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Abstract. Clustering is an important data processing tool, which can be used to
reveal the distribution structure of unfamiliar domain data, or as preprocess
methods to magnify data object to accelerate subsequent processing or simplify
models. However, the distribution of many real-world data in feature space is
very complex or uneven. Besides, the similarity/distance is not easy to be
properly defined in feature space with different dimensional quantity. Therefore,
many existing clustering algorithms are not stable in real datasets, and better
performance of different datasets relies on artificial special design, such as scale
normalization. In this paper, we propose a bidirectional hierarchical clustering
(BHC) algorithm with two phases. In the first phase (Top-down), based on the
probability density function of data in different dimensions, the feature space is
divided into over-segmented grids to adapt to the complex distribution of data.
In the second phase (Bottom-up), based on statistical information, a robust
distance instead of geometrical distance is defined to agglomerate the grids into
a dendrogram. Compared with the individual data points, grids created in the
first phase can carry more statistical information, and the magnified processing
objects can accelerate the clustering process. The second phase enhances the
algorithm’s ability by the ability of recognize arbitrary shape data clusters. The
effectiveness of BHC is compared with 20 popular or recent clustering algo-
rithms on 8 artificial datasets and 6 real-world datasets. And the results show
that our algorithm can achieve good results on most datasets. In particular, BHC
surpasses all the comparison algorithms involved in the experiment on all real-
world datasets. In addition, in order to test the efficiency of the algorithm, we
design an experiment which can test the influence of dimension and data size on
the operation time.
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1 Introduction

As an unsupervised learning tool, without additional label information, clustering has a
wide range of applications, such as biological gene classification [1–3], chemical
molecular structure [4, 5], astrophysics [6–8] and business market analysis [9]. It can be
used to demonstrate the inherent structure of spatial distribution of data, helping people
explore unfamiliar areas from the perspective of data distribution. In addition, in the
computer field, clustering technology is often used as a preprocessing method to reduce
the complexity of subsequent processing or models [10]. Since a variety of data with
different types and sizes are constantly generated, clustering algorithm has always been
a hot research topic. At present, the research of clustering algorithm mainly focuses on
three aspects: overcoming the effects of high-dimensional data and big data on
experimental effect and efficiency [11, 12], processing complex data clusters [13–16]
and reducing the dependence of algorithms on user-specified parameters [17, 18].

However, most of the above studies are lopsided without an integrated manner,
which may lead to two problems: (1) Clustering algorithms using global partition
strategy cannot process data with complex and uneven distribution. For example, the
DBSCAN [19] algorithm can handle clusters of arbitrary shapes. But it cannot perform
well when encountering data with uneven distribution. (2) Considering different
dimensional quantity, it is very difficult to define a reasonable point-to-point distance,
especially in high-dimensional data. For example, DPC [13] algorithm and its improved
algorithms [14–16], which need to calculate the distance between points, are not robust
on real-world datasets.

In this paper, we propose a bidirectional hierarchical clustering algorithm called BHC.
As the point-to-point distance definition is unreliable and the data distribution is complex
and uneven, we can divide the data into over-segmented subsets, where data points in a
subset have the same spatial distribution and statistical information. That is the basic idea
of BHC. Leveraging the statistical information of subsets to calculate robust distance
between subsets, those over-segmented subsets can be re-agglomerated into a dendro-
gram. Accordingly, our bidirectional clustering algorithm consists of two opposite-
directional phases: Top-down and Bottom-up. In the first phase, based on OptiGrid [20]
algorithm, a coarse grid partition is performed recursively in dividing the feature space
into non-interfering grids. Even if the data distribution is uneven or complex, the points in
a grid have the same distribution characteristics. In the second phase, through the sta-
tistical information shared by the data points in the grid, a grid-to-grid distance is defined.
And grids are agglomerated successively according to the order of the number of points in
grids. Although the grids in the first stage are simple rectangles, the algorithm can handle
clusters of arbitrary shapes through the second phase. The benefit of Top-down process is
that a robust distance can be defined regardless of data size, dimension and distribution. In
addition, statistical information in grids can be applied to identify outliers and noise. The
major contributions of this paper are summarized as follows:

