
A RBAC Model Based on Identity-Based
Cryptosystem in Cloud Storage

Jian Xu(&), Yanbo Yu, Qingyu Meng, Qiyu Wu, and Fucai Zhou

Software College, Northeastern University, Shenyang 110169, China
xuj@mail.neu.edu.cn

Abstract. Aiming at the shortcomings of most of existing ciphertext access
control scheme in cloud storage does not support dynamic update of access
control strategy, has large computational overhead ,combine identity-based
cryptosystem and role based access control model (using RBAC1 model of the
RBAC96 model family), build RBAC model based on identity-based cryp-
tosystem in cloud storage. This paper presents a formal definition of the scheme,
a detailed description of four tuple used to represent access control strategy, the
hybrid encryption strategy and Re-encrypt when writing strategy in order to
improve the efficiency of the system, detailed steps of system initialization, add
and delete users, add and delete permissions, add and delete roles, add and
delete role inheritance, assign and remove user, assign and remove permission,
read and write file algorithm.

Keywords: Access control � RBAC � Identity-based cryptosystem �
Cloud storage

1 Introduction

With the rapid development of computer technology and Internet applications, data is
growing at an exponential rate. Faced with such massive data, cloud storage which
developed from the concept of cloud computing has become the most common and
popular third-party storage with its advantages of low cost, huge capacity, resource
sharing, easy management and good scalability. Users and enterprises can purchase
storage services flexibly according to their own needs, which not only save expensive
software and hardware infrastructure investment, but also ensure that storage resources
are fully utilized. Cloud storage service providers also provide professional data
backup, disaster recovery and other functions to effectively ensure the continuity of
services [1, 2].

Although cloud storage has many advantages, however, its promotion is relatively
slow. The main reason is that once the data is uploaded to the cloud, users lose control
of it, and they do not know what the cloud storage provider will do with the data. Cloud
storage providers may snoop on the content of the data and even provide the user’s data
directly to third parties, especially in an untrusted cloud environment. Therefore,
ensuring the confidentiality of user data, avoiding it being illegally accessed, achieving
secure and efficient access control is the key to solving data security problems in cloud
storage [9]. However, as the cloud environment has the characteristics of dynamic

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 362–377, 2019.
https://doi.org/10.1007/978-3-030-21373-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_28

change, multi-tenancy and virtualization, the traditional access control model cannot
meet the requirements of the new cloud architecture. So how to expand and optimize
the traditional access control model, especially combine advanced encryption tech-
nology with traditional access control models, to build an access control scheme for
cloud storage environment has become a hot topic in academic research. In the case
that the cloud storage provider is not trusted, the research of ensuring the confiden-
tiality of data and implement access control of the ciphertext data is therefore a top
priority.

1.1 Related Works

Many researchers have started research on access control technology under the cloud
computing environment and have obtained many research results.

Jung et al. [3] proposed an adaptive resource access control scheme based on the
RBAC model. This scheme can dynamically adjust the security level of resources and
solve the problem of dynamic changes of environment variables in cloud computing.
Wang et al. [4] introduced the concept of task into the RBAC model and proposed a
task- and role-based access control model (T-RBAC) in the cloud computing envi-
ronment. In T-RBAC, workflow is first broken down into a series of interdependent
tasks, which are then assigned to the role, and the user gets the role by executing the
task node. The Danwei et al. [5] adopts a negotiation policy when designing the access
control model, and proposes a UCON-based cloud service access control scheme.
Based on the UCON model, Krautsevich et al. [6] introduced a risk assessment
mechanism, and purposed an access control scheme for highly dynamic system, which
improves the flexibility and security of the UCON model.

Attribute-Based Encryption (ABE) is the most commonly used advanced encryp-
tion algorithm in cloud access control. It extends the concept of identity as a set of
attributes. In 2005, Sahai et al. [7] first proposed a fuzzy identity-based encryption
scheme, in which the concept of attributes was introduced. Subsequently, based on this,
Goyal et al. [8] proposed an attribute-based encryption scheme. And then derived two
attribute-based encryption algorithms closely related to the access control policy, KP-
ABE (Key Policy Attribute-Based Encryption) [9] and CP-ABE (Ciphertext Policy
Attribute-Based Encryption) [10], in which CP-ABE is more suitable for cloud envi-
ronments. Sun et al. [11] proposed a data security access control scheme for cloud
storage based on CP-ABE. This scheme adopts a distribution method for distributed
key, and access control is implemented by designing keys. However, the scheme is
suitable for the case where the access permission type is small, once the type is
increased, key management may become very complicated. Jung et al. [12] designed an
anonymous access control scheme, which perform anonymous access control on cloud
data to protect user’s privacy; Ruj et al. [13] proposes a cloud security access control
framework that can implement user authentication and privacy protection of data.

Although the above attribute-based access control schemes can ensure the confi-
dentiality of user data and achieve fine-grained access control of data, but they do not
support dynamic update of access control policy. It obviously does not meet the
requirements of the dynamic environment in the cloud. For the problems mentioned
above, researchers have proposed some schemes. Yu et al. [14] proposed a secure and

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 363

scalable cloud storage access control scheme based on CP-ABE, which supports
attribute revoking and employs a proxy re-encryption policy to save computational
overhead; Hur et al. [15] designed an access control scheme that supports user attribute
revoking, using double-layer encryption mechanism to improve efficiency; Chen et al.
[16] proposed a hybrid access control scheme that supports hierarchical management of
multiple authorization mechanisms, which reduced management complexity. Although
these schemes can support the revoke operation, the computational overhead cannot be
ignored.

