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Abstract. Outsourcing encrypted data to cloud platforms is widely
adopted by users, but there are some problems existing in it: one is
that encrypted databases only provide limited types of queries for users.
Meanwhile, in the deterministic encryption, users’ encrypted data is sub-
ject to the frequency attack easily. Besides, users’ data privacy is dis-
closed to cloud platforms when their data is updated. To address these
problems, in this paper, we propose an effective encryption scheme on
outsourcing data for query on cloud platforms. In our scheme, users’ data
is encrypted according to all possible queries to meet users’ diverse query
demands. Furthermore, a double AES encryption method is adopted
to cope with the frequency attack existing in deterministic encryption.
To protect users’ privacy when their data is updated, a neighbor rows
exchange method is designed in our scheme. The theoretical analysis and
comparative experiments demonstrate the effectiveness of our scheme.

Keywords: Cloud platform · Encrypted database · Possible queries ·
Double AES encryption · Neighbor rows exchange

1 Introduction

With the maturity of cloud storage technology and the proliferation of cloud
platforms, more and more users outsource their data to cloud platforms
[2,7,19,22,23]. For one thing, cloud platforms have enough resources to store
enormous users’ data, which can greatly decrease the storage burden on users’
side. For another thing, cloud platforms provide the accessing interfaces for users,
where users can access their data easily. However, for users, cloud servers are not
trustworthy [1,13,18,21]. If users directly upload their data to cloud platforms,
the sensitive information in their data will be exposed to cloud servers, which
results in users’ privacy disclosure. To avoid this case, users usually encrypt their
data before outsourcing it. Since users’ encryption keys are private, cloud servers
can not decrypt users’ encrypted data and users’ privacy is protected.
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Common encryption techniques adopted by users include deterministic
encryption [3,4], order-preserving encryption [5,6] and homomorphic encryption
[8,15]. For deterministic encryption, its algorithm is deterministic, which can
always generate the same ciphertext for the same message. Therefore, users can
leverage deterministic encryption to realize equality check on encrypted data.
Order-preserving encryption is another encryption technique where ciphertexts
can preserve the order of plaintexts. This means that users can realize complex
operations on encrypted data by order-preserving encryption (e.g., range query).
Besides, homomorphic encryption allows users to aggregate their encrypted data
on cloud platforms. In this encryption technique, the calculation results on
ciphertexts after decryption is same as the working directly on the raw data.
Although users’ privacy is protected under these encryption techniques, there
exists another problem for users: how to query for their encrypted data effec-
tively.

To address the above problem, an early method is proposed in [10] for exe-
cuting SQL queries over encrypted data by performing approximate filtering at
the server and performing final query processing at the client. This method is
extended to handle aggregation queries in [11,12]. However, this method con-
sumes a lot of hardware resources. Then, a query-based encryption method is
proposed in [17,20]. In this method, based on users’ query demands, users’ data
is encrypted by multiple encryption techniques simultaneously (e.g., determin-
istic encryption, order-preserving encryption or homomorphic encryption). By
this method, users can have rich queries on their encrypted data and avoid some
unnecessary post-processes to their data after queries. However, query-based
encryption requires users to provide their query sets in advance. In fact, this
may be difficult for users because they do not have clear plans for their data.
Furthermore, this method fails to defeat the frequency attack in determinis-
tic encryption [14]. To address the second problem, a system named Seabed is
proposed in [16]. Seabed adopts additively symmetric homomorphic encryption
(ASHE) to implement data encryption and greatly reduce the overhead of data
aggregation in the encrypted domain. Meanwhile, Seabed introduces a splayed
ASHE method to cope with the frequency attack by splaying sensitive columns
to multiple columns. However, splayed ASHE results in heavy storage overheads
because multiple new columns are added in original databases. Besides, users’
privacy will be leaked out if their data is updated in ASHE.

