	Abstract
	1 Introduction
	2 Related Work
	3 The System Model
	4 The Dynamic Operation Algorithm of the Stern-Brocot Tree
	5 Details of the SB-NR-DPDP Scheme
	5.1 Setup
	5.2 Extraction
	5.3 Tagging
	5.4 Processing
	5.5 Proof
	5.6 Judgement

	6 Efficiency Analysis
	7 Summary
	References

