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Abstract. Differential privacy enables data analysis while protecting
individual privacy. However, existing differential privacy database plat-
forms do not defend against repeated attacks. This paper proposes
a practical Database Query System for differential privacy protection
against repeated attacks with customizable privacy budget. By limiting
adversary’s success probability and the number of attacks, the adminis-
trator can protect privacy against the repeated attacks. We conduct an
evaluation of this solution, and explain the applicability of this system.
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1 Introduction

Large volumes of personal data collected by various organizations are key
resources for statistical analysis. Statistical data analysis and publishing is used
extensively for potential economic and social benefits. However, the adversary
may get personal information through different statistical query results, which is
called differential attack. Differential privacy is proposed by Dwork [6] to resist
differential attacks. It allows general statistical analysis of data while protecting
individual data, and provides quantitative evaluation method for privacy pro-
tection. Although this mechanism guarantees privacy theoretically, the repeated
attacks still may obtain personal information in practice. Therefore, the security
assurance of differential privacy against repeated attacks need further research.

Generally, the organizations with amounts of private data provide an inter-
face for clients to get statistics of specific data sets. The clients are limited to
querying statistical results instead of individual personal information, but it is
enough for them to pick out the specific group to send advertisement, to acquire
the demand tendency of customers, et al r.
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In most cases, the statisticial query interface is provided in form of relational
database that supports SQL queries. Various platforms are proposed for differ-
ent query requests. Privacy Integrated Queries (PINQ), designed by McSherry
et al. [13], provides a platform for interactive data analysis of real-time data with
differential privacy. Weighted PINQ (wPINQ) [14], which uses weighted datasets
to bypass difficulties encountered (the worst-case requirements of differential pri-
vacy for the noise magnitudes), is intended for graph analyses. Johnson et al. [1]
develop FLEX with elastic sensitivity, a novel approach for differential privacy
of SQL queries and their approach is compatible with real database systems.

These existing platforms provide a number of methods to deal with different
query requests, but almost without exception, the platforms select the privacy
budget arbitrarily without any specific setting mode. However, it is often of low
security in the face of different attack models, especially the repeated attack.
Privacy Budget is a parameter on the degree of privacy protection, concerning
to the balance between security and utility. It is surely non-trivial to choose an
appropriate value for privacy budget in accordance with whether the intuitive
theoretical interpretation in the definition or the practical experience.

This paper proposes Database Query System for differential privacy pro-
tection against repeated attacks with customizable privacy budget, for statisti-
cal SQL queries. In contrast to existing work, our approach calculates the upper
bound of privacy budget according to input parameters, which are related to spe-
cific attack model. We focus on repeated attacks model, by which the attackers
can guess the real data. In this attack model, the guessed right or wrong depends
on the amount of added noise and the number of attacks, which underscoring
the importance of privacy preserving level. The success probability of a specific
attack algorithm is computationally feasible, and hence the upper bound of pri-
vacy budget can be calculated by prescribing a limit to probability of success
attack. The administrator input the number of attacks and the probability of
success that in line with their expectations, then the privacy budget value that
meets its requirements would be worked out.

Other than parameter choosing mechanism, elastic sensitivity is enforced to
analyse the sensitivity of every SQL query. Compared to existing mechanisms
for global sensitivity and local sensitivity, this mechanism is more efficient and
supports majority of statistical queries in practice.

Furthermore, it is unnecessary for administrators to have knowledge of dif-
ference privacy. As long as administrators limit the cost for successful attack
by attackers, the system would run well. This approach can make differential
privacy more flexible to be used and help clients to find the most appropriate
balance between protecting client privacy and ensuring data availability.

Contributions. We make two primary contributions in this paper:

1. Existing database platforms do not provide protection against repeated
attack. In this paper, our system realizes the protection of repeated attacks
by limiting attack times and attack success probability. The server calculates
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privacy budget and the client’s privacy budget allocation appropriately limits
interaction numbers with the database.

2. This system allows administrators without background knowledge to set
restrictions only by the acceptable risk level. It is more flexible and convenient
for practical use in the organizations of different fields.