To overcome the deficiencies in the existing schemes, in this paper, we will
propose an efficient encryption scheme on outsourcing data for query on cloud
platforms. Specifically, in our scheme, users’ data is encrypted according to all
possible queries rather than users’ query sets. This method is more reasonable
than the query-based encryption. Meanwhile, a double AES encryption method
is proposed in our scheme, which leverages AES and row identifies of data
to encrypt raw data twice to cope with the frequency attack in deterministic
encryption. Its cost is much lower than that of splayed ASHE. To implement
the dynamic update of users’ encrypted data, a neighbor rows exchange method
is designed in our scheme. In this method, when the data in some rows faces
with the update, the updated value in neighbor rows will exchange their stor-
ing positions. This method ensures that users’ privacy is not exposed to cloud
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servers when their data is updated. In summary, our contributions in this paper
are listed as follow.

– We propose an effective encryption scheme on outsourcing data in this paper.
In our scheme, the possible encryption method provides all possible queries on
encrypted data for users. Meanwhile, the double AES encryption method can
effectively defend against the frequency attack. Besides, the neighbor rows
exchange method can ensure that users’ encrypted data is updated without
disclosing users’ privacy.

– We present detailed theoretical analysis to demonstrates the effectiveness of
the possible encryption method, the double AES encryption and the neighbor
rows exchange method.

– The comparative experiments are executed in this paper to show that our
scheme has good performance on users’ data encryption cost and users’ aggre-
gation query cost compared with the existing schemes.

The remaining of this paper is organized as follows. Section 2 describes the
system model and the adversary model of our scheme. Section 3 introduces
the preliminaries of our scheme including query-based encryption and ASHE.
Section 4 presents our scheme in detail. Section 5 provides the theoretical anal-
ysis for our scheme and Sect. 6 shows the experimental results. Finally, Sect. 7
concludes this paper.

2 Problem Statement

2.1 System Model

Three entities are involved in our scheme as illustrated in Fig. 1: users, the user
proxy and the cloud server. Here, users are the owner of data and they generate
their own secret keys for encryption. The user proxy is the middleman who is
in charge of transmitting data between users and the cloud server. The cloud
server is the entity who stores users’ encrypted data. The process of this model
is described as follows. First, users share their keys with the user proxy and
submit their original data to the user proxy. Then, the user proxy encrypts the
data according to all possible queries and outsources the encrypted data to the
cloud server. To query the encrypted data, users submit their queries to the user
proxy. Then, these original queries are parsed and transformed into the queries
used in the encrypted domain by the user proxy. Next, the user proxy submits
the new version of queries to the cloud server. Finally, the cloud server returns
the query results to the user proxy according to submitted queries. Since the
user proxy has users’ keys, he can decrypt these results and send them to users.
Once users obtain the query results, the whole procedure is finished.

2.2 Adversary Model

In our scheme, we assume that users and the cloud server are semi-honest [9].
That is, they will strictly follow our scheme but they are also curious about
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Fig. 1. The framework of our scheme

the other entities’ sensitive information. Meanwhile, for users, the user proxy is
trustworthy. This means the user proxy will not tamper the transmitted data.
Besides, he will not collude with the cloud server to leak out users’ privacy.

3 Preliminaries

3.1 Query-Based Encryption

Query-based encryption in [17,20] aims to improve the efficiency of querying
encrypted databases and it adopts multiple encryption techniques to achieve this
goal, including randomization, deterministic encryption (DE), order-preserving
encryption (OPE) and homomorphic encryption (HE). For randomization, two
identical values are mapped to different ciphertexts. Thus, ciphertext operations
are not allowed under this technique. For DE, two equal values are mapped to
the same ciphertext and it allows the equality checks in the encrypted domain.
For OPE, the order of plaintexts is preserved after encryption and the range
query is allowed. For HE, the ciphertexts are allowed to perform aggregation
calculations and the decrypted results are still correct.

In query-based encryption, users first submit their data and query sets to the
user proxy. Then, the user proxy selects the corresponding encryption techniques
to encrypt users’ data according to users’ query sets. Finally, the user proxy
uploads the encrypted data to the cloud server.

3.2 ASHE

ASHE in [16] assumes that there exists an additive group Zn = {0, 1, · · · , n −
2, n − 1} and a secret key k is shared between the encrypting entity and the
decrypting entity. A message m ∈ Zn is encrypted by ASHE as follow.

