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Abstract. Shor presented a quantum algorithm to factor large integers
and compute discrete logarithms in polynomial time. As a result, public
key cryptosystems, such as RSA, ElGamal and ECC, which are based on
these computational assumptions will become insecure with the advent
of quantum computers. To construct a secure anti-quantum public-key
cryptosystem, Wu et al. introduced the notion of data complexity under
quantum environment. Based on the hardness of NP-complete problems
and data complexity, they presented a new public key cryptosystem.
Using Shor’s quantum algorithm, we break their public key cryptosystem
by directly solving the private key from the public key. Therefore, their
public key cryptosystem is insecure in a quantum computer.
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1 Introduction

Public-key cryptography is indispensable in secure communications for an open
networked environment such as the Internet. In 1976, Diffie and Helman intro-
duced the notion of public-key cryptography in “New Directions in Cryptogra-
phy” [1], and proposed a key exchange protocol based on discrete logarithms
over an insecure channel. However, they did not present public-key cryptosys-
tems in [1]. Subsequently, Rivest, Shamir, and Adleman [2] described a public-key
encryption scheme and a signature scheme, called RSA, whose security depends
on the difficulty of factoring. Afterwards, ElGamal [3] presented a public key
cryptosystem and a signature scheme which are based on discrete logarithm
assumption. Miller [4] discussed the use of elliptic curves in cryptography and
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proposed an analogue of the Diffie-Hellman key exchange protocol. Furthermore,
using the discrete logarithm on the elliptic curve, we can construct a public key
encryption scheme and signature scheme similar to that of ElGamal. However,
Shor [5] described a polynomial time quantum algorithm which is able to factor
large integers and compute discrete logarithms. Consequently, the public-key
cryptosystems RSA, ElGamal, and ECC, which are based on these computa-
tional problems become insecure with the advent of quantum computers.

The study in post-quantum cryptography has seen a series of activities that
constructed many post-quantum public-key cryptosystems [6]. These schemes
mainly include code-based public-key cryptosystems [7], lattice-based public-key
cryptosystems [8–11], multivariate public-key cryptosystems [12,13], quantum
public-key cryptosystems based on quantum physics [14,15], DNA-based public-
key cryptosystems [16]. Although these schemes are believed to be resistant to
quantum attacks, it is always better to provide more candidate post-quantum
public-key schemes. Recently, Wu et al. [17] introduced the concept of data
complexity to the public key cryptosystems under a quantum environment, and
described a public key cryptosystem and a signature scheme based on the hard-
ness of NPC problems and data complexity. They considered several possible
quantum attacks for their schemes and claimed that their schemes are secure
in a quantum computer. However, they did not provide any rigorous proof of
security for their schemes. Therefore, it is necessary to further study the security
of their schemes [17].

Our main contribution is to prove that the public key cryptosystem and sig-
nature scheme proposed by Wu et al. [17] are insecure on a quantum computer.
Our key observation is that there exists a polynomial time quantum algorithm
that transforms the public key of their schemes [17] into a system of linear equa-
tions. This is because the matrix operations �,⊗ used by their schemes are both
component-wise multiplication. Consequently, by the definitions of �,⊗, we can
generate a linear system of the private key for their schemes on a quantum
computer. Then, applying the Gaussian elimination method, we can obtain the
private key from solving this linear system. Therefore, the public key cryptosys-
tem and signature scheme in [17] are not immune to quantum attacks.

The remainder of this paper is organized as follows. We first give some pre-
liminaries in Sect. 2, and describe the public key cryptosystem (PKC) [17] in
Sect. 3. We present the cryptanalysis of PKC in Sect. 4. Finally, in Sect. 5 we
conclude this paper and provide some suggestions for improvement.

2 Preliminaries

In this paper, quantum algorithms are only used to decompose large integers
and to compute discrete logarithms over a finite field, all other algorithms are
classical ones. For simplicity, we use Shor’s quantum algorithm as a black box
algorithm, and do not define quantum computation in this paper.

Data complexity, that is used for the differential attack of DES, refers to an
attack algorithm requires the number of plaintext-ciphertext pairs. Wu et al. [17]
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introduced the notion of data complexity under a quantum environment to con-
struct an anti-quantum public key cryptosystem. The data complexity of quantum
Turing machine (QTM) defined by [17] means the sum of input data and process-
ing data of an algorithm in QTM. Since we do not require data complexity in our
cryptanalysis, consequently we do not provide the related definitions of data com-
plexity for simplicity.

In the following, we first give some notations and definitions of the related
operations in this paper. Then, we briefly review the discrete logarithm problems
and the integer factorization problems, and present Shor’s quantum algorithm
with two lemmas.

