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Abstract. With the development of science and technology, the world has
become increasingly closely linked. While enjoying the convenience brought by
the Internet, we are also facing the danger of risk dissemination. This problem
has become more challenging in real-world networks. In this paper, in view of
the outbreak of network threats, such as malware, computer viruses, rumors, etc.
It is particularly important to identify the source of network threats. In this
paper, we have done the following work. Firstly, we draw on the propagation
models from epidemiology and design an algorithm partitioned Jordan Center
(PJC) to locate the multiple propagation sources. Then, by establishing an
extended model originated from propagation sources, we derive the number of
sources of estimation. In order to evaluate the performance of the proposed
method, a series of experiments were carried out in real-world network
topologies. Experimental results show that the method is more accurate than the
existing methods.
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1 Introduction

In today’s increasingly interconnected world, while we enjoy the convenience of the
world, we are also affected by new diffusion risks. For example, the rapid development
of the Internet of Things has made more user contacts more secure. However, we need
to guard against loopholes in information transmission technology. “Intelligent”
Internet of Things devices may be an entry point for them to attack the network.
Similarly, the rapid popularity of social media and mobile Internet devices has enabled
people to easily and quickly access news and other information from social networks
[1–3]. Rumor spread has entered the new media era, which makes the efficiency
and harmfulness of rumor spread reach an unprecedented level. For biological viruses,
the capture of highly pathogenic H5N1 influenza virus always threatens people’s
health. It is essential to identify the location of the source and find the number of the
sources.

Assuming that a threatening message may begin to spread over different sources
and times, after a certain period of time, we observe that nodes on the network are
infected. Due to most real-world networks are complex, most of the previous work on
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source identification was based on single source detection [4, 5] or simple network
topology. However, the multi-source heuristic algorithm proposed in recent years can’t
detect the real source of infection, and the average error is relatively large. For
example, [6] proposes a multi-rumor recognition method to identify multiple sources in
tree networks, which is difficult to implement in large networks.

In this paper, we propose a novel source identification method to overcome the
challenges. First, In the process of information dissemination, we focus on considering
that there is a certain gap between the sources when multiple source nodes propagate.
When the distances between sources are close, too many overlapping nodes make
the same nodes get the same infection, which makes the propagation range smaller.
Second, In the real network, the diffusion in the network is complex in time and space.
For a clearer understanding, we use effective distance [7]. The concept of effective
distance reflects that the small propagation probability between nodes effectively
corresponds to the large distance between nodes. The relative arrival time from the
source to the node does not depend on any parameters, but is linear to the effective
distance between the source and the infected node. In order to determine multiple
sources, we firstly need to partition the infection map to minimize the effective distance
between the source and the infected node. The node that minimizes the maximum
distance to the infected area is considered the source of the propagation.

This paper mainly makes the following contributions: Firstly, we propose a novel
method of partitioned Jordan Center to identify multiple sources. We prove that our
method is convergent. The experimental results show that this method is superior to
other methods. Secondly, by locating the source, we use an effective algorithm to
estimate the source diffusion time. Finally, according to the estimated diffusion time,
we can accurately estimate the number of diffusion sources.

The rest of this paper is organized as follows. Sect. 2 introduces the preliminary
knowledge of the relevant background. Section 3 is the problem formulation of multi-
source identification. Section 4 presents a method of Partitioned Jordanian centers for
identifying multi-source problems. Section 5 evaluates the proposed method in the
actual network topology. Section 6 is related work, and Sect. 7 is a summary of this
paper.

2 Preliminary

In this section, we introduce relevant background knowledge, Propagation models and
distances. Usually in these Propagation models, we divide the research objects into
three categories, each of which has its own state. It mainly includes: the first is the
susceptible state (S). Nodes in this state refer to healthy nodes, which are easy to be
infected, but not yet infected; the second is Infected state (I). Nodes in this state are
infected nodes, which are infectious; the third is Recovered state (R). Nodes in this
state are immunized, not infected, or dead. Specific description in the following section.
A specific meaning of symbols is given in Table 1 below.
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2.1 Propagation Model

Researchers mainly use three propagation models: SIR model, SIS model and SI
model. SIR model considers the recovery process. Nodes are initially sensitive. They
can be infected with the spread of risk and spread the threat to the next node. But the
node can recover and become insensitive. The model deals with infection and curing
processes S ! I ! R. The transmission schematic of SIR is shown in Fig. 1(A). The
susceptible person S appears to be in a healthy state. It changes into the infected person
I through direct contact with the infected person with a certain probability P. Infected
person I regains health status and acquires immunity with the probability of u, thus
becoming restorer R.

In the SIS model, infected nodes may become susceptible again after being cured.
The model represents the process of infection and recover S ! I ! S. The susceptible
node S will be transformed into an infected node with a certain probability p after
contact with the infected node I, and some infected nodes will be restored to a sus-
ceptible node with a certain probability u. The propagation diagram of SIS is shown in
Fig. 1(B).