Enck(m, i) = ((m − Fk(i) + Fk(i − 1)) mod n, {i}) (1)

Here, i is an identifier from a set I. Fk : I → Zn is a pseudo-random function
(PRF) that maps an identifier i in I to a value in Zn and it is implemented
by AES. For ease of presentation, The ciphertexts in ASHE is also denoted as
(c, S). Here, c is an element of Zn and S is a multiset of identifiers. That is, the
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ciphertext Enck(m, i) can be also denoted as (m, {i}). To create the additive
homomorphism in ASHE, a special operation ⊕ is defined as follow.

(c1, S1) ⊕ (c2, S2) = ((c1 + c2) mod n, S1 ∪ S2) (2)

That is, the elements are added together and the multisets of identifiers are
combined in the operation ⊕. Besides, the ciphertext (c, S) is decrypted as follow.

Deck(c, S) = (c,
∑

i∈S

(Fk(i − 1) + Fk(i))) mod n (3)

The additive result of two ciphertexts is decrypted by computing:

Deck(Enck(m1, i1) ⊕ Enck(m2, i2)) = (m1 + m2) mod n (4)

As shown in Eq. (1), the encryption function in ASHE is designed as (m−Fk(i)+
Fk(i − 1)) which has great advantages on data aggregation in the encrypted
domain. For example, the ciphertexts of ASHE with consecutive identifiers
{i, i+1, · · · , n−1, n} are added together. Due to the clever design of encryption
function, the final result of these ciphertexts only contains Fk(i) − Fk(n) and
the other Fk is offset during the aggregation. Besides, Fk(i) and Fk(n) are easy
to be worked out. Since the Fk is implemented by AES, the total computation
overheads are low. Even if the identifiers of ciphertexts are consecutive partly,
the overhead of data aggregation in ASHE is still much lower than that in the
Paillier Homomorphic Encryption [15] adopted in [17] and [20].

4 Our Scheme

In this section, we will introduce our scheme in detail, which includes three
methods: possible query encryption, double AES encryption and neighbor rows
exchange.

4.1 Possible Query Encryption

To meet users’ diverse query demands for encrypted databases, the possible
query encryption in our scheme also adopts the same encryption techniques
as the query-based encryption described in Sect. 3.1. However, there are some
obvious differences between them. First, DE is implemented directly by AES in
the query-based encryption, which can not defend against the frequency attack.
In contrary, in the possible query encryption, a double AES encryption is pro-
posed to implement the DE. This encryption method can cope with the fre-
quency attack effectively and will be discussed later. Second, in the possible
query encryption, HE is implemented by ASHE rather than Paillier homomor-
phic encryption. From Sect. 3.2, we can see that the ASHE is much more effi-
cient than Paillier homomorphic encryption in terms of data aggregation in the
encrypted domain. Last but not least, instead of users’ query sets, all possible
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queries for users’ data are taken into consideration in the possible query encryp-
tion. For one thing, users do not have clear understanding of their data so that
they can not provide valid query sets. For another thing, users’ query demands
may change over time. This means that users’ data should not be encrypted by
a single encryption technique. Based on such considerations, the thought of all
possible queries is adopted in the possible query encryption.

paginationAssume users’ original data is presented as Table 1. The user proxy
encrypts the data by columns according to the possible query encryption method.
First, the user proxy picks out the column of gender and figures out the possible
queries on it. Since the equality check is the only operation on this column,
the user proxy adopts DE to encrypt it. Similarly, since the equality check and
the range query are possible operations on the column of age, the user proxy
encrypts it by DE and OPE. For the column of salary, data aggregation is the
common operation on it. Therefore, in addition to DE and OPE, HE is also
used to encrypt it. Here, HE is implemented by ASHE. Besides, an identifier is
introduced to each row of encrypted database due to the application of ASHE.
By the possible query encryption method, the encrypted version of users’ data
in Table 1 is shown as Table 2.

Table 1. The incomes of employees.

· · · Gender Age Salary · · ·
· · · Male 31 7000 · · ·
· · · Female 25 4800 · · ·
· · · Female 37 10000 · · ·
· · · Male 45 20000 · · ·
· · · · · · · · · · · · · · ·

Table 2. The encrypted version of Table 1.

