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Abstract. In this paper, the reliability performance analysis of coupled cyber-
physical systems under different network types is investigated. To study the
underlying network model, we propose a practical model for interdependent
cyber-physical systems using network percolation theory. For different network
models, we also study the effect of cascading failures effect and reveal mathe-
matical analysis of failure propagation in such systems. The simulation results
show that there exists a threshold for the proportion of faulty nodes and different
system parameters, beyond which the cyber-physical systems collapse.
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1 Introduction

With the latest developments in communication and information technologies, the
application of cyber-physical systems (CPS) [1–5] in our lives is becoming more and
more extensive. Generally, the cyber-physical systems depend on two main networks:
cyber layer network which provides control function or communication function and
physical layer network which includes conventional power grid, smart grid. Commu-
nication network needs grid network to support power energy, while power stations are
controlled by communication network. Thus, the two networks are connected and
mutually interdependent. However, for interdependent system architecture, the failures
in one network can lead to the cascading risk in another. Actually, the breakdown of a
power station network [6–10] could result in the corresponding nodes failure in
communication network. Especially, the further failures may even occur recursively
between the interdependent CPS and then the cascading failures are big issues in such
coupled CPS.

In order to improve the reliability of CPS, it is necessary to explore the cascading
failures in actual interdependent CPS systems. Recently many researchers have paid
more attentions in this research field. Currents research in smart gird systems [11–14]
mainly focuses on failures about load balancing and load distribution. Most of these
techniques rely on methods commonly used in distributed systems. Architecture for

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 440–449, 2019.
https://doi.org/10.1007/978-3-030-21373-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_35&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_35&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_35&amp;domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_35


distributed generation way, which can help prevent cascading failures, is described in
Ref. [15]. However, fault analysis and the impact of communication network on power
grid were not mentioned. Optimization mechanisms have been used to balance demand
and supply in Ref. [16]. Besides, the researcher has deeply investigated load distri-
bution attack to provide effective prevention on false data injection [17]. Fault location
method in cyber-physical has been investigated in Ref. [18]. Obviously, existing work
on modelling smart gird systems is mainly about extracting properties from physical
systems and assumed associated cyber system and matching with some physical net-
work families. Toft and Maasoumy et al. [19] focused on the challenges of modeling
cyber-physical systems that arise from the intrinsic heterogeneity and sensitivity to
timing. However, the actual interdependent CPS systems are often different network
types, so this paper will study the reliability of interdependent CPS systems under
different network types.

The remainder of the paper is organized as follows: Sect. 2 introduces the system
model of the CPS and the related definition. Sections 3 and 4 show the cascading
process analysis when attack different type of networks. Theoretical solution and
simulation analysis are introduced in Sect. 5. Then Sect. 6 is the conclusion.

2 System Model

In this section, we first introduce the network model of coupled CPS. According to the
study and analysis of the coupled interdependent network, we establish a model that
conforms to the characteristics of the coupled CPS in reality. From the research on the
existing coupled CPS system [2–4, 6], we obtain that the coupling network is usually
composed of multiple networks. Without loss of generality, we assume that the coupled
network consists of two interdependent networks and the type of two interdependent
networks is different. Thus we specify that the two networks that form the coupled
network are the SF network and the ER network respectively.

Next, we will explain some basic concepts. There are two ways that connection
mode of nodes in coupled network. One is the connection between the internals of the
network that the link just between nodes in a single network. The other is the con-
nection of the nodes connecting the two networks. When one network in the coupled
network is attacked, only the functional nodes that satisfies the following two condi-
tions in the network as follows:

(1) The node must belong to the giant connected component;
(2) The node must be connected to a functional node in internal network.