As mentioned above, there are many shortcomings of current access control
schemes in the cloud environment. Although simply optimize the traditional access
control model and apply it to the cloud environment can implement basic access
control functions, the confidentiality of data cannot be guaranteed. The attribute-based
ciphertext access control scheme can protect data when the cloud storage provider is
not trusted, but most schemes do not support the dynamic update of access control
policy, or the computational overhead is huge although the policy update is supported.

1.2 Contributions

To solve the problems mentioned above, this paper proposes an RBAC scheme based on
identity cryptosystem in cloud storage. This paper describes the application scenarios
and entity composition of the scheme, and gives a formal definition of the scheme. The
four tuples used to represent the access control policy in the scheme are described in
detail, as well as the hybrid encryption policy and the write-time re-encryption policy
designed to improve system efficiency. Detailed steps of system initialization, user
addition and deletion, permission addition and deletion, role addition and deletion,
role’s inheritance relationship addition and deletion, user assignment and revocation,
permission assignment and revocation, file reading and writing are given.

2 Constructions

2.1 Design Idea

Our scheme is mainly composed of three-party entities: access control administrators,
cloud storage providers (reference monitors are deployed in the cloud as part of the
cloud storage provider, not separately listed as one entity) and users. The roles and
functions of the three entities are as follows:

(1) Access control administrator: It is the administrator of the access control system,
responsible for developing and updating access control policy. It determines who
has the permission to access the resource. In this scheme, it has two important
functions. One is to act as a key generation center in the identity-based cryp-
tosystem; it holds the system master key, creates and distributes keys for users in
the system. Second is to develop and update the access control policy in the
system. The specific operations include the addition and deletion of roles, the
addition and deletion of role’s inheritance relationships, the assignment and
revocation of users, and the assignment and revocation of permissions.

364 J. Xu et al.

(2) Cloud storage provider: As a provider of storage services, it manages the storage
needs of users. It not only stores the data that users deposit in the cloud, but also
stores access control policy that provide protection for those data. This paper
assumes that the cloud storage provider is untrustworthy and cannot let it view the
contents of the file stored on it, but at the same time believes that it can guarantee
the availability of the file and that only authorized users can change the content of
the file.
Reference monitor: Most access control models have one thing in common, that
is, relying on a trusted reference monitor to check whether an access request
conforms to an access control policy before accessing the protected resource. In
this scheme, the reference monitor is deployed in the cloud and is responsible for
coordinating authorized access to resources. For example, when write permission
is executed, it is responsible for verifying that if the user’s signature is valid and
checking if the user has write permission.
In a nutshell, cloud storage providers ensure file system consistency by blocking
unauthorized updates, while it cannot read files or change files and access control
policy.

(3) User: It is a user of the cloud storage service and is managed by the access control
administrator. It needs to register with the administrator and obtain its own key
before using the system. It can upload its own data to the cloud storage, or
download the data in the cloud for read and write operations (The premise is that
there is a corresponding access permission, otherwise the data will not be
decrypted, or the reference monitor will determine that there is no corresponding
permission, and the operation cannot be performed).

2.2 Formal Definitions

Definition 1: The RBAC scheme based on identity cryptosystem (RBAC-IBC) in
cloud storage can be represented by a tuple composed of eight PPT algorithms, that is,
RBAC-IBC = ðSetup;User;Permission;Role; Inh;UR;PA;R&WÞ. The details are
described as follows:

(1) SetupðInÞ: System initialization algorithm. The input is security parameter n,
which generates a common parameter of identity-based encryption algorithm and
a master key of identity-based signature algorithm, and generates an identity-
based decryption key and signature key for the administrator.

(2) UserðaddUðuÞ; delUðuÞÞ: User addition and deletion algorithm. It contains two
sub-algorithms: user addition algorithm and user deletion algorithm. The input of
user addition algorithm is the username u, which generates an identity-based
decryption key and signature key for the user; the input of user deletion algorithm
is also the username u, which revokes the user from the system, and then the user
will not be able to access any files in the cloud.

(3) PermissionðaddPðfn; f Þ; delPðfnÞÞ: Permission addition and deletion algorithm.
It contains two sub-algorithms: permission addition algorithm and permission
deletion algorithm. The input of permission addition algorithm is the file name fn

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 365

and the file content f , which encrypts the file and uploads it to the cloud; the input
of permission deletion algorithm is the file name fn, which removes the file from
the system.

(4) RoleðaddRðrÞ; delRðrÞÞ: Role addition and deletion algorithm. It contains two
sub-algorithms: role addition algorithm and role deletion algorithm. The input of
role addition algorithm is the role name r, which adds a role to the access control
system and generates an identity-based decryption key and signature key for the
role; the input of role deletion algorithm is the role name r, which revokes the role
from the system.

(5) InhðaddInhðrc; rpÞ; delInhðrc; rpÞÞ: Role’s inheritance relationship addition and
deletion algorithm. It contains two sub-algorithms: role’s inheritance relationship
addition algorithm and role’s inheritance relationship deletion algorithm. The
input of role’s inheritance relationship addition algorithm is the child role rc and
the parent role rp, which adds a role’s inheritance relationship to the system, so
that the role rc inherits the role rp; the input of role’s inheritance relationship
deletion algorithm is the child role rc and the parent role rp, which revokes the
inheritance relationship between them from the system.