Paper Outline. The paper continues in three parts, the rest parts are organized
as follows. In Sect. 2, we introduce the specific definition of differential privacy
and the key methods used in our system design. The system is detailed in Sect. 3,
and we show how clients can use the system to defend against attacks, as well as
the experimental evaluation of the system, and Sect. 4 concludes this work and
talks about the improvement direction.

2 Mathematical Foundations

2.1 Differential Privacy

Differential privacy is a privacy preserving method with rigorous theoreti-
cal basis, which provides higher security compared to others (k-anonymity,
l-diversity, t-closeness). Under the protection of differential privacy, the specific
personal data cannot be obtained even if the attacker has the greatest back-
ground knowledge.

This mechanism considers a set of databases. The distance measures how
many records differ between two databases, which is denoted as |D1 − D2|. Two
databases are neighbors if there is only one different record between them. The
query function set for the database is F = {f1, f2, · · · , fn}, and algorithm M
represents a randomized mechanism that meets the requirement of differential
privacy. The randomized mechanism applies to the result of query function F .
For any two neighbors D and D′, PM is set of all possible output of M , and
O is its subsets (O ∈ PM ). If M satisfies the following inequalities, it is (ε, δ)
-differential privacy.

Pr[M(D) ∈ O] ≤ exp(ε)Pr[M(D′) ∈ O] + δ (1)

The core thought of differential privacy is to reduce the impact of a single record
on query results by a randomized way. Of the two parameters, ε is privacy budget
concerning the level of privacy protection, while δ is typically a function that
grows more slowly than the inverse of any polynomial in the database size. We
choose δ = n−ε lnn in the following sections according to Dwork’s work [5].

2.2 Laplace Mechanism

Difference privacy is generally implemented by adding noise to the query result.
Similar to other platforms, our system use Laplace mechanism to add noise.
Laplace mechanism adds random noise of the Laplace distribution to the query
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results to enforcing (ε, δ)-differential privacy. The size of the noise added is
closely related to privacy budget ε and the query’s sensitivity �f . For differ-
ent queries, the system will return the sum of query results and noise to satisfy
difference privacy by algorithm M .

M(x) = f(x) + Lap(
�f

ε
) (2)

If the position parameter μ is set to zero, and the scale parameter set to
b, the probability density function is p(x) = 1

2be
− |x|

b . For it’s an absolute value
function, the cumulative distribution function can be easily get by integrating:

F (x) =
1
2

+
1
2
sgnx(1 − e− |x|

b ) (3)

In that case, the noise added by Laplace can be calculated according to
the inverse cumulative distribution function. The scale parameter b = �f

ε , and
p denotes the probability of random selection from (0, 1). F−1(p) is the noise
added ultimately.

F−1(p) = −bsgn(p − 0.5) ln(1 − 2|p − 0.5|) (4)

As shown in Fig. 1, the noise increases with the increase of b. So with the
decrease of ε, more noise would be added to the primary result which means
higher security but lower utility. When ε are 0, it means that a single piece of
data has no effect on the query result. At this time, the added noise is very big,
and the data is meaningless. If ε is set to a big value, the database is more likely
to be attacked. Therefore, how to set the privacy budget becomes an important
issue.

2.3 Privacy Budget

Privacy budget controls the level of privacy protection, and its selection is the
key to achieve differential privacy. Several existing works have researched on this
issue. Lee and Clifton [3] propose an attack model based on the prior and pos-
terior belief, and give a method to calculate the upper bound of privacy budget.
Then He et al. [10] improve the attack model by the definition of Laplace distri-
bution and provide how to determine whether the object of attack is presence
or not. Above schemes consider only a single attack, however, the attack on a
specific object generally perform repeatedly to get individual information at a
higher success probability. Therefore, the attack model of repeated attack [12] is
put forward based on the former, as well as a more sophisticated way to compute
the upper bound of privacy budget.