2.1 Notations

Throughout this paper, let n be the security parameter. We write [n] =
{1, 2, · · · , n}. Let p be a prime, Zp = Z/pZ, and Z

∗
p = Zp \ {0}. By conven-

tion, vectors are in column form. We use bold lower-case letters like a to denote
column vectors, and bold upper-case letters like A to denote matrices. We use
the superscript T to denote the transpose of vector or matrix, e.g. aT ,AT .

Given an element g ∈ Z
∗
p and matrices A = (ai,j),B = (bi,j) ∈ Z

∗
p
(m×m), we

define some operations of matrices in Z
∗
p that are used in this paper as follows:

gA = (gai,j )m×m, i, j ∈ [m],

A−1 = (a−1
i,j )m×m, i, j ∈ [m],

A � B = (ai,jbi,j)m×m, i, j ∈ [m],

At = A � A · · · � A
︸ ︷︷ ︸

t

= (at
i,j)m×m, i, j ∈ [m],

A ⊗ B =

⎛

⎜

⎜

⎜

⎝

a1,1B a1,2B · · · a1,mB
a2,1B a2,2B · · · a2,mB

...
... · · · ...

am,1B am,2B · · · am,mB

⎞

⎟

⎟

⎟

⎠

∈ Z
∗
p
(m2×m2).

2.2 Discrete Logarithm Problem

The discrete logarithm problem defined in Z
∗
p is computationally intractable

for classic computers. That is, there is no polynomial time algorithm for the
discrete logarithm problem on a classical computer. However, there exists an
efficient quantum algorithm that solves the discrete logarithm problem.

A group G is cyclic if and only if there exists an element g ∈ G such that for
every element a ∈ G, there exists an integer x such that gx = a. In this paper,
we call g a generator of G.

Definition 1 (generator, [18]). Given a prime p, an integer g ∈ Z
∗
p is called

a generator of Z
∗
p if p − 1 is the smallest positive integer such that gp−1 = 1

mod p.
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Definition 2 (discrete logarithm problem, [18]). Given a prime p, a gen-
erator g ∈ Z

∗
p, and an integer a ∈ Z

∗
p, the discrete logarithm problem is to find

an integer x ∈ [p − 1] such that a = gx mod p.

Lemma 1 (Shor, [5]). Given a prime p, a generator g, and any number a ∈ Z
∗
q ,

there exists a polynomial time quantum algorithm, which finds the exponent a
such that a = ga mod p.

2.3 Integer Factorization Problem

Integer factorization problem is a product of decomposing a composite num-
ber into smaller integers. The factorization is called prime factorization, if these
smaller integers must be prime numbers. According to the fundamental arith-
metic theorem, any integer greater than one has a unique prime factorization.
Similarly, there is no polynomial time algorithm for the integer factorization
problem for classical computers. But there exists an efficient quantum algorithm
for the integer factorization problem.

Definition 3 (integer factorization problem, [18]). Given an integer n ∈ Z,

factor n into primes, namely, n =
∏k

i=1
peii , ei ∈ N.

Lemma 2 (Shor, [5]). Given an integer n, there exists a polynomial time quan-

tum algorithm, which factors n into primes, namely, n =
∏k

i=1
peii , ei ∈ N.

3 Public Key Cryptosystem (PKC)

In this section, we adaptively describe the public key cryptosystem (PKC) in [17].
This public key scheme consists of three algorithms: KeyGen, Encryption, and
Decryption.

KeyGen

(1) Choose a prime p > 2mpr11 · · · prss , where p1, · · · , ps are odd primes and
r1, · · · , rs ∈ N.

(2) Randomly choose three different integers t1, t2, t3 ∈ [ϕ(p)], where
ϕ(p) = p − 1 is the Euler function of p.

(3) Randomly choose three m × m-dimensional matrices

A = (ai,j)m×m,B = (bi,j)m×m,D = (di,j)m×m,

where ai,j , bi,j , di,j ∈ Z
∗
p.

(4) Compute Y1,Y2,Y3 as follows:
⎧

⎪
⎨

⎪
⎩

Y1 = At1 � Bt2 � Dt3 mod p,

Y2 = Bt1 � Dt2 � At3 mod p,

Y3 = Dt1 � At2 � Bt3 mod p,

such that y1i,j , y2i,j , y3i,j ≥ 2m, i, j ∈ [m]. Otherwise, it returns to Step (3).
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(5) Output a public key pk = {p,A,B,D,Y1,Y2,Y3} and a private key
sk = {t1, t2, t3}.

