
An Static Propositional Function Model
to Detect Software Vulnerability

Lansheng Han, Man Zhou(B), and Cai Fu

School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

{hanlansheng,zhou man1125}@hust.edu.cn

Abstract. Due to lacking proper theory to accurately describe character-
istics of vulnerability, the existing static detection models are designed for
specific vulnerability is hard to be expanded and the latter often encoun-
ters the state space explosion and with higher false positive rate. This
paper proposes a static detection model of a five-tuple (n0;F ;S;P ;Q): the
vulnerability initial nodes set, program state space, Vulnerability Syntax
Rules, preconditions of vulnerability, and post-conditions of vulnerabil-
ity are accurately described. We design a testing prototype system for the
static detection model and carry out experiments to evaluate the results
with the vulnerabilities disclosed by NIST. Our model find more vulnera-
bilities of Wireshark than published by NIST and shows higher detection
efficiency than that of FindBugs. Formal accurately description is prereq-
uisite of auto-detection of vulnerability.

Keywords: Software vulnerability · Propositional function ·
Static analysis · State space explosion

1 Introduction

With the advent of information society and the popularization of software appli-
cations, more security problems of computer are arising from software vulnera-
bilities. Software vulnerability is weakness in software systems that may cause
the application crash or be exploited by a threat to gain unauthorized access to
information [1,2]. So software vulnerability detection has been a research focus
of information security in recent years [3]. And various detection approaches are
put forward [4,5].

1.1 Motivation and Contributions

All these existing approaches are falling into three main categories: static,
dynamic, and integrated analysis systems. But due to lacking proper theory to
accurately describe characteristics of vulnerability, they are imprecise, resulting

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 564–575, 2019.

https://doi.org/10.1007/978-3-030-21373-2_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_46&domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_46

Detect Software Vulnerability 565

in a large amount of false positives. Dynamic analysis systems, such as “fuzzers”,
can provide conditional inputs. However, they suffer from exhaustive test cases.

Current researches agree that every software vulnerability is caused by some
flaws or defects of the software [3]. Most software defects and flaws are parts of
software inherent attributes and they always occur regularly [6]. So we believe
that software vulnerabilities follow certain patterns and can be identified by
them if the patterns are accurately be described [7].

Many years of the research on the vulnerabilities detection make us believe
false positives are caused by suspicion or misunderstanding, the both are due
to the lack of an accurate formal description of the vulnerability especially for
some high speed detecting tools.

In this paper, we propose a vulnerability static detection model by abstract-
ing the characteristics of a variety of vulnerabilities in form of propositional
function. We focus on software source code detection and try to formalize pat-
terns of vulnerability. If there is a violation of patterns in a program, there will
be software vulnerability. We discriminate and describe a variety of software
vulnerabilities formally by this model.

1.2 Related Work

In the following, we briefly review the prior work most closely related to our
model in two groups: theoretical approaches and mature tools.

Clarke proposed a formal software vulnerability testing technology which can
judge whether a given program meets the pre-defined characteristics or not by
traversing the state space [8]. Obviously, there will be a state space explosion
when it is used to detect large-scale programs.

Describing vulnerability characters appropriately is a critical step for its
detection. Wilander proposed a generic way to model the security character-
istics of codes by vulnerability dependency graph [9].

B. Liang and K.K. Hou proposed an expanded finite-state machine model
which can traverse the possible executable paths in a program statically and
identify the current operation. This model reduces the false positives to some
extent, but all possible executable paths in the program need to be traversed,
so the detect efficiency still needs to be improved [10].

Compass is a static analysis tool for checking source code designed by ROSE
Team [11]. It does not describe the characteristics of vulnerabilities in depth.

Some lightweight approaches include Rats [12], Prefast [13] as well as Splint
[14], they can not find deep layer vulnerabilities and also require manual anno-
tations. FindBugs is a static analysis tool to find defects in Java code but not a
style checker.