1. We proposed a spatial grid partitionmethod based on data distribution, where points in
same grids have the same distribution characteristics. In this method, performing
coarse grid partition recursively results in over-segmented grids while the validity of
segmentation is guaranteed. In addition, feature compositor is applied to select fea-
tures that have more contributions to the formation of a particular cluster.
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2. We defined a robust distance between grids that can be used to agglomerate the
divided grids into dendrogram. This distance is calculated from the statistical
information of the data points in the grid instead of the geometric information, thus
avoiding the effects of high dimensional quantity.

3. We benchmark BHC with 20 popular or recent clustering algorithms on 8 artificial
datasets and 6 real-world datasets, and our algorithm achieves the best result far
superior to the comparison algorithms on all real-world datasets, which proves the
stability and superiority of our algorithm in dealing with practical problems. What’
more, our algorithm is less affected by the data size and data dimension in the
efficiency experiment. An example of BHC flow is shown in Fig. 1.

2 Methodology

In this section, we will introduce BHC with two component phases which are in
opposite directions: Top-down and Bottom up. These two phases are respectively
described in detail in Sects. 2.1 and 2.2.

2.1 Top-Down for Grid Partition

Partitioning the feature space into grids is a feasible strategy for big data, as magnified
processing objects can accelerate the clustering process. Additionally, grids can carry
more statistical information than individual data points. Therefore, this strategy is
robust against outliers, since grids containing outliers are highlighted as their data
points are relatively less. Besides, in BHC, the statistical information is used to define a
robust distance between grids.

In this process, the feature space is partitioned recursively by the Top-down
approach into multilevel coarse-grained grids to form a Top-Down (TD) tree structure,
(see Fig. 2). However, axes-parallel partitions are not suitable for high-dimensional
data due to data sparseness problem. Namely, the number of data points in each grid is
so few that it may lose statistical significance. Hence, we adopt as wide a bandwidth as
possible in one-dimensional Gaussian kernel estimation to promise a robust grid par-
tition. And each partitioning is performed in some particular dimensions, which are
selected from all dimensions according to their contribution of individual dimensions to
the formation of a particular region or grid. Through recursive partitioning, an over-
segmented grid set is created, while the validity of segmentation is guaranteed.

Fig. 1. An example of BHC flow
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Specifically, for a partition processing, based on OptiGrid [20] algorithm, the kernel
density function is applied in the training set to calculate the probability density
functions (PDFs) of all dimensions. For each kernel density estimation, the bandwidth
is selected under the guidance of statistical information and a coarse-granularity
approach. Then the partitioning is done by some cutting planes which are perpendicular
to the point with minimal point densities in selected dimensions. These dimensions are
obtained by selecting top part of the ordered dimensions, which are sorted by the
difficulty of dividing the dimensions.

One-Layer Coarse-Grained Partitioning
OptiGrid provides a powerful framework for grid-partitioning by optimal cutting planes
which are located at the minimal density points of PDFs in the corresponding contracting
projection. In BHC, contracting projections are specifically referred to as axes projection.

For a dataset D = {X1, X2, …, Xn} with n d-dimensional points and Xk = {xk,1, xk,2,
…, xk,d}, the PDF of D in the i-th dimension can be approximated by the one-
dimensional Gaussian kernel g(xk,i, ki) respect to the bandwidth ki:

fiðD; kiÞ ¼ 1
n

Xn
k¼1

g xk;i; ki
� � ¼ 1ffiffiffiffiffiffi

2p
p

nki

Xn
k¼1

exp
ðx� xk;iÞ2

2k2i

 !
ð1Þ

When data points spread sparsely in a dimension, a number of spikes (maxima) would
appear in the PDF (see the top two graphs in Fig. 4). Obviously, such PDFs is not what
we want as too many minimal density points for cutting planes. In DENCLUE [21] and
OptiGrid, a threshold is defined to cut the impact of spikes, where the spikes with a
density below the threshold would not be taken into account.