The result of a differential privacy mechanism is f(D) + x for the query
function f . Since the noise is of Laplace distribution, it is impossible for adversary
to obtain x. Considering the features of some aggregation functions like count,



50 J. Jia et al.

Fig. 1. Laplace probability density function

the real result could be leaked as long as the noise is in the range of certain
interval. It is called fault-tolerant interval (which is a dangerous interval for the
owner of individual data), and L denotes the half length of the interval. If L = 0.5,
fault-tolerant interval is [−0.5,0.5], the real value of f(D) could be inferred from
the result of a count query. A single attack is ever so unreliable, therefore the
repeated attack model performs the same query for N times, and guesses the
private data of attack target in every query result according to L. Then the final
determination could be made by the guess with higher probability. For a single
attack, the success probability can be calculated by cumulative distribution value
of the interval. The possibility of f(D)+x in (−∞, f(D)+μ+L) is equal to that
of x in (−∞, μ+L). Then according to the cumulative distribution function, the
probability that x falls in this region is:

F (μ + L) = 1 − 1
2
e− Lε

Δf (μ = 0) (5)

If the success probability is limited to ρ, the upper bound of privacy budget
calculate formula is:

ε ≤ −�f ln 2(1 − ρ)
L

(6)

The repeated attack follows binomial distribution B(n, ρ). If the attacker
attacks N times, n attacks occur in above interval, the possibility of this event
is:

n+1∑

i=1

Cn+i
2n+1(1 − 1

2
e− ε

2 )n+i(
1
2
e− ε

2 )n+1−i (7)
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While if the fact is f(D) = y+1, the probability in this case is the same as the
result above. In conclusion, the probability of the adversary attacks successfully
is the result above. According to this theorem, the privacy budget could be
limited to a small range as long as the administrator set a certain value to
the successful probability of the attacker. As seen in the inequality, the range of
parameter selection is related to the sensitivity of a query, the number of attacks,
fault-tolerance interval and the successful probability of the attacker

ρ ≤
n+1∑

i=1

Cn+i
N (1 − 1

2
e− Lε

�f )n+i(
1
2
e− Lε

�f )n+1−i (8)

Actually, the ideal case is to make adversary in a dilemma of figuring out the
presence or absencewhich happens when the probabilities of success and failure
both are 50%. Therefore, what we can do is to limit the probability close to this
value.

2.4 Elastic Sensitivity

Johnson et al. [1] propose Elastic Sensitivity, a mechanism that enforces dif-
ferential privacy on majority of queries through analysis of SQL statements in
practice. Elastic sensitivity meets the requirement of universal practical differ-
ence privacy, which can approximate the local sensitivity of queries with general
equijoin.

The definition is expressed as Ś
(k)
R (r, x), which means the elastic sensitivity

of query or relation r at distance k from the true database x. It origins from
mfk(a, r, x), the maximum frequency of attribute a at distance k. When k = 0
the value mf(a, r, x) is the database metric that needs to be precomputed. As
calculating the approximation of upper bound, we should consider the worst
condition in each case. The details of this method are listed in Table 1.

Before adding Laplace noise it should be smoothed by smooth sensitivity, as
it can reduce the amount of noise to improve the utility of differential privacy.
It is calculated by using the maximum value of elastic sensitivity at k multiplied
by an exponentially decaying function in βk. By Nissim et al. [2] β = ε

2 ln(2/δ)

suffices to provide differential privacy when applying Laplace mechanism. In the
end, we release the query result as q(x) + Lap(2S/ε).

3 Database Query System with Budget Option

After introducing the background knowledge, the following gives details of our
system. The system design draws partly from PINQ and FLEX, their analysis
of SQL statements brings inspiration to our design. We design Database Query
System with a flexible privacy budget selection mechanism, to fight against dif-
ferential privacy attack methods.
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Table 1. Definition of elastic sensitivity

Table t mfk(a, t, x) = mf(a, t, x) + k Ś
(k)
R

(t, x) = 1

r1 �� r2

a = b
mfk

(
a1,

r1 �� r2

a2 = a3
, x

)
=

{
mfk (a1, r1, x) mfk (a3, r2, x) a1 ∈ r1

mfk (a1, r2, x) mfk (a2, r1, x) a1 ∈ r2

Self Join

Ś
(k)
R

(
r1 �� r2

a = b
, x

)
=

mfk (a, r1, x) Ś
(k)
R

(r2, x) +

mfk (a, r2, x) Ś
(k)
R

(r1, x) +

Ś
(k)
R

(r1, x) Ś
(k)
R

(r2, x)

Non − self join

Ś
(k)
R

(
r1 �� r2

a = b
, x

)
= max

mfk (a, r1, x) Ś
(k)
R

(r2, x) ,

mfk (a, r2, x) Ś
(k)
R

(r1, x)