ID · · · DE(Gender)DE(Age)OPE(Age)DE(Salary)OPE(Salary)ASHE(Salary) · · ·
1 · · · DE(male) DE(31) OPE(31) DE(7000) OPE(7000) ASHE(7000) · · ·
2 · · · DE(female) DE(25) OPE(25) DE(4800) OPE(4800) ASHE(4800) · · ·
3 · · · DE(female) DE(37) OPE(37) DE(10000) OPE(10000) ASHE(10000) · · ·
4 · · · DE(male) DE(45) OPE(45) DE(20000) OPE(20000) ASHE(20000) · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

4.2 Double AES Encryption

For one thing, the frequency attack is a common form of attack in DE. Specifi-
cally, the attacker can obtain the occurrence frequency of plaintexts in advance.
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If these plaintexts are encrypted by the existing DE, then the attacker can infer
the corresponding plaintexts according to the occurrence frequency of cipher-
texts. This is because the same plaintexts have the same ciphertexts in DE. For
another thing, the ASHE in the possible query encryption introduces an identi-
fier for each row in the encrypted database. By these identifiers, the double AES
encryption method in our scheme can defend against the frequency attack.

Double AES encryption method adopts two rounds of AES to encrypt users’
data. During the first round of AES encryption, the user proxy encrypts users’
data m by using the secret key k shared by users. The encrypted result Enck(m)
is calculated as follow.

Enck(m) = AESk(m) (5)

Then, at the second round of AES encryption, the intermediate encrypted result
Enck(m) is viewed as the secret key of AES to encrypt the identifier i (i is the
identifier of the row where m is). The final encrypted result DE(m) is shown as
follow.

DE(m) = AESEnck(m)(i) = AESAESk(m)(i) (6)

Since the identifier of each row is unique, the final encryption results of two
identical data in different rows will be different by using double AES encryption.
This means the double AES encryption in our scheme can defeat the frequency
attack effectively. It is worth noting that we use AESk(m) to encrypt the iden-
tifier i rather than i to encrypt AESk(m). This is because the cloud server can
directly access i and the final encryption result DE(m). Since AES is a sym-
metric encryption technique, if i is the secret key to encrypt AESk(m), then the
cloud server can directly decrypt DE(m) and obtain AESk(m). In this case, the
cloud server can still launch the frequency attack. In contrast, using AESk(m)
as the key can avoid this because AESk(m) is unknown to the cloud server and
AES is currently not vulnerable to known-plaintext attacks.

To support equality queries on encrypted databases implemented by double
AES encryption, the user proxy should submit the intermediate encrypted result
Enck(m) to the cloud server. Then, the cloud server calculates the DE(m) row
by row according to Eq. (6) and performs the equality checks in the encrypted
database. If the DE(m) is equal to the data stored in the database, then the data
meets users’ query demands. Although the cloud server can know the counts
of data being queried, he can not infer the corresponding plaintexts by the

Table 3. The double AES encryption version of Table 1.

ID · · · Gender Age Salary · · ·
1 · · · AESAES(male)(1) AESAES(31)(1) AESAES(7000)(1) · · ·
2 · · · AESAES(female)(2) AESAES(25)(2) AESAES(4800)(2) · · ·
3 · · · AESAES(female)(3) AESAES(37)(3) AESAES(10000)(3) · · ·
4 · · · AESAES(male)(4) AESAES(45)(4) AESAES(20000)(4) · · ·
· · · · · · · · · · · · · · · · · ·
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frequency attack because the occurrence frequency of other data is unknown to
him under the double AES encryption. The double AES encryption version of
Table 1 is shown as Table 3.

4.3 Neighbor Rows Exchange

As mentioned before, in the possible query encryption, we adopt the ASHE to
implement the HE. However, if users update their data encrypted by ASHE, their
data privacy will be leaked out to the cloud server. Assume a user’s original data
is m1. According to Eq. (1), it is encrypted by ASHE as follow.

Enck(m1, i) = ((m1 − Fk(i) + Fk(i − 1)) mod n, {i}) (7)

Then, the Enck(m1, i) is stored in the i-th row of database on the cloud server.
Now, this user intends to change the m1 to m2. Then, m2 is encrypted by ASHE
as follow.