Fig. 2. An example of Top-down flow

Fig. 3. One-layer partitioning processing
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As shown in Fig. 4, with the increase of the bandwidth, the curve of the PDF
becomes smooth and a number of useless spikes disappear. Hence, a larger value of
bandwidth can filter the impact of sparse data. In this method, we attempt to use coarse-
grained bandwidth to alleviate the existence of spikes. When estimating PDF, the value
of the bandwidth decreased from one initial bandwidth, until more than one peak
appears in the PDF. Determining cutting plane by fewer density peaks, the grids are
more robust since fewer bad partitions would be done. As shown in Fig. 3, a one-layer
partitioning is performed to divide a grid into four sub-grids by two cutting planes.
Especially, over-segmentation is guaranteed by performing partitioning recursively.

A key problem in our method is the preset of the initial bandwidth. When setting a
large value, a lot of computation is invalid; when setting a small value, the bandwidth
cannot filter the impact of sparseness. To determine a proper initial bandwidth, we
introduce a definition: statistical linkage.

Fig. 4. PDFs with different bandwidth of two dimension of data points in Fig. 3
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Definition (statistical linkage): dataset D is of statistical linkage in i-th dimension
respect to ki as long as the PDF fiðD; kiÞ of D in i-th dimension has one maximal point
at most.

According to the statistical linkage, the initial bandwidth of i-th dimension can be
set as the minimal bandwidth making D is of statistical linkage in i-th dimension.
However, such bandwidth is hard to be directly obtained. In an ideal situation where
only two points X1, X2 exist in D (see in Fig. 5), it is easy to prove that the condition
makes D of statistical-linkage in i-th is ki � (x2,i − x1,i)/2, while ki � (x2,i − x1,i)/2 is
the standard deviation ri of D in the i-th dimension. Therefore, the initial bandwidth in
BHC is initialized as the standard deviation ri of dataset D in the corresponding
dimension.

When estimating PDFs of d dimensions, each dimension would get a separated
bandwidth ranging from its standard deviation to 0, which has the maximal value
making the PDF be not of statistical linkage. Obviously, data points in the dimension
with a relatively large bandwidth are better divided. Hence, based on the bandwidth of
a dimension, a variate can be defined to measure the difficulty of partitioning data
points in this dimension.

Definition (partitioning degree): A partitioning degree for the i-th dimension of the
dataset D is defined as follows:

degreeDi ¼ argmax H dð Þ 0\d� M ð2Þ

H dð Þ ¼ d; if fi D; dM ri
� �

has two or more maxima
0; else

�
ð3Þ

where an interval [0, ri] is divided into M segments and the bandwidth of the i-th
dimension ki is assigned to ri degreei /M. Figure 6 shows the calculation order of
partitioning degree.

Fig. 5. Function graph of an ideal situation
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As for how to find the minima in PDFs, a stride detection approach is applied in our
method, where the stride is set as half of the bandwidth (see Fig. 7). For two adjacent
detection points xk, xk+1, if the first derivative of point xk+1 is less than or equal to 0
while the first derivative of xk is bigger than 0, a minimum between xk and xk+1 is
approximated as follows:

xmin ¼ xkþ 1 þ xk
2

þ k2

xkþ 1 þ xk
� ln ykþ 1

yk

� �
ð4Þ

Dimension Sorting
When a coarse-grained partitioning is done in dataset D, each dimension gets a par-
titioning degree, which can be used to measure the contribution of individual dimen-
sions to the formation of a particular sub-grid. According to the partitioning degree,
part of dimensions is selected to reduce the impact of high dimensions. Since the
partitioning degree is an integer within a certain range (0,M], there may be a number of
equal degrees over dimensions, which results in a confusion of selecting dimensions.
Hence, an extra variate is defined as supplementary.