Encryption

(1) Given the public key pk, let M = (mi,j)m3×m3 with mi,j ∈ Z
∗
p be an

m6-dimensional plaintext.
(2) Randomly choose three different integers s1, s2, s3 ∈ [p − 1].
(3) Compute U = Ys1

1 ⊗ Ys2
2 ⊗ Ys3

3 mod p.
(4) Compute {C,C1,C2,C3} as follows:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

C = U � M mod p,

C1 = As1 ⊗ Bs2 ⊗ Ds3 mod p,

C2 = Bs1 ⊗ Ds2 ⊗ As3 mod p,

C3 = Ds1 ⊗ As2 ⊗ Bs3 mod p.

(5) Output a four-tuple ciphertext ct = {C,C1,C2,C3}.

Decryption

(1) Given the private key sk, let ct = {C,C1,C2,C3} be a four-tuple
ciphertext.

(2) Compute V = Ct1
1 � Ct2

2 � Ct3
3 mod p.

(3) Output the plaintext M = V−1 � C mod p.

4 Cryptanalysis of PKC

In this section, we present a polynomial time quantum algorithm that finds the
private key from the public key of PKC. As a result, the PKC in [17] is insecure
on a quantum computer.

Our main idea is that, by the component-wise multiplication of matrix oper-
ation � in the public key, we transform a system of exponential equations into
a system of linear equations using the Shor’s quantum algorithms, and solve the
private key using Gaussian elimination.

To implement the above transformation, the key is how to efficiently find a
generator g of Z

∗
p. In the following, we give three well-known lemmas to efficiently

generate a generator g of Z
∗
p. Concretely speaking, Lemma 3 shows that Z

∗
p has

many generators, Lemma 4 gives a method of determining whether an element is
a generator of Z

∗
p, and Lemma 5 describes a quantum polynomial time algorithm

that produces a generator of Z
∗
p using the quantum polynomial time algorithm

of integer factorization in Lemma 2.

Lemma 3. Suppose that p is a prime, then there exist ϕ(p − 1) generators in
Z

∗
p.
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Proof. According to Theorem 7.28 in [18] (or Theorem 2.18 in [19]), Z
∗
p is a

cyclic group for a prime p. Hence, Z
∗
p has at least a generator.

Now, assume that g is a generator of Z
∗
p. Namely, gp−1 = 1 mod p and for

any 1 ≤ k < p−1, gk �= 1 mod p. Therefore, if r and p−1 are relatively prime,
then g1 = gr is also a generator of Z

∗
p. This is because p−1 is the smallest positive

integer such that gp−1
1 = 1 mod p. Again since ϕ(p − 1) integers in [p − 1] are

prime to p − 1, the result follows. �

Lemma 4. Suppose that p is a prime and p − 1 =
∏k

i=1
peii is the prime

factorization of p − 1. Then g is a generator of Z
∗
p if and only if for each i ∈ [k],

g
p−1
pi �= 1 mod p.

Proof. It is easy to verify that if g is a generator of Z
∗
p, then for each i ∈ [k],

g
p−1
pi �= 1 mod p.
Now, we show the opposite direction. Without loss of generality, let r be the

smallest positive integer such that gr = 1 mod p. By contradiction, assume
r < p − 1. Since p is a prime, gp−1 = 1 mod p. If r � (p − 1), then there exist
two positive integers s, k such that p − 1 = kr + s and 0 < s < r. So, we have
gs = 1 mod p. This contradicts that r is the smallest positive integer such
that gr = 1 mod p. Hence, r|(p− 1). As a result, there exists a prime pi which
satisfies r|p−1

pi
. So, g

p−1
pi = 1 mod p. This contradicts the condition that for

each i ∈ [k], g
p−1
pi �= 1 mod p. Thus, r = p − 1. Consequently, g is a generator

of Z
∗
p. �

Lemma 5. Given a prime p, there exists a probabilistic polynomial time quan-
tum algorithm which finds a generator g of Z

∗
p.

Proof. Using the polynomial time quantum algorithm in Lemma 2, we factor

p − 1 into primes. Without loss of generality, let p − 1 =
∏k

i=1
peii .

According to Lemma 4, we can find a generator g of Z
∗
p as follows.

(1) Randomly select g ∈ Z
∗
p.

(2) If g
p−1
pi �= 1 mod p for each i ∈ [k], then g is a generator of Z

∗
p.

Otherwise, repeat from (1).

Obviously, selecting and testing an element in the steps (1), (2) take polyno-
mial time in n.

In order to find a generator, we analyze how many random elements need
to be selected. By Lemma 3, the number of generators in Z

∗
p is ϕ(p − 1). Again

since ϕ(p − 1) > p−1
6 log log(p−1) by Theorem 15 in [20], the probability that a

random element is a generator is about 1
6 log log(p−1) . Therefore, we expect to

have to select O(log log p) random candidate elements for g to get a generator
with overwhelming probability.