(6) URðassignUðr; uÞ; revokeUðr; uÞÞ: User assignment and revocation algorithm. It
contains two sub-algorithms: user assignment algorithm and user revocation
algorithm. The input of user assignment algorithm is the role r and the user u,
which assigns user u to role r; the input of user revocation algorithm is the role r
and the user u, which revokes user u from the user list of role r.

(7) PAðassignPðr; hfn; opiÞ; revokePðr; hfn; opiÞÞ: Permission assignment and revo-
cation algorithm. It contains two sub-algorithms: permission assignment algo-
rithm and permission revocation algorithm. The input of permission assignment
algorithm is the role r, the file name fn and permission name op, which assigns the
operation permission (op) of the file fn for the role r; the input of permission
revocation algorithm is the role r, the file name fn and permission name op, which
revokes the operation permission (op) of the file fn from the role r.

(8) R&WðreadðfnÞ;writeðfn; f ÞÞ: File reading and writing algorithm. It contains two
sub-algorithms: file reading algorithm and file writing (update) algorithm. The
input of file reading algorithm is the file name fn, and the user reads file; the input
of file writing algorithm is the file name fn and the updated content of the file f ,
which updates file content stored in the cloud.

According to the access control scheme evaluation method, the relevant properties
used to evaluate RBAC-IBC are defined as follows:

Definition 2: If the implementation of the RBAC scheme based on the identity
cryptosystem hr; a;pi has the following properties:

Property 1: Command mapping protects state mapping and protects security.
Property 2: State mapping protects query mapping.
Property 3: Query mapping is access control protected.
Then the scheme is correct, access control protected, and secure.

366 J. Xu et al.

2.3 Detailed Description

The scheme is divided into eight parts by function: System initialization, user addition
and deletion, permission addition and deletion, role addition and deletion, role’s
inheritance relationship addition and deletion, user assignment and revocation, per-
mission assignment and revocation, file reading and writing. Each detailed step is given
below.

For convenience, first explain the symbols used in this section. The definition of
each symbol is described in Table 1.

2.3.1 System Initialization
SetupðInÞ: System initialization algorithm. The administrator performs system initial-
ization operation. The main steps are as follows:

Step 1: Perform the initialization algorithm of identity-based encryption and
identity-based signature scheme. Generate their own public parameters and master
keys, expose public parameters, and secretly save the master keys.
Step 2: Create three empty files——USERS, ROLES and FILES, upload ROLES
and FILES to the cloud.
Step 3: Generate an identity-based decryption key EKSU and signature key SKSU for
himself:

KeyGenIBEðSUÞ ! EKSU ;KeyGen
IBSðSUÞ ! SKSU :

Note that in order to save space, the description of the key generation process is
simplified here, and parameters such as the master keys are not listed, and the sub-
sequent algorithm description is also the same.

Table 1. Symbol description

Symbol Description

u User name
r Role name
f File (Here is the file content itself)
fn File name
v Version number
k Symmetric key
EK Identity-based decryption key
SK Identity-based signature key
USERS File that stores the username
ROLES File that stores the role name and role’s key version number
FILES File that stores the file name and file’s key version number
SU Access control administrator
R.M Reference monitor deployed in the cloud
– Wildcard

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 367

2.3.2 User Addition and Deletion
addUðuÞ: User addition algorithm. When a new user joins the system, he needs to
register with the administrator and the administrator performs the user addition oper-
ation. The main steps are as follows:

Step 1: Add the username u to the file USERS.
Step 2: Generate the identity-based decryption key EKu and signature key SKu for
the user:

KeyGenIBEðuÞ ! EKu;KeyGen
IBSðuÞ ! SKu:

Step 3: Send EKu and SKu to the user via the trusted channel

delUðuÞ: User deletion algorithm. To delete a user from the system, the administrator
needs to do the following operations:

For each role r that contains user u, perform the operation *revokeUðr; uÞ.
The symbol � here means that the specific steps of this operation will be given later,

and the following appears � is synonymous with this.

2.3.3 Permission Addition and Deletion
addPuðfn; f Þ: Permission addition algorithm. Actually, the operation of adding per-
mission is that the user uploads file. The permission to read and write files is first
assigned to the administrator, who then assigns permission to the role. The main steps
are as follows:

Step 1: User generates the symmetric key required to encrypt the file:
KeyGenSym ! k.
Step 2: Build tuple F and tuple PA (the initial file key version number is set to 1),
the forms are as follows: hF; fn; 1;EncSymk ðf Þ; u; SignIBSu i, hPA; SU; ðfn;RWÞ; 1;
EncIBESU ðkÞ; u; SignIBSu i, and send them to the cloud.
Step 3: After receiving the two tuples, the reference monitor R.M deployed in the
cloud performs the following operations:

(1) Check that the tuple format is correct. If the format is correct, proceed to the next
step, otherwise send an error report.