Table 1. Used notations

Notation Meaning

Psði; tÞ The probability that node i is a susceptible node at time t
PIði; tÞ The probability that node i is the infected node at time t
vði; tÞ Probability of node i being infected by neighboring nodes
lj;i Probability of node j propagating to node i

mði; jÞ Effective distance from node i to node j
a; rðaÞ Path, The sum of the effective lengths along the edge of the path

S
!
; S� Estimated source, Propagation source

Bn;D Infection map, Infected partition

Fig. 1. The propagation diagrams of the three propagation models are (A) SIR (B) SIS (C) SI
from top to bottom.
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In this paper, we adopt SI model. SI model is more convenient and applicable. We
assume that infection spreads at discrete time steps. Each node is initially sensitive, and it
can be infected as the risk spreads. Once a node is infected, it will always be infected. At
time t, the probability that a vulnerable node i is infected by any infected neighbor is v(i,t).
Therefore, we can calculate the probability that node i is a susceptible node at time t is

Psði; tÞ ¼ ½1� vði; tÞ� � Psði; t � 1Þ ð1Þ

Then, we can get that the probability of node i being infected at time t is

PIði; tÞ ¼ vði; tÞ � Psði; t � 1ÞþPIði; t � 1Þ ð2Þ

We use lji to represent the propagation probability of node j to neighbor node i, and
then we can calculate the probability that node i is infected by neighbor node is

vði; tÞ ¼ 1�
Y

j2Ni

½1� lj;i � PIði; t � 1Þ�: ð3Þ

Here, Ni represents the set of neighbors of node i. This model reflects the proba-
bility that any node is in different states at different times. Each time hop can mean one
minute, one hour or one day.

2.2 Definition of Distance

Brockmann and Helbing [7] proposed a new concept to solve geometric problems in
complex propagation processes by the relationship between propagation probability
and effective distance between nodes. The effective distance from a node i to the
neighbor node j is expressed as:

mði; jÞ ¼ 1� log lij ð4Þ

Where lij is represented as the propagation probability from node i to node j. This
formula reflects the small propagation probability from node i to node j is equivalent to
the large distance between nodes. The length of path a ¼ u1; � � � ulf g is defined as the
sum of effective length rðaÞ along the edge of path. The effective distance from any
node i to node j is defined as the length of the shortest path, which is expressed
as:dði; jÞ ¼ mina rðaÞ. We refer to the effective distance from node i to node j as the
distance, denoted by dði; jÞ. Given any set A � V , the maximum distance between node
v and any node j is expressed as:

dðv;AÞ ¼ max
u2A

dðv; uÞ ð5Þ

We call dðv;VeÞ the maximum distance between node v and the infected range of
any v. Nodes with the smallest infection range are called Jordan Center [8].

From the above formula, the Jordanian centrality of a node is considered to be the
maximum distance from that node to any other infected node [9]. The Jordanian Center
represents the node with the smallest Jordanian centrality.
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3 Problem Formulation

Suppose that at time T = 0, there are k sources, and the S� ¼ s1; s2; � � � skf g diffusion
propagation begins at the same time. After a few ticks, n nodes were infected. These
nodes form a connected infected graph Bn, and each infected area is Dið� BnÞ. Let
D ¼ Sk

i¼1 Di be the partition of the infected area, satisfying Di \Dj ¼ ; and i 6¼ j
between partitions. Each partition is a subgraph of the connection of Bn, and the source
node si can be found in each partition. We try to keep the source node si and sj as far
apart as possible. Figure 2 shows a certain distance between source nodes s1 and s2, so
that many overlapping nodes can be avoided between each region. This can increase
the probability of spreading. Assuming the infected node vj 2 Di, the node vj is infected
in a short time. It means that it has a shorter distance to the corresponding source than
to other sources. We consider the minimum of the maximum distance from the infected
node to any other infected node as the source of propagation.

Our aim is to identify the corresponding partition D of a set of propagation sources
S� and infection graph Bn, so as to minimize the objective function value f .

min fD ¼
Xk

i¼1

max
ux2Di=si

dðux; siÞ ð6Þ

4 A Partitioned Jordan Center Method for Identifying
Multi-source Problems

In this section, we propose a partitioned Jordan Center method (PJC) to identify
multiple sources of diffusion and corresponding infected areas. We firstly introduce a
method of network partitioning to export the PJC method. Then, it is used to identify
multiple sources and estimate the number of sources.

Fig. 2. Topological schematic diagram of separated propagation source nodes.
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4.1 Multi-source Network Partition

Given the infected graph Bn and a series of source nodes S� ¼ s1; s2; � � � snf g. The
distance between any two source nodes si and sj satisfies dðsi; sjÞ[ d. If dðsi; sjÞ� d,
the source node is re-selected until the condition is met. In this section, we firstly divide
the infected graph Bn into K infected subgraphs, with the corresponding si as the center
of the partition Di. We know that any node vj 2 Bn should be assigned to the partition
Di where the source si is located. vj must satisfy the following conditions:

dðvj; siÞ ¼ min
st2S

dðvj; stÞ ð7Þ

For any node vj 2 Bn, it needs to correspond vj to the nearest source si. This is
similar to the Capacity Constrained Network-Voronoi Diagram (CCNVD) problem
[10]. In the K-center [8] method, there is also a similar partitioning method. In future
work, a common structure may be used for network partitioning.