There are some other tools, like Coverity, Fortify, CodeSonar, and IBM Secu-
rity AppScan Source (formerly Rational). Due to the auto scanning, those tools
can make thorough analysis with configurable rule sets. Lack of formal descrip-
tion of vulnerability, thorough scanning need long run time and the false positive
rate is still high [15].

566 L. Han et al.

2 Static Detection Model Based on Propositional
Function

CFG (Control Flow Graph) and PDG (program dependency graph) are two
important useful data structures for program static analysis [16,17]. A CFG is a
directed graph that shows all paths might be traversed through a program during
its execution, whose edges represent possible flow of control between statements
[18]. Amed at describing vulnerability conveniently by the propositional function,
we define the related concepts in CFG and PDG at first.

2.1 Related Definitions in CFG

Let ni and nj be two nodes on CFG:

Definition 1. In a CFG, if there is sequence p = <n0, ..., nm> which meets
(ni−1, ni) ∈ E, where i = 1, 2...m. Then there is an executable path between n0

and nm, denoted by EP (n0, nm). The set of all the executable paths in program
denoted by EP .

Definition 2. If there is an executable path EP (ni, nj) between ni and nj, then
ni is the predecessor node of nj, denoted by Pred(ni, nj); nj is the successor
node of ni, denoted by Succ(ni, nj). Let n be a sentence, and the set of all its
predecessor nodes called the precursor node set of n, denoted by Pred(n). The
set of all its successor nodes is called the successor node set of n, denoted by
Succ(n).

Definition 3. In a CFG, ni is post-dominated by nj if every directed path from
ni to Exit(not including ni) contains nj, denoted by PD(nj , ni). It should be
noted that ni is not the post-dominator of itself. Let n be a sentence, and the
set of all its post-dominator is called the post-dominator set of n, denoted by
PD(n).

Definition 4. There is an executable path EP (ni, nj). nj is data dependent on
ni, denoted by DD(nj , ni, v) if

(1) there is a variable v, the value of v at ni has been used during execution
of nj.

(2) v is not redefined on EP (ni, nj).

Definition 5. There is an executable path between ni and nj. nj is control
dependent on ni, denoted by CD(ni, nj) if

(1) each node on EP (ni, nj) from ni to nj (except ni and nj) is post-dominated
by nj.

(2) ni is not post-dominated by nj.

Detect Software Vulnerability 567

2.2 Vulnerability Static Detection Model Based on Propositional
Function

Following the above definitions, we can construct our detection model based on
propositional function.

Definition 6. The detection model is defined as a five-tuple denoted as
V ulnerability = {n0, F, S, P,Q}. It includes the vulnerability initial nodes set,
program state space, Vulnerability Syntax Rules, preconditions of vulnerability,
and post-conditions of vulnerability. The followings are the detailed description
of the five-tuple.

Vulnerability initial nodes set n0. n0 is the initial characteristic nodes of
vulnerability which is the entrance node of vulnerability detection. For a program
M , its sentence is finite. So, the vulnerability initial nodes set n0 is finite and
certain.

Program state space F . F is the program state space extracted from
source code, CFG and PDG. It contains the EP in program, control dependency
and data dependency among nodes. F is an Intermediate Representation which
contains all necessary information for vulnerability detection, and it can not be
empty.

Vulnerability Syntax Rules set S. S is a set of vulnerability syntax rules
which are state transition rules between vulnerability initial nodes set n0 and
vulnerable nodes set N on EP .

Precondition P . P is Precondition which means that any node n(n ∈ N)
must meet these state conditions before executing, where N is the set of nodes
related to vulnerabilities. Otherwise, there will be a vulnerability.

Post-conditions Q. Q is Post-conditions which means that any node n in N
must meet these rules after executing. Otherwise, there will be a vulnerability.

With the model above, the complete process of vulnerability detection can
be described as F :{P}n0

s−−→ N{Q}. This process has two steps:
Step 1. Locate vulnerabilities roughly. n0

s−−→ N means that we find the
vulnerable node which conforms to the Vulnerability Syntax Rules set S from
n0 on EP . For any EPi(EPi ∈ F), if there is a node n1 conforms to n0

s−−→ n1,
n1 is a vulnerability related node, n1∈N .