Fig. 6. Calculation order of partitioning degree.

Fig. 7. Minima detection through stride detection approach
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Definition (partitioning faith): a partitioning faith for a partitioning set {D1, D2, …,
Ds} over the i-th dimension of dataset D is defined as:

faithDi ¼
Xs
j

rDj

i

,
s � rDi
� � ð5Þ

Where rDi denotes the standard deviation of the i-dimension of dataset D. After the
partitioning degree of a dimension determined, the partitioning faith is confirmed.
Obviously, the smaller the partitioning faith is, the better the partitioning performs. By
the partitioning degree and faith, all dimensions of dataset D can be sorted according to
the performance of partitioning, and only the former P dimensions are involved in grid-
partitioning. In this way, not only can we reduce the computation of high dimensional
data, but also avoid the data sparse problem.

Recursive Partitioning
One-layer partitioning processing is not enough to separate points belonging to dif-
ferent data clusters into different grids. Therefore, we need to partition data space
recursively to guarantee data points in a grid have similar distribution characteristics,
while different dimensions would be selected in each partition. Recursively partitioning
stops for a sub-grid if the data points in this grid are below a threshold max_data or the
depth of this node in TD tree is above a threshold L. A sub-grid is discarded if the data
points in this grid are below a threshold min_data to alleviate the effect from outliers
and noise. Hence, a total of five parameters need to be confirmed by the user:

• max_data: the maximal data points that a grid can contains
• min_data: the minimal data points that a grid need contains
• L: the threshold of the depth of TD tree
• P: the number of selected dimensions
• M: the number of partitioned segments of candidate interval

Although five parameters need to be defined by users, all those parameters are
integers and are easily selected by cross-validation. In practice, the selection of
min_data and max_data rely on the test dataset. Usually, max_data is less than the
minimal number of data points belong to defined clusters and min_data is determined
by the proportion of outliers in the dataset. As for parameter L and P, if we select a
relatively large P and a small L can guarantee the precision of grid-partitioning, and
algorithm runs faster; if we select a relatively small P and a large L can guarantee the
precision, and algorithm is more robust. Therefore, we need to make a tradeoff between
the running speed and the robustness of the algorithm when we preset L and P. The
selection of M is usually unwarranted, while a range [5, 30] can be taken as a reference.

2.2 Bottom-Up for Grid Agglomeration

In this process, the leaf nodes in the TD tree created in the Top-down phase are
agglomerated successively by the Bottom-up approach to form a hierarchical structure.
In many multilevel grid-based clustering algorithms such as STING [22], grids that
belong to different parent grids cannot be merged directly, so that may result in error
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accumulation. In addition, the traditional 4/8-collection strategy is not suitable for
coarse-grained and feature-selected grids in our algorithm. Hence, in BHC, a robust
statistical-based distance of any two grids is proposed, so that any leaf grids can be
merged. Besides, adopting the corresponding strategy in the DPC, the agglomerative
sequence of grids is sorted according to the number of data points in the grids.

For any two leaf grids g1, g2 in the TD tree (see in Fig. 8), g is the lowest common
ancestor of g1 and g2, and the distance of g1 and g2 is defined as follows:

dis g1; g2ð Þ ¼
Xd
i¼1

degreegi
faithgi

� Fi g1; g2ð Þ ð6Þ

where Fi(g1, g2) is a discriminant function that determines if g1 and g2 are linked in the
i-th dimension. The criterion of Fi(g1, g2) in the i-th dimension is whether the distance

between the centers lg1i , lg2i of g1 and g2 is greater than the sum of the bandwidth kg1
0

i ,

kg2
0

i of their parent nodes of their parent g10 and g20 instead of g:

Fi g1; g2ð Þ ¼ 1; if lg1i � lg2i

��� ���� kg1
0

i þ kg2
0

i

0; else

(
ð7Þ

In DPC, an attractive idea is of a novel definition of the nearest point: the nearest
neighbor of a node is defined as a node with the nearest distance and a higher density
concurrently. Besides, data points in DPC are agglomerated in ascending order of their
local density, which provides a novel agglomerative chain. This agglomerative chain is
more robust in the result than that of the traditional definition of the nearest neighbor
chains [26], since more typical data centers are detected.