(2) Verify that the user’s identity-based signature is legal. If the signature is legal,
that is:
VerifyIBSu ðhF; fn; 1;EncSymk ðf Þ; ui; SignIBSu Þ ¼ 1
VerifyIBSu ðhPA; SU; ðfn;RWÞ; 1;EncIBESU ðkÞ; ui; SignIBSu Þ ¼ 1
proceed to the next step, otherwise send an error report.

(3) Add the file name and file’s key version number ðfn; 1Þ to the file FILES, store the
two tuples to the appropriate location in the cloud.

368 J. Xu et al.

delPðfnÞ: Permission deletion algorithm. The deletion of permission is actually to
delete all tuples related to a file stored in the cloud. The administrator notifies R.M to
perform it. The main steps are as follows:

Step 1: R.M deletes ðfn; vfnÞ from file FILES.
Step 2: Delete all hF; fn;�;�;�;�i tuples and hPA;�; ðfn;�Þ;�;�;�;�i tuples.

2.3.4 Role Addition and Deletion
addRðrÞ: Role addition algorithm. The administrator adds a role to the system. The
main steps are as follows:

Step 1: Add role name and the initial version number ðr; 1Þ of role key to the file
ROLES.
Step 2: Generate the identity-based decryption key EKðr;1Þ and signature key SKðr;1Þ
for the role.
Step 3: Build tuple hUR; SU; ðr; 1Þ;EncIBESU ðEKðr;1Þ; SKðr;1ÞÞ; SignIBSSU i and send it
to R.M.
Step 4: R.M stores the received tuple to the corresponding location in the cloud.

Note that the initial version number of the role key is set to 1 here. And because the
administrator needs to assign users to roles in the future, the administrator first becomes
a member of the role so that the key of the role can be accessed later.

delRðrÞ: Role deletion algorithm. The administrator deletes the role in the system. The
main steps are as follows:

Step 1: Revoke ðr; vrÞ from file ROLES, delete all tuples hUR;�; ðr; vrÞ;�;�i.
Step 2: If role r is a parent role, delete all tuples hRH;�; ðr; vrÞ;�;�i; if role r is a
child role, delete all tuples hRH; ðr; vrÞ;�;�;�i, and perform operation
*delInhðr;�Þ on all of its parent roles.
Step 3: For each permission hfn; opi owned by role r, perform operation
*revokePðr; hfn;RWiÞ.

2.3.5 Role’s Inheritance Relationship Addition and Deletion
addInhðrc; rpÞ: Role’s inheritance relationship addition algorithm. The administrator
makes role rc inherit role rp, let rc have all permissions of rp. The main steps are as
follows:

Step 1: Download tuple hUR; SU; ðrp; vrpÞ;EncIBESU ðEKðrp;vrp Þ; SKðrp;vrp ÞÞ; SignIBSSU i
from the cloud and verify the signature.
If VerifyIBSSU ðhUR; SU; ðrp; vrpÞ;EncIBESU ðEKðrp;vrp Þ; SKðrp;vrp ÞÞi; SignIBSSU Þ ¼ 1, proceed
to the next step, otherwise send an error report.
Step 2: The administrator decrypts the decryption key and signature key of the
parent role from the UR tuple using his own decryption key EKSU :

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 369

ðEKðrp;vrp Þ; SKðrp;vrp ÞÞ ¼ DecIBEEKSU
ðEncIBESU ðEKðrp;vrp Þ; SKðrp;vrp ÞÞÞ:

Step 3: Build tuple hRH; ðrc; vrcÞ; ðrp; vrpÞ;EncIBEðrc;vrc ÞðEKðrp;vrp Þ; SKðrp;vrp ÞÞ; SignIBSSU i
and send it to R.M.
Step 4: R.M stores the received tuple to the corresponding location in the cloud.

delInhðrc; rpÞ: Role’s inheritance relationship deletion algorithm. The administrator
deletes the inheritance relationship between role rc and role rp. For the parent role, it is
equivalent to remove a user from it. The main steps are as follows:

Step 1: Delete tuple hRH; ðrc; vrcÞ; ðrp; vrpÞ;EncIBEðrc;vrc ÞðEKðrp;vrp Þ; SKðrp;vrp ÞÞ; SignIBSSU i.
Step 2: Generate a new decryption key and signature key for the parent role:
KeyGenIBEððrp; vrp þ 1ÞÞ ! EKðrp;vrp þ 1Þ, KeyGenIBSððrp; vrp þ 1ÞÞ ! SKðrp;vrp þ 1Þ,
update the file ROLES to increase the role’s key version number by 1.
Step 3: Generate a new RH tuple for the other child roles (r0c 6¼ rc) of the parent role:
That is, hRH; ðr0c; vr0cÞ; ðrp; vrp þ 1Þ;EncIBEðr0c;vr0c Þ

ðEKðrp;vrp þ 1Þ; SKðrp;vrp þ 1ÞÞ; SignIBSSU i,
and upload it to R.M and replace the old tuples.
Step 4: Generate a new UR tuple for all user members of the parent role. That is,
build a new tuple hUR;�; ðrp; vrp þ 1Þ;EncIBE� ðEKðrp;vrp þ 1Þ; SKðrp;vrp þ 1ÞÞ; SignIBSSU i
and upload it to R.M.
Step 5: Generate a new PA tuple for all files that the parent role can access, the
specific steps are as follows:

(1) The administrator first downloads tuple hUR; SU; ðrp; vrpÞ;EncIBESU ðEKðrp;vrp Þ;
SKðrp;vrp ÞÞ; SignIBSSU i from the cloud and verifies the signature, proceed to next step if
the verification is passed.