Step 2. Locate vulnerabilities precisely. {P}N{Q} means that we detect
the vulnerable nodes set N by Precondition P and Post-conditions Q. For any
EPi(EPi∈F), if there is node n2 conforms to n1

p−−→ n2 before n1 executing,

and there is node n3 conforms to n1
Q−−→ n3 after n1 executing, the detection

result is TRUE, and n1 does not have a vulnerability. Before n1 executing, if
¬∀n2 conforms to n1

p−−→ n2, or after n1 executing, ¬∀n3 conforms to n1
Q−−→ n3,

detection result is FALSE and n1 has a vulnerability.
Next we will use propositional function to describe some types of software

vulnerabilities.

568 L. Han et al.

2.3 Formal Description of Software Vulnerability Based
on Propositional Function

In this paper, we focus on describing and detecting nine software vulnerabilities
in four types with CWE number which are the most prone to general programs,
as shown in Table 1. Before formulating these software vulnerabilities, we also
need some definitions in the form of propositional function.

Table 1. Software vulnerabilities

Vulnerability CWE number

Null Pointer Dereference CWE-476; CWE-690

Buffer Overflow CWE-119; CWE-120

Uncontrolled Format String CWE-134

Resource Relation Flaws CWE-401; CWE-404; CWE-415; CWE-416

Definition 7. The way to use variable v can be described as definition-use-
check relationships. DEF (v, n) means the statement, definition or assign-
ment of v at sentence n; USE(v, n) means v is used or cited on node n;
CHECK(v, n, Statement) means detect the statement of v on node n. For exam-
ple, CHECK(v, n, Null) means detecting whether the statement of v on n is
Null or not, and the check result will be True or False.

Definition 8. The type of a parameter in program M can be described by corre-
sponding propositional functions. For example: pointer variable v = {v|∃v ∈ M,
type of v is Pointer} is denoted by Pointer(v); function f is denoted by
Function(f), etc.

Definition 9. Use the ResourceAllocateFunctionList to denote the func-
tion set related to resource allocation. In C Programming Language the com-
mon resource allocation functions are malloc(), fopen(), calloc(), new(), etc.
The ResourceAllocateFunctionList(n) denotes resource allocation functions on
node n, abbreviated as RAF (n). ResourceRelease(n) means to release resources
related to resource allocation functions RAF (n) on node n, abbreviated as
RR(n).

Definition 10. The format functions are denoted by FormatFunctionList.
In C Programming Language common format functions include
printf(), strncpy(), fwprintf(), snwscanf(), fprint(), printf(), etc.
FormatFunction(n) means format function which is called on node n, abbrevi-
ated as FF (n).

Definition 11.
The buffer related functions are denoted by BufferFunction(n). The common
buffer related API functions include memcpy(), strcpy(), sprint(), vsprintf(),
gets(), scanf(), strcat(), etc.

Detect Software Vulnerability 569

Definition 12. Propositional function CallFunction(n) means the information
of functions called on node n.

Definition 13. Propositional function SharedResource(v, n) means shared
resources on node n in program v. Propositional function SharedResource(v)
means the set of all shared resources in program v.

Definition 14. Propositional function IsIn(n1, n2) means n1 ⊆ n2 and propo-
sitional function ¬IsIn(n1, n2) means n1 � n2.

With these formal definition we can present formal propositional function for
software vulnerability. We summarize the characteristics of these vulnerabilities
and achieve its propositional function.