Based on DPC, in our method, the nearest grid of gi is defined as a grid gt with the
nearest distance and more data points:

t ¼ argmin
j:num gjð Þ[ num gið Þ

dis gj; gi
� �� � ð8Þ

Fig. 8. An example of TD tree
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where num(gj) denotes the number of points in grid gj. In BHC, leaf grids are
agglomerated in ascending order of the number of data points in grids. In other words,
the smaller gird agglomerates with its nearest center first, since the effect of mis-
agglomeration of smaller grids is more acceptable than that of larger grids. With the
grid-partitioning and the agglomerative chain, we are now able to describe BHC
generally.

3 Experiments

We designed three experiments to demonstrate the superiority of our proposed method.
We first benchmark the algorithm on 8 artificial datasets. Then 6 real-world datasets
from UCI datasets [23] are tested. At last, we test the efficiency of our method in
datasets Dim-sets [25] with different sizes and dimensionalities. The concentrated
introductions of above test datasets can be found in [24]. Each experiment is compared
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with several well-known clustering algorithms. Note that the results of unstable clus-
tering algorithms whose clustering results are different with each clustering, including
K-means [31], K-medoids [32], K-medians [33], are the averages of the results of
repeated 50 times.

3.1 Experiment on Artificial Datasets

In this part, we benchmark the algorithm on 8 artificial datasets, and the results are
presented in Fig. 9. The accuracies of our method and 20 well-known clustering
algorithms for 8 artificial datasets are shown in Table 1. In Table 1, the corresponding
database for each column are aggregation, compound, pathbased, spiral, D31, R15,
jain and flame; the corresponding clustering algorithms for each row are Single [26],
Complete [26], UPGMA [26], WPGMA [26], Ward [26], UPGMC [26], WPGMC
[26], Rock [27], Chameleon [28], Cure [29], Birch [30], K-means [31], K-medians
[33], K-medoids [32], DBSCAN [19], DPC [13], PERCH [11], DSets-DBSCAN [17],
SNN-DPC [16], KNN-DPC [14], and our method BHC.

In the first column in Table 1 for dataset aggregation (see Fig. 9(a)) with 7 clusters
of different shapes and varying size, UPGMA (100%), UPGMC (100%), KNN-DPC
(99.23%) and our method (99.23%) can handle the dataset very well. Database com-
pound (see Fig. 9(b)) contains 6 clusters of different shapes, sizes, and densities, where
the lower-left ring-like cluster encircles another cluster, and the upper-right corner has
two compounded clusters of different density. Due to its complex distribution structure,
no algorithm can handle database compound well, and DSets-DBSCAN (93.98%),
BHC (89.72%) perform best. Dataset pathbased (see Fig. 9(c)) and spiral (see Fig. 9

Fig. 9. Results of artificial datasets: (a) aggregation, (b) compound, (c) pathbased, (d) spiral,
(e) D31, (f) R15, (g) jain and (h) flame
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(d)) has non-convex clusters with large curvature, which are not what our method can
deal with. Only SNN-DPC can cluster pathbased well and Single, Chameleon, Cure,
DBSCAN, DPC and SNN-DPC perform well in dataset spiral. For dataset D31 (see
Fig. 9(e)) and R15 (see Fig. 9(f)) with data points located with high overlap, our
method successfully divides data points into correct clusters. Similar to pathbased and
spiral, Dataset jain (see Fig. 9(g)) and flame (see Fig. 9(h)) also has non-convex
clusters, while our method achieves considerable performance over those two datasets.