When a network in coupled network is attacked, the failure of the nodes in one
network affects the function of the nodes in the other network. If none of the two
networks fails or the two networks completely collapse, the network reaches steady
state. This iterative failure process is called cascading failures. Cascading failures are a
common failure process in coupled systems. If cascading failures are not controlled,
cascading failures can cause severe damage.
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3 Initial Failure in SF-Network A

The two networks that compose the coupled network one is SF network, the other is ER
network. The generating function of the SF network is GA0 zð Þ ¼ P

k PA kð Þ � zk.
Analogously, the generating function of the ER network is GB0 zð Þ ¼ P

k PB kð Þ � zk.
Then the generating function of the underlying branching processes is

GA1 zð Þ ¼ G
0
A0 zð Þ=G0

A0 1ð Þ ð1Þ
We denote the number of nodes remaining after the node has been removed as N

0
A1, we

know that N
0
A1 ¼ p � NA. The fraction of the nodes belonging to the giant connected

component to the number of nodes is

gA pð Þ ¼ 1� GA0 1� p 1� fAð Þ½ � ð2Þ
Where fA is function of p. fA and p satisfy the following equation

fA ¼ GA1 1� p 1� fAð Þ½ � ð3Þ

3.1 Random Failure in Network A

We assume that after being attacked, the proportion of deleted nodes is 1-p. So the
number of remaining nodes in network A is

N
0
A1 ¼ p � NA ¼ l

0
1 � NA ð4Þ

We denote the giant component as NA1, then we can obtain

NA1 ¼ gA l
0
1

� �
� N 0

A1 ¼ l
0
1 � gA l

0
1

� �
� NA ¼ l1 � NA ð5Þ

3.2 Impact of Cascading Failures on Network B

Owing to network A and network B depends on each other, nodes in network B will
fail because of the failure of nodes in network A. We can calculate the number of nodes
in network B that connect to nodes in network A:

N
0
B2 ¼ 1� 1� l1ð Þ3

h i
� NB ¼ l31 � 3 � l21 þ 3 � l1

� � � NB ¼ l
0
2 � NB ð6Þ

Then we will again apply the apparatus of generating functions and calculate the
number of nodes in network B that belong to the giant connected component:

NB2 ¼ gB l
0
2

� �
� N 0

B2 ¼ l
0
2 � gB l

0
2

� �
� NB ¼ l2 � NB ð7Þ
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3.3 Further A-Nodes Cascading Failure Due to B-Node Failures

According to the random failure in Step 3.1, we can know that one node in network B
may be connected to one, two or three nodes in network A, or it may not be connected
to any node in network A. Here there is no relationship within or between networks, so
the number of nodes with dependencies in network A is

N
0
A3 ¼ l2 � NB � ½C1

3 � l1 � 1� l1ð Þ2�1þ
C1
3 � 1� l1ð Þ � 2þ l31 � 3�

= 1� 1� l1ð Þ3
h i

ð8Þ

From NA1 to N
0
A3, we obtain

NA1 � N
0
A3 ¼ 1� gB l

0
2

� �� �
� NA1 ð9Þ

Since deleted nodes do not belong to NB2;NA1, and N
0
A3, the proportion of nodes

removed from NA1 is equal to the same proportion of nodes removed from N
0
A3,

NA1 � N
0
A3 ¼ 1� gB l

0
2

� �� �
� NA1 ¼ 1� gB l

0
2

� �� �
� N 0

A1 ð10Þ

The number of the giant component is

NA3 ¼ l
0
3 � gA l

0
3

� �
� NA ¼ l3 � NA ð11Þ

3.4 Further Fragment of Network B

The nodes in network B will fail due to the failure of the nodes in network A because of
the interdependence of the coupled networks. Similar to the second step, we can get the
number of nodes with dependencies in the remaining nodes in network B:

N
0
B4 ¼ 1� 1� l3ð Þ3

h i
� NB ¼ l33 � 3 � l23 þ 3 � l3

� � � NB ð12Þ

From NB2 to N
0
B4, we can obtain

NB2 � N
0
B4 ¼ 1� l33 � 3 � l23 þ 3 � l3

� �
=l2

� � � NB2 ð13Þ

The number of total removed nodes to the original network B is

1� l
0
2 þ l

0
2� 1� l33 � 3 � l23 þ 3 � l3

� �
=l2

� �
¼ 1� l

0
1 � l23 � 3 � l3 þ 3

� � � gA l
0
3

� � ð14Þ
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The number of the giant component is