(1) Null Pointer Dereference. For a target program M , the set of sentence
n which defines or declares pointers in M is vulnerability initial nodes set denoted
by n0. Its propositional function is:

n0 = {n|∃n ∈ M ∧ DEF (Pointer(v), n)}. (1)

On any executable path EPi(EPi ∈ EP), if there is a successor node n1 of
n0 which calls Pointer(v) and is data dependent on n0 with Pointer(v), n1 is a
vulnerable node s. Its propositional function is:

S = Succ(n1, n0) ∧ DD(n1, n0, Pointer(v)) ∧ USE(Pointer(v), n1). (2)

On this executable path EPi(EPi ∈ EP), if there is a node n2 which is data
dependent on n0 with Pointer(v) and vulnerable node n1 is control dependent on
n2, and Pointer(v) is Null on n2, n1 does not have any vulnerability. Otherwise,
n1 has vulnerabilities. Its propositional function is:

P = DD(n2, n0, Pointer(v))∧CD(n2, n1)∧CHECK(Pointer(v), n2, NotNull),
(3)

Q on NPD is Null.
(2) Buffer overflow. For a target program M , the set of sentence n which

calls the buffer related functions is vulnerability initial nodes set denoted by n0.
Its propositional function is:

n0 = {n|∃n ∈ M wedgeCallFunction(n) ⊆ BufferFunctionList}. (4)

On any executable path EPi(EPi ∈ EP), if n0 is data dependent on
Buffer(v1) which is defined on the predecessor node n1 of n0, n0 is a vulnerable
node. Its propositional function is:

S = DD(n0, n1, Buffer(v1, n0)) ∧ DEF (Buffer(v1), n1) ∧ Pred(n1, n0). (5)

On this executable path EPi(EPi ∈ EP), if there is a node n2 that n0 is
control dependent on, and n1 is the postdominator of n2, and both buffer size

570 L. Han et al.

and input data length are matching, n2 does not have vulnerability. Otherwise,
n2 has vulnerabilities. Its propositional function is:

P =CD(n2, n0) ∧ PD(n2, n1) ∧ CHECK(buffer(v1), input(v2), n1, Size)∪
CHECK(buffer(v1), input(v2), n0, Size),

(6)
Q on Buffer Overflow is null.

(3) Uncontrolled Format String. For a target program M , the set of
sentence n which calls FormatFunctionList is vulnerability initial nodes set.
Its propositional function is:

n0 = {n|∃n ∈ M ∧ CallFunction(n) ⊆ FormatFunctionList}. (7)

On any executable path EPi(EPi ∈ EP), if n0 is data dependent on variable
v defined on its predecessor node n1, n0 is a vulnerable node. Its propositional
function is:

S = Succ(n1, n0) ∧ DEF (v, n1) ∧ DD(n0, n1, v). (8)

On this EPi, if both the type and the number of parameters in a format
string function are matching on node n0, the result is TRUE, which means n0

does not have vulnerability. Otherwise, n0 has vulnerabilities. Its propositional
function is:

P = CHECK(FF (n0), n0, Parameter), (9)

and Q is null.
(4) Resource Related Flaws. In target program M , the set of sentence n

which defines or declares a variable v belonging to resource allocation functionlist
is a vulnerability initial nodes set n0. Its propositional function is:

n0 = {n|∃n ∈ M ∧ DEF (v, n) ⊆ ResourceAllocateFunctionList}. (10)

On any executable path EPi, if node n1 which is the successor node of n0 calls
resource allocation functions on n0 denoted by RAF (n0) and is data dependent
on n0 which is the precursor node of n1 with RAF (n0), n1 is a vulnerable node.
Its propositional function is:

S = USE(RAF (n0), n1) ∪ Succ(n1, n0) ∧ DD(n1, n0, RAF (n0)). (11)

On this EPi, if there is not resource release operation RR(n2) corresponding
resource allocation functions RAF (n0) on node n2 which is the precursor node
of n1,the precondition P is True. Its propositional function is:

P = Pred(n2, n1) ∧ IsIn(RR(n2), RAF (n0)). (12)

On this EPi, if there is node n3 which is the post-dominator of n1 and is data
dependent on its predecessor node n0 with RAF (n0), and there is resource release

Detect Software Vulnerability 571

operation RR(n1) or RR(n3) corresponding RAF (n0), the post-conditions Q is
True. Its propositional function is:

Q = PD(n3, n1) ∧ DD(n3, n1, RAF (n0)) ∧ (IsIn(RAF (n0), RR(n3))
∪ IsIn(RAF (n0), RR(n1))).