Enck(m2, i) = ((m2 − Fk(i) + Fk(i − 1)) mod n, {i}) (8)

The Enck(m2, i) is sent to the cloud server to update the content of the i-th
row in database. However, the curious cloud server can disclose this user’s data
privacy by calculating:

Δm = Enck(m2) − Enck(m1)
= ((m2 − Fk(i) + Fk(i − 1)) − (m1 − Fk(i) + Fk(i − 1))) mod n

= m2 − m1

(9)

The Δm may indicate the changes in users’ salaries or the personnel changes of
a company. Anyway, the private information can be easily obtained by the cloud
server, which results in the disclosure of users’ privacy.

To address this problem, a neighbor rows exchange method is proposed in
our scheme. Neighbor rows in this method are defined as two update rows which
are adjacent to each other. Assume the data in the i-th, (i + 3)-th, (i + 9)-th
and (i+14)-th row faces with update. Then, the i-th row and the (i+3)-th row
are neighbor rows. Similar, the (i + 9)-th row and the (i + 14)-th row are also
neighbor rows. In the case of multiple data updates at the same time, each pair
of neighbor rows are divided into an exchange group and their updated value
is stored in each other’s locations. That is, for the data m1 to be updated in
i-th row and the m2 to be updated in j-th row, assume i and j are neighbor
rows. Then, in neighbor rows exchange method, m1 and m2 are divided into
an exchange group. Meanwhile, the updated value of m1 is stored in j-th row
and the updated value of m2 is stored in i-th row. Since the rows where users’
data locates have changed after the update, the cloud server can not infer users’
sensitive information anymore and users’ privacy is protected.
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In the case of a single data update, after receiving the i-th user’s update
data m, the user proxy stores this update data locally and does not modify the
corresponding data on the cloud platform for the time being. Once some other
users submit their update data, the user proxy will take out m from the local
and combines it with other update data. The next steps will the same as those
in multiple data updates. It is worth noting that the i-th user can query his
update data at any time and the user proxy can ensure the correctness of query
result. The above procedure can protect the i-th user’s privacy.

In neighbor rows exchange method, the neighbor rows rather than two ran-
dom rows exchange their stored data is to minimize the location changes of
update data, which can take full advantage of the homomorphic property in
ASHE. In addition, the validity of neighbor rows exchange method will be
demonstrated in the next section. The neighbor rows exchange method is sum-
marized as Algorithm 1.

Algorithm 1. Neighbor Rows Exchange

Input: Users’ update data sets M = {m1, · · · ,mi, · · · ,mn}
Output: The updated database on the cloud platform
1 The user proxy counts the number of update data in M : Nm

2 if Nm > 1
3 The user proxy devides the update data into multiple neighbor rows
4 The user proxy encrypts the update data according to ASHE where the identifiers
of their

neighbor row are used
5 The cloud server stores the encrypted data in their neighbor row
6 else
7 The user proxy stores the only update data mo in the local
8 if other update data is submitted from users
9 mo is combined with these update data
10 repeat the step 3, 4 and 5
11 end

Table 4. Different outsourcing data encryption schemes.

Scheme Defeat frequence attack Update Special

Our scheme
√ √

Possible query encryption

Scheme in [17] × √
Query-based encryption

Scheme in [20] × √
Query-based encryption

Scheme in [16]
√ × ASHE
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At the end of this section, we compare our scheme with other existing out-
sourcing data encryption schemes as shown in Table 4.

5 Theoretical Analysis

In this section, we will present the theoretical analysis of our scheme. Specifically,
we will respectively analyze the effectiveness of possible query encryption, double
AES encryption and neighbor rows exchange.

Theorem 1. Possible query encryption in our scheme can provide users with
richer queries on encrypted data.

Proof. In the possible query encryption, users’ data is encrypted according to
all possible queries on their data. Each type of data has its own characteristics:
some are suitable for equality checks but range queries and data aggregations
are meaningless to them (e.g., gender). DE is enough for this type of data. Some
are not only suitable for equality checks but also for range queries and even
data aggregations (e.g., salary). This type of data should be encrypted by DE,
OPE and HE simultaneously. Considering these cases, possible query encryption
encrypts users’ data according to the characteristics of the data. This can avoid
a lot of unnecessary encryption for users’ data.