πa1,··· ,anr mfk(a, πa1,··· ,anr, x) = mfk(a, r, x) Ś
(k)
R

(πa1,··· ,anr, x) = Ś
(k)
R

(r, x)

σϕr mfk(a, σϕr, x) = mfk(a, r, x) Ś
(k)
R

(σϕr, x) = Ś
(k)
R

(r, x)

Counting mfk (a, Count (r) , x) = ⊥ Count(r)

Ś
(k)
R

(Count (r)) = 1

Ś
(k)
R

(Count (r) , x) = Ś
(k)
R

(r, x)

Count with gourping
Count (r)

G1 . . . Gn

Ś
(k)
R

(
Count (r)

G1 . . . Gn
, x

)
=

2Ś
(k)
R

(r, x)

3.1 System Design

Considering the shortcomings of the existing database platforms based on dif-
ferential privacy protection, our system provides more privacy protection man-
agement authority for data publishers. The administrator can limit attack times
and adversary’s success probability, then they can estimate the attack cost of the
adversary. Similar to PINQ, administrator can assign a query budget to clients,
and each query of clients will consume part of the query budget until the query
budget is used up.

Fig. 2. System interactions
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The interaction process is sketched in Fig. 2. Before data release, the admin-
istrator inputs the attack times and success probability as expected into the
system. Then, the system calculates the privacy budget based on the parame-
ters input by the administrator and returns privacy budget to the administrator.
According to the privacy budget obtained, the administrator limits the scope of
client access to the database and assigns a query budget to the client, and each
query of the client will consume part of the budget. When the budget is insuffi-
cient, the client can apply to the administrator, who decides whether to assign
another query budget to the client. When the client poses a query request to the
server, the server sends a SQL statement to the database of query, and calculates
the elastic sensitivity according to the query statement. The client’s query bud-
get decreases accordingly. Afterwards, the database returns the query results to
the sever, and the server adds noise of Laplace distribution to the query results.
Finally, the result with noise is returned to the client.

3.2 Budget Management

Here’s more information on how to calculate a privacy budget. The adminis-
trator inputs the probability of success and attack times based on the security
requirements, and calculates the privacy budget according to the repeated attack
model proposed above. Considering the attack model, the probability of success
under repeated attacks is actually equal to a binomial distribution of the success
probability of a single attack. Therefore, we can simplify the probability formula
of repeated attacks to the following formula:

ρ′ ≤
n+1∑

i=1

Cn+i
N (ρ)n+i(1 − ρ)n+1−i (9)

N is the number of repeated attacks, N = 2n+1, ρ is the success probability
of a single attack, and ρ’ is the success probability of repeated attacks.

In this way, the transformation calculation of the success probability of a
single attack becomes polynomial. Based on the single success probability ρ, it
is easy to calculate the privacy budget ε. Under the same privacy budget, the
success probability increases with the increasing number of attacks. Therefore,
controlling the number of queries is an effective way to protect personal data
security. The administrator can assign the query budget to the client based on
the privacy budget. Each query of the client consumes the query budget. When
the query budget is exhausted, the client needs to apply to the administrator
for another budget, and the administrator decides whether to assign another
budget to the client based on specific usage of client and security requirements
attack success probability. When setting parameters, the attack success prob-
ability should be greater than 0.5. In fact, under the optimal protection, the
success probability of the adversary will be maintained at 0.5. Because under
optimal protection, even if the opponent has the most background knowledge,
it cannot profit from it. That is, the adversary can only determine the informa-
tion of the attack target by guessing rather than extracting useful data from the
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dataset. Under optimal protection, an attack on a counting query is like guessing
the heads and tails of a coin, whose success rate is 50%.

3.3 Security Evaluation

The essence of Laplace mechanism is to add a random noise to the result, and
the random noise is in the interval (−∞,+∞) with an average of 0. Therefore,
the target value can be obtained according to the feature of the average value
as long as executing the same query enough number of times.

Considering the attack model by predicting the noise, take the count query for
example. For different values of privacy budget ε the adversary averages the noise
of S number of attack times experimental results. When the average value is within
the [−0.5, 0.5] interval (known as the “fault-tolerant interval”), the adversary can
infer that the average value of noise is 0. Therefore, we need pay attention to the
probability of the average value of S times noise in the dangerous interval.