In Table 1, we can find that in artificial datasets with unified dimensions, DPC and
its improved algorithms performed stable, which proves their ability to handle
complex-shaped clusters. Due to the distortion caused by axes-parallel grid-
partitioning, our algorithm cannot achieve best accurate results over test cases. This
distortion is more likely to be an inherent defect of grid-partitioning, which can be
released by increasing the depth of TD tree. However, a TD tree with a huge depth will
reduce the number of data points in the leaf nodes to lose statistical significance, which
may affect the precision of grid distance. Even though BHC is not the strongest
algorithm when dealing with complex-shaped clusters, our algorithm achieves com-
petitive results on all datasets except spiral.

Table 1. Results of artificial datasets

Method A C P S D R J F

Single 83.88 84.46 80.67 100 76.03 95.67 99.73 91.25
Complete 91.37 78.70 72.67 39.42 95.42 99.00 86.06 63.75
UPGMA 100 86.72 75.33 37.82 96.23 99.50 86.06 63.75
WPGMA 90.86 87.72 67.33 38.78 88.58 98.83 93.83 65.42
Ward 100 86.72 73.33 40.38 96.61 99.50 93.83 63.75
UPGMC 86.55 84.21 67.67 35.26 84.48 99.33 91.15 63.75
WPGMC 85.41 75.69 73.33 37.20 75.00 99.17 78.55 96.00
Rock 55.20 61.65 71.67 48.40 11.45 18.33 85.52 92.50
Chameleon 85.41 60.65 69.00 100 97.68 99.67 73.99 97.92
Cure 94.16 88.47 92.67 100 50.45 73.33 100 97.08
Birch 77.28 85.96 37.33 37.20 90.23 74.83 100 93.33
K-means 77.92 71.43 69.33 35.90 81.39 7332 78.55 75.42
K-medians 71.57 63.91 73.33 40.38 79.29 77.17 73.99 63.75
K-medoids 73.85 79.45 65.00 40.38 80.61 81.17 73.99 63.75
DBSCAN 95.18 81.45 68.67 100 77.97 97.33 92.49 96.67
DPC 89.72 88.22 78.00 100 78.10 99.33 95.17 98.33
Perch 75.29 66.04 69.03 44.70 84.61 95.65 67.86 67.04
DSets-DBSCAN 82.49 93.98 94.33 55.77 82.54 72.33 92.76 97.92
SNN-DPC 97.84 86.21 97.67 100 97.39 99.67 87.67 98.75
KNN-DPC 99.23 86.71 65.33 69.87 96.38 99.67 70.78 100
BHC 99.23 89.72 82.00 59.29 94.74 99.16 95.97 98.33
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3.2 Experiment on Real-World Datasets

To illuminate the performance of our method on real-world problems, 6 real-world
datasets from UCI datasets: iris, wine, glass, breast cancer, yeast, thyroid, are chosen to
verify the effectiveness ofBHC.The accuracy of ourmethod and the compared algorithms
on those datasets are shown in Table 2. It is obvious in Table 2 that ourmethod is superior
to all compared algorithms on all test datasets. Especially in dataset wine and glass, our
algorithm achieved 97.19% and 51.75% clustering accuracy, while the second-best
results of rest algorithms were 93.26% (Chameleon, Birch) and 58.88% (K-means)
respectively. It proves the advantage of our method to deal with real-world problems.
Besides, among these algorithms shown in Table 2, Single, Rock and DBSCAN have the
worst performance, evenSingle andDBSCANachievedgood results on artificial datasets.