(2) The administrator uses his own decryption key EKSU to decrypt the role’s
decryption key and signature key from the UR tuple:

ðEKðrp;vrp Þ; SKðrp;vrp ÞÞ ¼ DecIBEEKSU
ðEncIBESU ðEKðrp;vrp Þ; SKðrp;vrp ÞÞÞ:

(3) For each tuple hPA; ðrp; vrpÞ; ðfn; opÞ; vfn;EncIBEðrp;vrp ÞðkÞ; SU; SignIBSSU i, first use role’s
decryption key to decrypt the file’s symmetric key: k ¼ DecIBEEKðrp ;vrp Þ

ðEncIBEðrp;vrp ÞðkÞÞ.
Then build a new tuple hPA; ðrp; vrp þ 1Þ; ðfn; opÞ; vfn;EncIBEðrp;vrp þ 1ÞðkÞ; SU; SignIBSSU i
and upload it to R.M.

(4) Delete all hPA; ðrp; vrpÞ;�;�;�;�;�i tuples and hUR;�; ðrp; vrpÞ;�;�i tuples.

Step 6: Update the symmetric key of all files that parent role can access, the specific
steps are as follows:

370 J. Xu et al.

(1) Generate a new symmetric key for each file that parent role can access:
KeyGenSym ! k0.

(2) Generate a new PA tuple for all roles that have access to the above files: build a
new tuple hPA;�; ðfn; opÞ; vfn þ 1;EncIBE� ðk0Þ; SU; SignIBSSU i and upload it to R.M.

(3) Update file FILES, make the symmetric key version number of the file add 1.

Note that the write-time re-encryption policy is used in the role’s inheritance rela-
tionship deletion algorithm. The specific embodiment is: After step 6 is executed, the
cloud actually stores two versions of the PA tuple of files that the parent role can access.
The only difference between the two versions is that the file key version number and the
encrypted file’s symmetric key is different. When the file is read, the old symmetric key
is used for decryption; When the file is written, the new symmetric key is used for
encryption. This is the specific implementation of write-time re-encryption policy.

2.3.6 User Assignment and Revocation
assignUðr; uÞ: User assignment algorithm. The administrator assigns users to the roles.
The main steps are as follows:

Step 1: Download tuple hUR; SU; ðr; vrÞ;EncIBESU ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i from the
cloud and verify the signature. If
VerifyIBSSU ðhUR; SU; ðr; vrÞ;EncIBESU ðEKðr;vrÞ; SKðr;vrÞÞi; SignIBSSU Þ ¼ 1, proceed to the
next step.
Step 2: The administrator uses his own decryption key EKSU to decrypt the role’s
decryption key and signature key from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼
DecIBEEKSU

ðEncIBESU ðEKðr;vrÞ; SKðr;vrÞÞÞ.
Step 3: Build tuple hUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i and upload it to
R.M.
Step 4: R.M stores the received tuple to the corresponding location in the cloud.

revokeUðr; uÞ: User revocation algorithm. The administrator revokes a user from the
role. The main steps are as follows:

Step 1: Generate a new decryption key and signature key for role r:
KeyGenIBEððr; vr þ 1ÞÞ ! EKðr;vr þ 1Þ, KeyGenIBSððr; vr þ 1ÞÞ ! SKðr;vr þ 1Þ. Update
file ROLES, make the key version number of the role add 1.
Step 2: If role r has child roles, generate a new RH tuple for all its child roles. That
is, build a new tuple hRH;�; ðr; vr þ 1Þ;EncIBE� ðEKðr;vr þ 1Þ; SKðr;vr þ 1ÞÞ; SignIBSSU i and
upload it to R.M and replace all old tuples.
Step 3: Generate a new UR tuple for other user members ðu0 6¼ uÞ of the role. That
is, build a new tuple hUR; u0; ðr; vr þ 1Þ;EncIBEu0 ðEKðr;vr þ 1Þ; SKðr;vr þ 1ÞÞ; SignIBSSU i and
upload it to R.M.
Step 4: Generate a new PA tuple for files that all roles can access. The specific steps
are as follows:

(1) First download tuple hUR; SU; ðr; vrÞ;EncIBESU ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i from the
cloud and verify the signature. If verification passed, proceed to the next step.

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 371

(2) The administrator uses his own decryption key EKSU to decrypt the role’s
decryption key and signature key from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼
DecIBEEKSU

ðEncIBESU ðEKðr;vrÞ; SKðr;vrÞÞÞ.
(3) For each tuple hPA; ðr; vrÞ; ðfn; opÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i, first use role’s

decryption key to decrypt the file’s symmetric key: k ¼ DecIBEEKðr;vr Þ
ðEncIBEðr;vrÞðkÞÞ.

Then build a new tuple hPA; ðr; vr þ 1Þ; ðfn; opÞ; vfn;EncIBEðr;vr þ 1ÞðkÞ; SU; SignIBSSU i
and upload it to R.M.