Compared with query-based encryption, possible query encryption fully exca-
vates the potential characteristics of users’ data and provides a more complete
query view for users. For one thing, this method does not depend on users’ query
sets, which can avoid users’ subjective limitations. For another thing, users can
change their query plans at any time. In this case, their queries will not become
invalid. Therefore, possible query encryption is more reasonable than the query-
based encryption.

Theorem 2. Double AES encryption in our scheme can defend against the fre-
quency attack.

Proof. In the double AES encryption, users’ data has a unique identifier and the
different identifiers ensure that the equal data has different ciphertexts. Assume
m1 is equal to m2 and their identifiers are i and j (Here, i �= j). According to
Eqs. (5) and (6), m1 and m2 is encrypted by double AES encryption as follow.

DE(m1) = AESEnck(m1)(i) = AESAESk(m1)(i) (10)

DE(m2) = AESEnck(m2)(j) = AESAESk(m2)(j) (11)

Since m1 is equal to m2, then AESk(m1) is equal to AESk(m2). But i is not equal
to j, then AESAESk(m1)(i) is not equal to AESAESk(m2)(j). That is, DE(m1)
is not equal to DE(m2).

From the above discussion, we can find two equal data are mapped to differ-
ent ciphertexts by double AES encryption. This can prevent the attacker from
inferring the occurrence frequency of plaintexts from the occurrence frequency of
ciphertexts. Therefore, double AES encryption can defend against the frequency
attack effectively.
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Theorem 3. Neighbor rows exchange method in our scheme can protect users’
privacy when their data is updated.

Proof. In the neighbor rows exchange method, in the case of multiple data
update, the update data of neighbor rows exchanges their storage locations.
Suppose m1 in the i-th row and m2 in the j-th row are facing updates and their
update value are m′

1 and m′
2 respectively. Meanwhile, the i-th row and the j-th

row are the neighbor rows. According to Eq. (1), m1 and m2 are encrypted by
ASHE as follow.

Enck(m1, i) = ((m1 − Fk(i) + Fk(i − 1)) mod n, {i}) (12)

Enck(m2, j) = ((m2 − Fk(j) + Fk(j − 1)) mod n, {j}) (13)

According to the neighbor rows exchange method, m′
1 is encrypted by ASHE

with the identifier j and m′
2 is encrypted by ASHE with the identifier i:

Enck(m′
1, j) = ((m′

1 − Fk(j) + Fk(j − 1)) mod n, {j}) (14)

Enck(m′
2, i) = ((m′

2 − Fk(i) + Fk(i − 1)) mod n, {i}) (15)

To disclose users’ privacy, the cloud server will try to obtain Δm1 by calculating:

Δm1 = Enck(m′
1) − Enck(m1)

= ((m′
1 − Fk(j) + Fk(j − 1)) − (m1 − Fk(i) + Fk(i − 1))) mod n

= m′
1 − m1 + (Fk(i) + Fk(j − 1) − Fk(j) − Fk(i − 1))

(16)

Since the cloud server does not know the key k, he can not work out the Fk(i)+
Fk(j−1)−Fk(j)−Fk(i−1) and obtain the Δm1 according to the Eq. (16). Similar,
the cloud server can not obtain Δm2 either. In the case of a single data update,
the only update data mo is stored in the user proxy temporarily. At this stage,
the cloud server can not disclose users’ privacy because the encrypted database
on the cloud platform has no change. When other update data is submitted,
mo is combined with them and they are updated by following the method of
multiple update data. Therefore, at this stage, users’ privacy is also protected.
In summary, the neighbor rows exchange method in our scheme can protect
users’ privacy when their data is updated.

6 Experiment

6.1 Experiment Configure

In this section, we will run some simulated experiments to evaluate the perfor-
mance of our scheme. These experiments are run on a laptop with Intel i5-5200U
CPU @ 2.20 GHz and 4GB RAM. Meanwhile, the operating system is Windows
10 and the programming language is Java 1.8.0. To implement OPE and Pallier
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Homomorphic encryption, the opetoolbox1 and the pailliertoolbox2 are used in
our experiments. Meanwhile, AES and AHSE are also implemented in our exper-
iments. In addition, the experimental data is synthetic which includes 21 users.
Each user has gender data, age data and salary data, as shown in Table 1. We
will evaluate the performance of our scheme from two aspects: the encryption
cost of the user proxy and the aggregation query cost of users.