(13)

We must consider the case that if n0 can not deduce n1 by the vulnerability
syntax rules set S, the variables or functions defined on n0 belong to redundant
code.

3 Detection Algorithm

Based on this model, we design a static detection process for software vulner-
ability analysis, as shown in Fig. 1. It includes: basic information analysis and
rules.

3.1 Basic Information Analysis

The basic information analysis module is used to generate and extract some
basic static information from target program, as shown in Fig. 1.

Fig. 1. Basic processing module flow chart

Firstly, use lexical and syntax analysis to extract vulnerability initial nodes
set n0 from target program source code. Secondly, use compiler front-end (such
as GCC, java compiler) to generate abstract syntax tree AST , and construct
CFG and CG (call graph).

3.2 Solution of Vulnerable Nodes Set N

Vulnerable nodes set N is a set of nodes which may contain vulnerabilities. Solv-
ing N is the coarse locating process of vulnerability analysis which we described
in Sect. 3.2. Steps of Solving N are as follows:

Step 1. Search the program state space F starting from vulnerability initial
nodes set n0.

Step 2. Insert the nodes which conform to vulnerability syntax rules S into
vulnerable nodes set N .

Algorithm 1 is shown as follow:

572 L. Han et al.

Algorithm 1. The algorithm of solving vulnerable nodes set N

1: Input: space F
2: Output: vulnerable nodes set NEPSi

3: Initialization: NEPSi = {∅}
4: for each n ∈ EPSi , except n0 do
5: if (Relation(n0, n) ⊆ F&&Relation(n0, n) == Si) then
6: NEPSi = NEPSi

⋃
n

7: end if
8: end for
9: return NV EPSi

Algorithm 2. The algorithm of discriminating vulnerability

1: Input: space F , NEPSi , preconditions P , post-conditions Q
2: Output: Vulnerable Nodes
3: Initialization: Vulnerable Nodes= {∅}
4: for each n ∈ NEPSi do
5: for each m ∈ EPSi,m �= n do
6: if (Relation(n,m) � F) then
7: Vulnerable Nodes=Vulnerable Nodes

⋃
n

8: else if (Relation(n,m) ∈ F&&(Relation(n,m)! = P ||(Relation(n,m)! = Q))
then

9: Vulnerable Nodes=Vulnerable Nodes
⋃

n
10: end if
11: end for
12: end for
13: return Vulnerable Nodes

3.3 Vulnerability Syntax Rules Database

Vulnerability rules database is a database which includes vulnerability
syntax rules set S, vulnerability preconditions P and vulnerability post-
conditions Q. It also contains some API functions, such as ResourceAllocation
FunctionList, FormatFunctionList, BufferFunctionList, and so on.

According to Definitions 2–5 in Sect. 2.1, Definition 6 in Sect. 2.2 and Def-
initions 7, 12, 14 in Sect. 2.3, we summarize the vulnerability syntax rules for
S, P,Q in Table 2.

4 Experiments and Evaluation

To evaluate the effectiveness of our approach, we proceed to evaluate our method
by carrying on experiments from Sep., 2013 to May, 2016 on 4 open resource
software and contrast of detection on CWE-476(Tomcat4.0) of our method with
FindBug 3.0.1.

We have verified and confirmed the vulnerabilities of 4 open source projects
which was disclosed by NIST, shown as Table 3.