(4) Delete all hPA; ðr; vrÞ;�;�;�;�;�i tuples and hUR;�; ðr; vrÞ;�;�i tuples.
Step 5: Generate a new symmetric key for the files that all roles can access:
KeyGenSym ! k0.
Step 6: Generate a new PA tuple for all roles that have access to the files in step 5.
That is, for all hPA;�; ðfn; opÞ; vfn;EncIBE� ðkÞ; SU; SignIBSSU i, perform the following
operations:

(1) Build a new tuple hPA;�; ðfn; opÞ; vfn þ 1;EncIBE� ðk0Þ; SU; SignIBSSU i and upload it
to R:M.

(2) Update file FILES, make the symmetric key version number of file add 1.

The user revocation algorithm also uses the write-time re-encryption policy. After
step 6 is executed, the cloud also stores two versions of the PA tuple of the files that the
roles can access.

2.3.7 Permission Assignment and Revocation
assignPðr; hfn; opiÞ: Permission assignment algorithm. The administrator assigns per-
missions to the role. The main steps are as follows:

Step 1: If the role already has read access to the file and needs to add write access,
i.e. op ¼ RW and hPA; ðr; vrÞ; ðfn;RÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i already exists,

perform the following operations:

(1) Download all versions of hPA; ðr; vrÞ; ðfn;RÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i and

verify the signatures of tuples. If
VerifyIBSSU ðhPA; ðr; vrÞ; ðfn;RÞ; vfn;EncIBEðr;vrÞðkÞ; SUi; SignIBSSU Þ ¼ 1, proceed to the

next step.
(2) Build the new tuple hPA; ðr; vrÞ; ðfn;RWÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i, upload it

to R.M and replace old tuples.

Step 2: If the role does not have any permissions on the file, first download the tuple
hPA; SU; ðfn;RWÞ; vfn;EncIBESU ðkÞ; SU; SignIBSSU i from the cloud and verify the sig-
nature. If VerifyIBSSU ðhPA; SU; ðfn;RWÞ; vfn;EncIBESU ðkÞ; SUi; SignIBESU Þ ¼ 1, proceed to
next step.

(1) Decrypt the symmetric key of the file from PA tuple: k ¼ DecIBEEKSU
ðEncIBESU ðkÞÞ.

372 J. Xu et al.

(2) Build the new tuple hPA; ðr; vrÞ; ðfn; opÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i and upload

it to the cloud. After receiving the tuple, R.M stores it in the corresponding
location in the cloud.

revokePðr; hfn; opiÞ: Permission revocation algorithm. The administrator revokes a
permission from the role. The main steps are as follows:

Step 1: If only remove write permission and retain read permission, i.e. op ¼ W ,
perform the following operations: Download all versions of tuple hPA; ðr; vrÞ;
ðfn;RWÞ;�;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i from the cloud and verify the signature.

If VerifyIBSSU ðhPA; ðr; vrÞ; ðfn;RWÞ;�;EncIBEðr;vrÞðkÞ; SUi; SignIBSSU Þ ¼ 1, build the new

tuple hPA; ðr; vrÞ; ðfn;RÞ;�;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i, upload it to R.M and replace

the old tuple.
Step 2: If read and write permissions are revoked, i.e. op ¼ RW , then:

(1) Delete all hPA; ðr; vrÞ; ðfn;RWÞ;�;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i tuples.
(2) Generate a new symmetric key for the file: KeyGenSym ! k0.
(3) Generate new PA tuples for all other roles that can access the files. That is, build a

new tuple hPA;�; ðfn; opÞ; vfn þ 1;EncIBE� ðk0Þ; SU; SignIBSSU i and upload it to R.M.
(4) Update file FILES, make the symmetric key version number of file add 1.

Note that in the step 2 of permission revocation algorithm, the write-time re-
encryption policy is also used. In step 3, a new version of PA tuple containing the file’s
new symmetric key is generated for the role, which is stored in the cloud along with the
PA tuple containing the file’s old symmetric key.

2.3.8 File Reading and Writing
readuðfnÞ: File reading algorithm. User reads a file, the main steps are as follows:

First, the user downloads the tuple hF; fn; vfn;EncSymk ðf Þ; ðr; vrÞ; SignIBSðr;vrÞi from the

cloud and verifies the signature. If
VerifyIBSðr;vrÞðhF; fn; vfn;Enc

Sym
k ðf Þ; ðr; vrÞi; SignIBSðr;vrÞÞ ¼ 1, do the following operations:

First Case: If the user is a member of role r and r has permission to read the file, i.e.
tuple hUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i and hPA; ðr; vrÞ; ðfn; opÞ; vfn;
EncIBEðr;vrÞðkÞ; SU; SignIBSSU i exist, download these two tuples from the cloud. Note that

because of the write-time re-encryption policy, you need to download the PA tuple
whose vfn is consistent with tuple F, the same is true of the following. Then verify the
signature of the tuple, if:

VerifyIBSSU ðhUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞi; SignIBSSU Þ ¼ 1;
VerifyIBSSU ðhPA; ðr; vrÞ; ðfn; opÞ; vfn;EncIBEðr;vrÞðkÞ; SUi; SignIBSSU Þ ¼ 1, perform the fol-

lowing operations:

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 373

Step 1: The user uses his own decryption key EKu to decrypt the decryption key and
the signature key of the role r from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼
DecIBEEKu

ðEncIBEu ðEKðr;vrÞ; SKðr;vrÞÞÞ.
Step 2: Use r’s decryption key EKðr;vrÞ to decrypt the symmetric key of the
encrypted file from the PA tuple: k ¼ DecIBEEKðr;vr Þ

ðEncIBEðr;vrÞðkÞÞ.
Step 3: Use k to decrypt the encrypted file from the F tuple: f ¼ DecSymk ðEncSymk ðf ÞÞ.