6.2 The Encryption Cost of the User Proxy

In this experiment, we will compare the encryption cost of the user proxy in our
scheme with that of the user proxy in [17]. Concretely, in our scheme, the user proxy
needs to encrypt users’ data by double AES encryption, OPE and AHSE, as shown
in Table 2. While In [17], the user proxy adopts DE, OPE and Pallier Homomorphic
encryption to encrypt users’ data. Meanwhile, in this experiment, users’ query sets
in [17] includes all possible queries. To observe the encryption cost of the user proxy,
we measure the encryption time of the user proxy under the different number of
users which varies from 3 to 21. Repeat 10 times for each experiment and calculate
the averages. The experimental result is shown as Fig. 2.

Fig. 2. The user proxy’s encryption cost

From Fig. 2, we can find the user proxy in the two schemes has similar encryption
cost. Through our analysis, we find OPE is most time-consuming in all of the
encryption techniques mentioned in this paper. OPE in our scheme has the same
implementation as OPE in [17], which results in the similar encryption cost of
the user proxy in the two schemes. To further compare the DE cost and HE cost
of the user proxy in the two schemes, we use double AES encryption, AES, ASHE
and Paillier homomorphic encryption to encrypt users’ salary data. Similarly, in
these experiments, the number of users is varied from 3 to 21. Each experiment
is repeated 10 times and the averages are calculated. The experimental results
are shown as Fig. 3.
1 https://github.com/ssavvides/jope.
2 http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox.

https://github.com/ssavvides/jope
http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox
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Fig. 3. The encryption cost of the user proxy

From Fig. 3(a), we can find the deterministic encryption cost of the user proxy
in our scheme is higher than that in [17]. This is because double AES encryption
in our scheme is implemented by two rounds of AES while the deterministic
encryption in [17] is implemented by one round of AES. To defend against the
frequency attack, in our scheme, the extra encryption cost for the user proxy is
acceptable. From Fig. 3(b), we can find the homomorphic encryption cost of the
user proxy in our scheme is much lower than that in [17]. This is because ASHE
used in our scheme is implemented by the symmetric encryption AES. Compared
with the asymmetric encryption (i.e., Paillier homomorphic encryption) used in
[17], ASHE is obviously much more efficient.

6.3 Users’ Aggregation Query Cost

In this experiment, assume users intend to query the sum of their salaries. This
is a typical aggregation query in the encrypted domain, which is supported by
our scheme and [17]. To compare the users’ aggregation query cost in the two
schemes, we measure users’ query time under the different number of users which
varies from 3 to 21. Each experiment is repeated 10 times and the averages are
calculated. The experimental result is shown as Fig. 4.

From Fig. 4, we can find that users’ aggregation query cost in our scheme is
much lower than that in [17]. This is because users’ data is encrypted by ASHE
in our scheme. When aggregating the encrypted data, many calculation items
are automatically offset in our scheme, as discussed in Sect. 3.2. In contrast, in
[17], since users’ data is encrypted by Paillier homomorphic encryption, many
exponent operations are executed when aggregating the encrypted data. This
results in huge time cost. Therefore, users’ aggregation query in our scheme is
much more efficient than that in [17].
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Fig. 4. The users’ aggregation query cost

7 Conclusion

In this paper, we propose an effective scheme to support for query on encrypted
databases on cloud platforms. In our scheme, the possible query encryption pro-
vides a complete query view for users and users can have more query choices.
Meanwhile, the double AES encryption can defend against the frequency attack
in deterministic encryption. Besides, the neighbor rows exchange method can
protect users’ privacy when their data is updated on encrypted databases. The
theoretical analysis in this paper demonstrates the effectiveness of the three
methods of our scheme. Meanwhile, The comparative experiments show that
our scheme has good performance on the encryption cost of the user proxy and
users’ aggregation query cost.
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