The Table 2 shows the data distribution and mean values of noise under dif-
ferent conditions for different values of privacy budget ε. For example, when the
value of privacy budget ε is 0.1, 90% noise is within the range of [−23.24, 23.24]
and 95% noise is within the range of [−29.00, 29.99]. Averaging 100 different noise,
the average falls in the danger range with 25.59% probability; and averaging 1,000
noise, the average falls in the danger range with 73.75% probability. That is to say,
when privacy budget ε is 0.1, the adversary has a 73.75% probability of getting the
true value of the query result through executing the same query 1,000 times.

Table 2. The Laplace noise distribution and the possibility of noise mean within danger
interval in different ε

ε Data distribution of noise
(Tabsolute value of T)

The probability that the average noise
of S times in dangerous interval

90% 95% 99% 99.9% 100 1000 10000 100000

1 2.29 2.98 4.50 6.43 100.00 100.00 100.00 100.00

0.1 23.24 29.99 45.51 66.56 25.59 73.75 99.99 100.00

0.01 227.97 296.22 463.48 677.26 2.72 9.12 27.85 73.70

The above attack model is an attack on the characteristics of Laplace noise.
While considering the adversary’s background knowledge, the adversary can use
another repeated attack model to guess the information of the target. That is, the
repeated attack model introduced in Sect. 2.3. Take count query as an example.
Because the adversary has extensive background knowledge, the adversary knows
that the value of the query result f(D) is y or y + 1. Set N = 2n + 1, the
adversary executes the same query N times and counts the result f(D) + noise
in (−∞, y+0.5) or in (y+0.5, +∞). If the result in (−∞, y+0.5) is more than
(y+0.5,+∞), the adversary will guess the query result f(D) = y. Otherwise, the



Database Query System with Budget Option for Differential Privacy 55

adversary will guess the query result f(D) = y + 1. In Sect. 2.3, we list the
success probability of this attack model is:

ρ ≤
n+1∑

i=1

Cn+i
N (1 − 1

2
e− Lε

�f )n+i(
1
2
e− Lε

�f )n+1−i

According to the formula and Fig. 3, under the same privacy budget ε, the
success probability increases with the increasing of query times.

Fig. 3. The success probability of counting query under different attack times

To evaluate the security of the Database Query System, we analyze the input
parameters and privacy budget ε in Table 3. We also list the success probability of
the first attack model. As mentioned above, the ideally attack success probability
is 0.5. The significance of 0.5 is that the adversary cannot get advantage by his
extensive background knowledge and can only guess target value. Based on this
privacy budget, the predicting noise attack model success probability is less than
50%. That is to say, by calculating the average value of the noise, the success
accuracy is evenworse than that of random guessing.

Table 3. Protection model evaluation

Attack times Success
probability

Privacy budget The probability average
noise in dangerous interval

Noise mean

51 0.6 0.0717 14.57% 13.93

101 0.6 0.0510 13.80% 19.67

201 0.6 0.0359 13.86% 27.94

101 0.7 0.1068 30.01% 9.3319

101 0.55 0.0250 7.17 % 39.89

101 0.65 0.0779 22.04 % 12.90
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3.4 Performance Analysis

The main time overhead before data publishing is the polynomial computation
process of privacy budget. After releasing the database, neither the calculation
of elastic sensitivity nor the generation of Laplace noise involves complex cal-
culation, and the time overhead is relatively small. In each query, in addition
to ordinary interactions with the database, only a simple calculation is required
to achieve differential privacy protection, and the calculation overhead can be
ignored. This system has the advantage of easy implementation. The privacy
budget is set reasonably, and the elastic sensitivity value is small and more
consistent with the original data characteristics. Therefore, the data distortion
degree after adding noise is small, and the actual accuracy of query results can
be controlled by the administrator freely.

4 Conclusions

This paper presents Database Query System, a platform for privacy preserving
statistical analysis against repeated attacks. In consideration of the attack in
practical, we refer to several attack model and calculate the privacy budget of
Laplace Mechanism by limitation of number of attacks and success probability.
For further research, the aggregate functions except for count should be take
into consideration. And abstracting out the complicated attack in practice into
a detailed algorithm is a challenge as well.
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