Second Case: If the user is a member of the role r and r is a child role of the role r0, r0

has the permission to read the file fn, i.e. the following tuple exists:

hUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i

hRH; ðr; vrÞ; ðr0; vr0 Þ;EncIBEðr;vrÞðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞ; SignIBSSU i

hPA; ðr0; vr0 Þ; ðfn; opÞ; vfn;EncIBEðr0;vr0 ÞðkÞ; SU; SignIBSSU i

Then download the three tuples from the cloud and verify the signature. If the
signature is valid, perform the following operations:

Step 1: The user uses his own decryption key EKu to decrypt the decryption key and
the signature key of the role r from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼
DecIBEEKu

ðEncIBEu ðEKðr;vrÞ; SKðr;vrÞÞÞ.
Step 2: Use r’s decryption key EKðr;vrÞ to decrypt the decryption key and signature
key of r0 from the RH tuple:

ðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞ ¼ DecIBEEKðr;vr Þ
ðEncIBEðr;vrÞðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞÞ

Step 3: Use r0’s decryption key EKðr0;vr0 Þ to decrypt the symmetric key of the
encrypted file from the PA tuple: k ¼ DecIBEEKðr0 ;vr0 Þ

ðEncIBEðr0;vr0 ÞðkÞÞ.
Step 4: Use k to decrypt the encrypted file from the F tuple: f ¼ DecSymk ðEncSymk ðf ÞÞ.

writeuðfn; f Þ: File writing algorithm. The user writes the file, that is, updates the file.
The main steps are as follows:

First Case: If the user is a member of role r and r has permission to write the file fn.
That is, tuple hUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i and hPA; ðr; vrÞ;
ðfn;RWÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i exist. Then download these two tuples from the

cloud and verify the signature. Note that due to the write-time re-encryption policy, the
latest version of the file key is used here, i.e. download the largest version of the PA
tuple in vfn. The same is true of the following.

If VerifyIBSSU ðhUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞi; SignIBSSU Þ ¼ 1 and VerifyIBSSU

ðhUR; ðr; vrÞ; ðfn;RWÞ; vfn;EncIBEðr;vrÞðkÞ; SUi; SignIBSSU Þ ¼ 1, perform the following

operations:

374 J. Xu et al.

Step 1: The user uses his own decryption key EKu to decrypt the role’s decryption
key and signature key from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼ DecIBEEKu

ðEncIBEu ðEKðr;vrÞ; SKðr;vrÞÞÞ.
Step 2: User r’s decryption key EKðr;vrÞ to decrypt the symmetric key of the
encrypted file from the PA tuple: k ¼ DecIBEEKðr;vr Þ

ðEncIBEðr;vrÞðkÞÞ.
Step 3: Build the new tuple hF; fn; vfn;EncSymk ðf 0Þ; ðr; vrÞ; SignIBSðr;vrÞi and upload it

to R.M.
Step 4: After R.M receives the tuple, it performs the following operations:

(1) Check that the tuple’s format is correct. If the tuple’s format is correct, then
proceed to the next step.

(2) Verify the signature. If VerifyIBSðr;vrÞðhF; fn; vfn;Enc
Sym
k ðf 0Þ; ðr; vrÞi; SignIBSðr;vrÞÞ ¼ 1,

proceed to the next step.
(3) R.M checks if role r has permission to write the file fn. That is, check if tuple

hPA; ðr; vrÞ; ðfn;RWÞ; vfn;EncIBEðr;vrÞðkÞ; SU; SignIBSSU i exists. If the tuple exists and

the signature is valid, then R.M uses the new tuple F instead of the old tuple.
(4) Delete all PA tuples associated with file fn and whose version numbers are less

than vfn.

Second Case: If the user is a member of the role r and r is a child role of the role r0, r0

has the permission to write the file fn, i.e. the following tuple exists:

hUR; u; ðr; vrÞ;EncIBEu ðEKðr;vrÞ; SKðr;vrÞÞ; SignIBSSU i

hRH; ðr; vrÞ; ðr0; vr0 Þ;EncIBEðr;vrÞðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞ; SignIBSSU i

hPA; ðr0; vr0 Þ; ðfn;RWÞ; vfn;EncIBEðr0;vr0 ÞðkÞ; SU; SignIBSSU i

Download the three tuples from the cloud and verify the signature. If the signature
is valid, perform the following operations:

Step 1: The user uses his own decryption key EKu to decrypt the role r’s decryption
key and signature key from the UR tuple: ðEKðr;vrÞ; SKðr;vrÞÞ ¼ DecIBEEKu

ðEncIBEu

ðEKðr;vrÞ; SKðr;vrÞÞÞ.
Step 2: Use r’s decryption key EKðr;vrÞ to decrypt the decryption key and signature
key of r0 from the RH tuple:

ðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞ ¼ DecIBEEKðr;vr Þ
ðEncIBEðr;vrÞðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞÞ:

Step 3: Use r0’s decryption key EKðr0;vr0 Þ to decrypt the symmetric key of the
encrypted file from the PA tuple: k ¼ DecIBEEKðr0 ;vr0 Þ

ðEncIBEðr0;vr0 ÞðkÞÞ.
Step 4: Build the new tuple hF; fn; vfn;EncSymk ðf 0Þ; ðr0; vr0 Þ; SignIBSðr0;vr0 Þi and upload it

to R.M.