NB4 ¼ l
0
4 � gB l

0
4

� �
� NB ð15Þ

According to the previous derivation process, we can obtain the following recursion
relations

l
0
2i ¼ l

0
1 � l22i�1 � 3 � l2i�1 þ 3

� � � gA l
0
2i�1

� �
l

0
2iþ 1 ¼ l

0
1 � gB l

0
2i

� ��
ð16Þ

Where l
0
1 ¼ p. Next we will analyze the iterative process of the coupled network

when attacking the ER network.

4 Initial Failure in ER-Network B

Owing to the number and the type of two networks in the coupled CPS is different; the
cascading failure process is different accordingly. Next, we will analyze the cascading
failure process when the ER network B is attacked.

4.1 Initial Failure in Network B

Analogously, we assume that 1� pð Þ � NB nodes in network B are removed due to
attack. The number of remaining nodes is

N
0
B1 ¼ p � NB ¼ l

0
1 � NB ð17Þ

The number of the giant component is

NB1 ¼ gB l
0
1

� �
� N 0

B1 ¼ l
0
1 � gB l

0
1

� �
� NA ¼ l1 � NA ð18Þ

4.2 Cascading Failures on Network A Due to B-Node Failures

The failure of nodes in network B will cause the nodes in network A to fail. According
to the connection relationship between network A and network B, we can calculate the
number of nodes in network A with dependencies. So

N
0
A2 ¼ l1 � NB � 3 ¼ l1 � NA ¼ l

0
2 � NA ð19Þ

The number of the giant component is

NA2 ¼ N
0
A2 � gA l

0
2

� �
¼ l

0
2 � gA l

0
2

� �
� NA ¼ l2 � NA ð20Þ
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4.3 Further Fragment on Network B

Network B will continue to fragment as cascading failures proceed. To calculate the
number of nodes with dependencies in network B in the third step, we define a new
variable, q1 ¼ gA l

0
2

� �
. The number of nodes in network B with dependencies is

N
0
B3 ¼ l

0
2 � NA � 1� 1� q1ð Þ3

h i
=3 ¼ l

0
2 � q31 � 3 � q21 þ 3 � q1

� � � NB ð21Þ

So the fraction of remaining nodes is

l
0
3 ¼ p � q31 � 3 � q21 þ 3 � q1

� � ð22Þ

Then the number of the giant component is

NB3 ¼ l
0
3 � gB l

0
3

� �
� NB ¼ l3 � NB ð23Þ

4.4 More Cascading Failures of Network A

Using the theory in Ref. [4], we get

NA2 � N
0
A4 ¼ 1� p � gA l

0
2

� �
� gB l

0
3

� �
=l2

� �
� N 0

A2 ð24Þ

Then the number of the giant component is

NA4 ¼ l
0
4 � gA l

0
4

� �
� NA ¼ l4 � NA ð25Þ

The fraction can be obtained by the recursion relations,

l
0
2iþ 1 ¼ p � q3i � 3 � q2i þ 3 � qi

� �
l

0
2i ¼ p � gB l

0
2i�1

� ��
ð26Þ

Where qi ¼ gA l
0
2i

� �
.