It is easy to verify that the above algorithm is a probabilistic polynomial time
quantum algorithm. �
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By Lemma 5, we can efficiently compute a generator g of the cyclic group
Z

∗
p. For simplicity, we assume that a generator g of Z

∗
p is given in the following

Lemmas 6 and 7.

Lemma 6. Given a prime p, a generator g, and a matrix A = (ai,j) ∈ Z
∗
p
(m×m),

there exists a polynomial time quantum algorithm, which finds the exponent
matrix A such that A = gA mod p.

Proof. For each entry ai,j , i, j ∈ [m] in A, we compute ai,j using the quantum
algorithm of discrete logarithm in Lemma 1 such that ai,j = gai,j mod p.
Thus, A = (ai,j)m×m and gA = (gai,j )m×m = (ai,j)m×m = A mod p. The
Lemma 6 follows. �
Lemma 7. Given a prime p, a generator g, and a matrix A = (ai,j) ∈ Z

∗
p
(m×m),

then At = gA×t mod p , where A = gA mod p.

Proof. Given A = (ai,j)m×m, i, j ∈ [m], according to the definition of At, we
have

At = A � A · · · � A
︸ ︷︷ ︸

t

= (at
i,j)m×m

= ((gai,j )t)m×m

= (gai,j×t)m×m

= g(ai,j)m×m×t

= gA×t mod p.

The Lemma 7 follows. �
We are now in a position to prove the main theorem.

Theorem 1. Given the public key pk = {p,A,B,D,Y1,Y2,Y3}, there exists
a probabilistic polynomial time quantum algorithm, which solves the secret key
sk = {t1, t2, t3}.

Proof. According to KeyGen, p is a prime. By Lemma 5, we can efficiently find
a generator g of the cyclic group Z

∗
p.

Thus, given pk, we can compute A,B,D,Y1,Y2,Y3 using Lemma 6 such
that

⎧

⎪
⎨

⎪
⎩

A = gA mod p,

B = gB mod p,

D = gD mod p,

⎧

⎪
⎨

⎪
⎩

Y1 = gY1 mod p,

Y2 = gY2 mod p,

Y3 = gY3 mod p.

Since A = (ai,j)m×m = (gai,j )m×m, B = (bi,j)m×m = (gbi,j )m×m, and D =
(di,j)m×m = (gdi,j )m×m, then by Lemma 7, we get

At1 = gt1A

Bt2 = gt2B

Dt3 = gt3D
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Consequently, we have

Y1 = At1 � Bt2 � Dt3 = gt1A+t2B+t3D = gY1 mod p.

Using same methods, we can obtain

Y2 = Bt1 � Dt2 � At3 = gt1B+t2D+t3A = gY2 mod p,

Y3 = Dt1 � At2 � Bt3 = gt1D+t2A+t3B = gY3 mod p.

Therefore, we can generate a system of linear equation as follows:
⎧

⎪
⎨

⎪
⎩

t1A + t2B + t3D = Y1 mod (p − 1)
t1B + t2D + t3A = Y2 mod (p − 1)
t1D + t2A + t3B = Y3 mod (p − 1).

Since there exist 3m2 (m ≥ 1) linear equations in the above equation system,
we can solve three unknown variables t1, t2, t3 ∈ [p − 1].

It is not difficult to verify that the above computations take a polynomial time
in quantum computers. �

Furthermore, we can obtain the following result.

Theorem 2. Given the public key pk = {p,A,B,D,Y1,Y2,Y3} and a four-
tuple ciphertext ct = {C,C1,C2,C3}, then exists a polynomial time quantum
algorithm, which recovers the plaintext M from the ciphertext ct.

Proof. Using Theorem 1, we can compute the private key sk from the public key
pk. Then, we directly decrypt the ciphertext ct using the private key sk, and
obtain the corresponding plaintext M in ct. �

5 Conclusions

In this paper, we present a polynomial time quantum algorithm that finds the
private key from the public key of PKC in [17]. Furthermore, we also provide
a polynomial-time quantum algorithm to solve the private key of the signature
scheme in [17]. Consequently, their public key cryptosystem is insecure in a
quantum computer.

Our results show that there is still much work to be done to construct secure
anti-quantum public key cryptosystem using data complexity. Since our attack
mainly depends on component-wise multiplication in matrix operations �,⊗, a
possible improvement is to change matrix operations �,⊗ to prevent attackers
from generating discrete logarithm problems based on public keys.
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