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 375

Step 5: After R.M receives the tuple, it performs the following operations:

(1) Check that the tuple’s format is correct. If the tuple’s format is correct, then
proceed to the next step.

(2) Verify the signature. If VerifyIBSðr;vrÞðhF; fn; vfn;Enc
Sym
k ðf 0Þ; ðr0; vr0 Þi; SignIBSðr0;vr0 ÞÞ ¼ 1,

proceed to the next step.
(3) R.M checks if role r has permission to write the file fn. That is, check if the

following tuples exist:

hRH; ðr; vrÞ; ðr0; vr0 Þ;EncIBEðr;vrÞðEKðr0;vr0 Þ; SKðr0;vr0 ÞÞ; SignIBSSU i

hPA; ðr0; vr0 Þ; ðfn; opÞ; vfn;EncIBEðr0;vr0 ÞðkÞ; SU; SignIBSSU i

If the tuples exist and the signature is valid, then R.M uses the new tuple F instead
of the old tuple.

Delete all PA tuples associated with file fn and whose version numbers are less
than vfn.

3 Conclusions

This paper combines identity-based cryptosystems and role-based access control models
(RBAC1 model), and built an RBAC scheme based on identity cryptosystem in cloud
storage. This paper first describes the application scenario and entity composition of the
scheme; then gives the formal definition of the scheme; then describes the key technologies
of the scheme, and introduces the four tuples used to describe the access control policy in
detail and the designed optimization method in order to improve system efficiency-hybrid
encryption policy and write-time re-encryption policy; this paper also gives a detailed
description of the scheme, specific to each step of each operation; finally analyzes the
scheme to prove that the scheme is correct, access control protected and secure.

Acknowledgement. This work is supported, in part, by the National Natural Science Founda-
tion of China under grant No. 61872069, in part, by the Fundamental Research Funds for the
Central Universities (N171704005), in part, by the Shenyang Science and Technology Plan
Projects (18-013-0-01).

References

1. Peng, S., Zhou, F., Jian, X., Zifeng, X.: Comments on “identity-based distributed provable
data possession in multicloud storage”. IEEE Trans. Serv. Comput. 9(6), 996–998 (2016)

2. Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.: Dynamic fully homomorphic
encryption-based Merkle Tree for lightweight streaming authenticated data structures.
J. Netw. Comput. Appl. 107, 113–124 (2018)

376 J. Xu et al.

3. Jung, Y., Chung. M.: Adaptive security management model in the cloud computing
environment. In: The International Conference on Advanced Communication Technology,
pp. 1664–1669. IEEE (2010)

4. Wang, X.W., Zhao, Y.M.: A task-role-based access control model for cloud computing.
Comput. Eng. 38(24), 9–13 (2012)

5. Danwei, C., Xiuli, H., Xunyi, R.: Access control of cloud service based on UCON. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 559–564.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10665-1_52

6. Krautsevich, L., Lazouski, A., Martinelli, F., et al.: Risk-aware usage decision making in
highly dynamic systems. In: Fifth International Conference on Internet Monitoring and
Protection, pp. 29–34. IEEE (2010)

7. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639_27

8. Goyal, V., Pandey, O., Sahai, A., et al.: Attribute-based encryption for fine-grained access
control of encrypted data. In: ACM Conference on Computer and Communications Security,
pp. 89–98. ACM (2006)

9. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access
structures. In: CCS 07 ACM Conference on Computer & Communications Security,
pp. 195–203 (2007)

10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society (2007)

11. Sun, G.Z., Yu, D., Yun, L.I.: CP-ABE based data access control for cloud storage.
J. Commun. 32(7), 146–152 (2011)

12. Jung, T., Li, X.Y., Wan, Z., et al.: Privacy preserving cloud data access with multi-
authorities. In: 2013 Proceedings IEEE INFOCOM, pp. 2625–2633. IEEE (2013)

13. Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with authentication
for securing data in clouds. In: IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pp. 556–563. IEEE (2012)

14. Yu, S., Wang, C., Ren, K., et al.: Achieving secure, scalable, and fine-grained data access
control in cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9. IEEE (2010)

15. Hur, J., Dong, K.N.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 22(7), 1214–1221 (2011)

16. Chen, D.W., Shao, J., Fan, X.W., et al.: MAH ABE based privacy access control in cloud
computing. Acta Electron. Sin. 42(4), 821–827 (2014)

A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage 377

http://dx.doi.org/10.1007/978-3-642-10665-1_52
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27

	A RBAC Model Based on Identity-Based Cryptosystem in Cloud Storage
	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Constructions
	2.1 Design Idea
	2.2 Formal Definitions
	2.3 Detailed Description
	2.3.1 System Initialization
	2.3.2 User Addition and Deletion
	2.3.3 Permission Addition and Deletion
	2.3.4 Role Addition and Deletion
	2.3.5 Role’s Inheritance Relationship Addition and Deletion
	2.3.6 User Assignment and Revocation
	2.3.7 Permission Assignment and Revocation
	2.3.8 File Reading and Writing

	3 Conclusions
	Acknowledgement
	References