Detect Software Vulnerability 573

Table 2. Vulnerability syntax rules S, P,Q of the four types of vulnerability

Vulnerability types Syntax rules for S, P,Q

Null Pointer
Dereference

S = Succ(n1, n0) ∧ DD(n1, n0, Pointer(v)) ∧
USE(Pointer(v), n1)
P = DD(n2, n0, Pointer(v)) ∧ CD(n2, n1) ∧
CHECK(Pointer(v), n2, NotNull)
Q = ∅

Buffer Overflow S = DD(n0, n1, Buffer(v1, n0)) ∧ DEF (Buffer
(v1), n1) ∧ Pred(n1, n0)
P = CD(n2, n0) ∧ PD(n2, n1) ∧ CHECK
(buffer(v1), input(v2), n1, Size)
∪ CHECK(buffer(v1), input(v2), n0, Size)
Q = ∅

Uncontrolled Format
String

S = Succ(n1, n0) ∧ DEF (v, n1) ∧ DD(n0, n1, v)
P = CHECK(FF (n0), n0, Parameter)
Q = ∅

Resource Flaws S = USE(RAF (n0), n1) ∪ Succ(n1, n0) ∧ DD
(n1, n0, RAF (n0))
P = Pred(n2, n1) ∧ IsIn(RR(n2), RAF (n0))
Q = PD(n3, n1) ∧ DD(n3, n1, RAF (n0)) ∧
(IsIn(RAF (n0), RR(n3))
∪ IsIn(RAF (n0), RR(n1)))

Table 3. Verify and confirm the vulnerabilities disclosed by NIST

Vtype NPD BF UFS RRF

Chrome 5.0 NISTnum 0 1 0 5

FOLBnum 0 1 0 5

Wireshark1.8 NISTnum 1 43 1 0

FOLBnum 1 40 1 0

ABM1.0 NISTnum 0 58 8 9

FOLBnum 0 49 8 8

Asterisk10.2 NISTnum 5 14 0 0

FOLBnum 5 14 0 0

The accuracy of FOLBˆEPS 100% 88.9% 100% 92.8%

Notation: The accuracy of FOLBˆEPS = FOLBnum/NISTnum

As shown in Table 3, the open source projects that we test covering all types
of vulnerabilities we describe in this paper. Results show that resource operations
flaws, null pointer dereference and format string have high detection accuracy.
And buffer overflow has low false positives rate and false negatives rate. There-
fore, the method that we propose can be applied to detect most of vulnerabilities.

574 L. Han et al.

A Java project tomcat 4.0 is a real software system widely used as serverlet
container, whose vulnerabilities are also disclosed by NIST . Here we use our
method to detect Null Pointer Dereference(CWE-476) and compare the result
with that of FindBugs 3.0.1. Although FindBugs has been around for a long time,
due to its universality and openness, we select the newer FindBugs 3.0.1 as the
experiment tool. The result is shown in Table 4.

Table 4. Null Pointer Dereference (CWE-476) detection results contrast on Tomcat
4.0 between FindBugs 3.0.1 and FOLBˆEPS

Detection
tools

Detection
result

Confirmed Confirmed as
false positives
number

Can’t
confirmed

False
positives
rate

Detection
rate

FindBugs 36 2 22 12 61.1% 5.6%

FOLBˆEPS 42 13 21 8 50% 30.9%

The result shows that the detection rate of our method is higher than that
of FindBugs and the False positives rate is also lower than that of FindBugs.

5 Conclusions and Future Work

In this paper, we proposed a static vulnerability detection model based on propo-
sitional function. Firstly, we defined and described the existing preconditions,
characteristics and properties of vulnerabilities, and gave corresponding discrim-
inant formula in terms of propositional function. Then constructed our detection
model with a five-tuple. Then we designed a static detection process according
to the new model, and used propositional function to described four types of
disclosed software vulnerabilities in CWE. Finally, we carried out experiments,
to verify that our model based on the propositional function realized more accu-
rate description of vulnerability, improved detection rate and reduced the false
alarm rate.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant (No. 61272033, 61272045, 61572222); and
the National Grand Fundamental Research 973 Program Foundation of China (No.
2014CB340600). We also thank students of class 2013, 2014 and 2015 majoring infor-
mation security in our university for their hard work of analysis and collecting vulner-
ability information of many C/C++/Java open sources. They filtered 7,168 vulner-
abilities and achieved 1,761 vulnerabilities, patches and attribute information see the
attachment1.