5 Theoretical Solution and Numerical Simulation

In this section, we analyze the iteration relation derived from the above model and find
the corresponding theoretical solution.
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5.1 Critical Threshold Solution

For the cascading failure of the coupled network, although we do not know which step
the cascading failure will stopped, the network will not split again when the cascading
failure stops. Thus we can get the following equations:

l
0
2i ¼ l

0
2i�2 ¼ l

0
2iþ 2

l
0
2iþ 1 ¼ l

0
2i�1 ¼ l

0
2iþ 3

�
ð27Þ

In order to facilitate the analysis of iterative formulas for cascading failure, the variable
x; y is defined to satisfy the following equations:

y ¼ l
0
2i ¼ l

0
2i�2 ¼ l

0
2iþ 2

x ¼ l
0
2iþ 1 ¼ l

0
2i�1 ¼ l

0
2iþ 3

�
0� x; y� 1ð Þ ð28Þ

Thus, Eq. (28) can be represented by the following equation set

y ¼ p � x � gA xð Þð Þ3�3 � x � gA xð Þþ 3
� �

� gA xð Þ
x ¼ p � gB yð Þ

(
ð29Þ

Figure 1(a) and (b) show the cases that correspond to Eqs. (28) and (29) when
attacking SF network and ER network, respectively. For the purpose of illustrate the
graphical solution of Eq. (28), we plot Eqs. (28) and (29) for SF network with k ¼ 2:8
and ER network with a ¼ 4. Such as, in Fig. 1(a), the curve don’t intersects with the
straight line when p < 0.408, and the curve is tangent to the straight line when
p = 0.408, the curve intersects with the straight line when p > 0.408. Thus from Fig. 1
(a), we can derive the critical threshold pc�SF ¼ 0:408 when attacking the SF network.
Similarly, Fig. 1(b) shows that the critical threshold pc�ER ¼ 0:484 when attacking the
ER network. We can see that the critical threshold when attacking the SF network is
smaller than the critical value of the attack ER network.

Fig. 1. Theoretical solution
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5.2 Numerical Simulation

Next, we mainly verify the correctness of the theoretical results through numerical
simulation. We create two networks according to the specified parameters. One is the
SF network, the number of nodes is 30,000, and the other is the ER network, the
number of nodes is 10000. Then according to the model described above, the two
networks are connected together, that is, three nodes in the network A are randomly
connected to one node in the network B, and the inter-network connection is com-
pletely random. So we have established a coupling network.

In Fig. 2, the blue curve shows the proportion of the remaining functional nodes in
B and the red curve represents the proportion of the remaining nodes in network A after
the cascading failure stops. We can see that the proportion of nodes in Network A is
always lower than the proportion of nodes in Network B. In Fig. 2(b), although the
network attack occurs in network B, the proportion of the remaining functional nodes
in network B is still greater than the proportion of the functional nodes of network A.
This phenomenon is caused by the connection relationship between network B and
network A.

In order to further verify the correctness of the theory, we take multiple values near
the critical threshold and find the probability of the existence of the giant connected
component. In Fig. 3, the abscissa p represents the fraction of the nodes that were not

Fig. 2. The fraction of survival in both networks (Color figure online)

Fig. 3. Numerical validation of theoretical results
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attacked to the number of nodes in the original network. The critical threshold is
indicated by a black arrow. From Fig. 3(a) and (b), we can see that the number of nodes
for the coupled system increases from small to large. As the number of nodes increases,
the curve becomes steeper, and it is getting closer to the critical threshold. Therefore,
we can infer that the curve will produce a first-order phase transition near the critical
threshold, which is completely different from the second-order phase transition that
characterizing percolation in a single network. Figure 3 also verifies the correctness of
the conclusions from theoretical analysis.

6 Conclusion

This paper investigates the reliability performance of interdependent cyber-physical
systems under different network types. Our findings demonstrate that there is always a
critical threshold value. If the percentage of failing nodes is greater than the critical
value, the interdependent smart gird systems will collapse. Our theory analysis and
simulation experiment also show that, if both networks satisfy the same degree dis-
tribution, the system reliability does not have the direct connection with the system
size. However, our proposed analysis model still has some limitations which could be
our future work. For instance, the giant components could not always work in reality. It
is also of interest to study models that are more realistic than the existing ones in this
paper. Clearly, there are still many open questions about interdependent cyber-physical
systems. We are currently investigating related work along this avenue.
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