Considering Tables 1 and 2 together, we can find that many algorithms that per-
formed well on artificial datasets performed poorly on real-world datasets. For DCP
algorithm and its improved algorithm SNN-DPC, KNN-DPC, they achieved consid-
erable results in all artificial datasets due to their ability of handling complex-shaped
clusters. However, the dimensions of artificial datasets are simple and uniform in size.
So, when applied in real-world datasets, those algorithms needing distance matrix, such
as DPC, K-means, performed poorly, as point-to-point distance is difficult to be
properly measured. In addition, for DBSCAN and other algorithms that use the global

Table 2. Results of real-world datasets

Method I W B Y G T

Single 82.67 55.05 63.09 31.94 43.46 77.67
Complete 96.00 89.89 79.61 36.05 42.52 85.12
UPGMA 96.67 89.33 91.39 41.37 48.60 81.86
WPGMA 96.00 86.52 92.44 41.51 50.47 69.77
Ward 96.67 84.83 91.39 44.74 43.46 87.44
UPGMC 96.00 88.20 89.81 41.85 47.20 87.44
WPGMC 96.00 65.73 85.59 38.48 45.79 82.79
Rock 66.67 59.55 78.91 34.37 43.46 70.70
Chameleon 96.67 93.26 93.32 43.94 57.48 83.26
Cure 96.67 91.01 91.74 43.80 55.14 92.09
Birch 97.33 93.26 91.92 43.16 56.54 88.84
K-means 94.00 92.13 92.27 38.41 58.88 86.98
K-medians 94.00 92.69 92.62 40.78 46.73 93.02
K-medoids 96.00 86.46 92.41 37.69 50.00 84.65
DBSCAN 84.00 60.67 62.92 31.94 45.79 77.67
DPC 96.00 91.01 91.74 37.40 51.40 88.37
Perch 80.13 60.28 74.48 34.47 50.93 57.81
DSets-DBSCAN 96.00 78.88 68.19 48.88 32.24 71.63
SNN-DPC 97.33 73.03 90.68 42.72 48.60 78.61
KNN-DPC 96.67 64.04 82.60 37.06 57.01 63.25
BHC 97.33 97.19 94.20 51.75 62.62 94.42
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partitioning strategy, stable results can be obtained only when the data is evenly
distributed. From Table 2, a conclusion can be drawn that BHC is robust and effective
in processing real-world datasets.

3.3 Efficiency Analysis

To demonstrate the efficiency of our method, we performed analysis in datasets with
different sizes and dimensionalities. We first test the clustering algorithms in dataset
Dim-sets with six kind of dimensionalities: 32, 64, 128, 256, 512, 1024. We then draw
several various-size datasets by copying the 1024-dimensional data points in Dim-sets.
Figure 10 shows the running time of clustering algorithms versus dimensionality and
data size. Note the run time is recorded when the algorithm obtains a 100% accuracy
rate on the dataset.

As shown in Fig. 10(a), the running time has linear dependency with the increase of
dimensionality, and Birch have a relatively small growing rate. The reason that the
growth rate of running time of our method is higher than Birch, is our method takes a
more time-consuming process in each dimension to perform grid-partitioning. As
shown in Fig. 10(b), the running time of SINGLE, CHAMELEON, DBSCAN and
DPC increases with the size of datasets by exponential growth; the running time of our
method and Birch has been kept at a very low level. In addition, with the increase of
data size, the running time of Birch exceeds our algorithm gradually.

Generally, our method and Birch are both good at handling high-dimensional data
and big data, while our method is better at big data and Birch is better at high-
dimensional data.

4 Conclusions

In this paper we proposed a bidirectional hierarchical clustering algorithm called BHC
where the Top-down and Bottom-up processes are performed to form a dendrogram.
Through the strategy of over-segmentation and the definition of distance between grids,
BHC can process complex and uneven data and avoid the influence of unstable

Fig. 10. Running time comparison: (a) with different data dimension, (b) with different data size
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geometric distance. Our method is good at large-scale and high-dimensional data, and
is robust to outliers and noise. Experiment results verified the superiority of our method
in efficiency and effectiveness over common clustering algorithms. However, one
limitation of our algorithm is distortion caused by grid-partition. As a follow-up work,
we will develop the kernel function as the projection to deal with nonlinear problems.
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