Detect Software Vulnerability 575

References

1. Martins, E., Morais, A., Cavalli, A.: Generating attack scenarios for the validation
of security protocol implementations. In: The 2nd Brazilian Workshop on System-
atic and Automated Software Testing (SBES 2008 -SAST), Brazil, October 2008

2. Du, W., Mathur, A.: Vulnerability testing of software system using fault injec-
tion. In: Proceeding of the International Conference on Dependable Systems and
Networks (DSN 2000), Workshop on Dependability Versus Malicious Faults (2000)

3. Chen, Z.Q., Zhang, Y., Chen, Z.R.: A categorization framework for common vul-
nerabilities and exposures. Comput. J. Arch. 53(5), 551–580 (2010)

4. Perl, H., Dechand, S., Smith, M., et al.: VCCFinder: finding potential vulnerabil-
ities in open-source projects to assist code audits. In: ACM SIGSAC Conference
on Computer and Communications Security, pp. 426–437. ACM (2015)

5. Czibula, G., Marian, Z., Czibula, I.G.: Software defect prediction using relational
association rule mining. Inf. Sci. 264(183), 260–278 (2014)

6. Li, P., Cui, B.J.: A comparative study on software vulnerability static analysis
techniques and tools. In: IEEE International Conference on Information Theory
and Information Security, pp. 521–524. IEEE Press, Beijing (2010)

7. Zeng, F.P., Chen, A.Z., Tao, X.: Study on software reliability design criteria based
on defect patterns. In: Proceedings of the 8th International Conference on Reli-
ability, Maintainability and Safety (ICRMS 2009), pp. 723–727. IEEE, Chengdu
(2009)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. Wilander, J.: Modeling and visualizing security properties of code using depen-
dence graphs. In: Proceedings of 5th Conference on Software Engineering Research
and Practice in Sweden, pp. 65–74. ACM Press, Vasteras (2005)

10. Meland, P., Spampinato, D., Hagen, E., Baadshaug, E., Krister, K., Velle, K.:
SeaMonster: providing tool support for security modeling. In: National Conference
on Information Security, NISK 2008, November 2008

11. Quinlan, D., Panas, T.: Source code and binary analysis of software defects. In:
5th Annual Workshop on Cyber Security and Information Intelligence Challenges
and Strategies, pp. 1–4. AMC Press, New York (2009)

12. Rough Auditing Tool for Security (RATS). https://code.google.com/p/rough-
auditing-tool-for-security/. Accessed Jan 2015

13. PREfast Analysis Tool. https://msdn.microsoft.com/enus/library/ms933794.aspx.
Accessed Jan 2015

14. Splint Annotation-Assisted Lightweight Static Checking. http://splint.org/.
Accessed Jan 2015

15. Coverity Scan — Static Analysis. https://scan.coverity.com/. Accessed Aug 2015
16. Allence, F.E.: Control flow analysis. ACM SIGPLAN Not. 5(7), 1–19 (1970)
17. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)
18. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.

In: ACM/SIGPLAN88 Conference on Programming Language Design and Imple-
mentation, pp. 26–60. ACM Press, Atlanta (1988)

https://code.google.com/p/rough-auditing-tool-for-security/
https://code.google.com/p/rough-auditing-tool-for-security/
https://msdn.microsoft.com/enus/library/ms933794.aspx
http://splint.org/
https://scan.coverity.com/

	An Static Propositional Function Model to Detect Software Vulnerability
	1 Introduction
	1.1 Motivation and Contributions
	1.2 Related Work

	2 Static Detection Model Based on Propositional Function
	2.1 Related Definitions in CFG
	2.2 Vulnerability Static Detection Model Based on Propositional Function
	2.3 Formal Description of Software Vulnerability Based on Propositional Function

	3 Detection Algorithm
	3.1 Basic Information Analysis
	3.2 Solution of Vulnerable Nodes Set N
	3.3 Vulnerability Syntax Rules Database

	4 Experiments and Evaluation
	5 Conclusions and Future Work
	References