4.2 Identifying Multiple Propagation Sources and the Infected Partition

In this section, we propose a partitioned Jordan Center method to identify multiple
diffusion sources. We firstly need to find the partition D that changes the infection
graph Bn, which can minimize the minimum distance from the infected node to the
corresponding partition center. If we randomly select a suitable set of source nodes,
Voronoi partition can divide the network into subnets, so that each node is associated
with its nearest source node. Therefore, Voronoi partition can find a locally optimal Bn

partition. However, to optimize partition D, we need to adjust the center of each
partition to minimize the objective function value f in Eq. (6). We adjust the center of
each partition by choosing a new partition center to minimize the maximum distance
from the partition center to any node in the partition. Detailed partitioning Jordan
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central method such as algorithm 1. The following theorem shows the convergence of
the proposed method.

Theorem 1: The objective function of Eq. (6) is to decrease iteratively mono-
tonously. Therefore, the partitioned Jordan Center is convergent.

Proof: Suppose that Sl ¼ si1; � � � sln
� �

is the sources of estimation in the l times
iteration. We use partitioning method to divide the infected graph Bn into
Dl ¼ Sk

i¼1 D
l
i. In this way, the objective function becomes

f l ¼
Xk

i¼1

max dðSli; uxÞ
ux2Dl

i=S
l
i

ð8Þ

after l iterations.
At the next iteration lþ 1, according to the PJC method, we calculate the center

Dl ¼ Sk
i¼1 D

l
i of each partition again and get Slþ 1 ¼ slþ 1

1 ; � � � ; slþ 1
k

� �
, which satisfies

max dðSlþ 1
i ; uxÞ

ux2Dl
i=S

lþ 1
i

� max dðSli; uxÞ
ux2Dl

i=S
l
i

ð9Þ

Then the target function becomes

f
l ¼

Xk

i¼1

max dðSlþ 1
i ; uxÞ

ux2Dl
i=S

lþ 1
i

ð10Þ

From Eqs. (8) and (9), we noticed that

f
l � f l ð11Þ

We redistribute the infected graph Bn so that the center of each infected partition is
Slþ 1 ¼ slþ 1

1 ; � � � slþ 1
k

� �
. Let each infected node vj 2 Bn be associated with the nearest

central node slþ 1
i , and we get a new partition Dlþ 1 ¼ Sk

i¼1 D
lþ 1
i for Bn. Thus, the

objective function becomes

f lþ 1 ¼
Xk

i¼1

max dðSlþ 1
i ; uxÞ

ux2Dlþ 1
i =Slþ 1

i

ð12Þ

in the iteration lþ 1 times.
Since each node is associated with its nearest central node slþ 1

i , we can know

f lþ 1 � f
l ð13Þ
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From Eqs. (11) and (13), we have

f lþ 1 � f
l � f l ð14Þ

Therefore, the objective function of Eq. (6) is consistently reduced, and our pro-
posed partitioned Jordan Center method is convergent.

4.3 Identifying the Number of Propagation Sources

The heuristic algorithm is used to estimate the number of sources. By using the pro-
posed method of source identification, we can obtain the partition D of Bn which is
consistent with S�. If the number of sources is known, the propagation time T ðkÞ can be
estimated by Eq. (16). In order to estimate the number of sources, we start from 1 and
increase the number of source k in turn, and calculate the corresponding propagation
time T ðkÞ until we find T ðkÞ ¼ T ðk�1Þ. We choose k (or k–1) as the number of diffusion
sources. This is similar to the method [8] in estimating the number of sources.

The propagation time can be determined by the total number of time ticks of
diffusion. Given an arbitrary source, the propagation time can be estimated based on the
number of time hops between the source and the infected node in each region. In
regional Di, according to any source si, any node vj 2 Di can be found. gðsi; vjÞ rep-
resents the sum of the minimum time hops between si and vj, the propagation time of
each region can be estimated as

ti ¼ max gðsi; vjÞ vj 2 Di; i ¼ 1; 2 � � � k��� � ð15Þ

Then the propagation time of the whole infected area is

T ¼ max ti i ¼ 1; 2 � � � kjf g ð16Þ

This process of propagation is actually simplified. In the real world, the propagation
time of different paths with the same hop number is different. Based on SI model, we
have solved this time problem in another article [11]. In this field, many current models
are based on time hops [12].

5 Experiment Analysis

In this section, we make an experimental analysis of the proposed method of Parti-
tioned Jordan Center. We tested our approach on the following network topologies:
Yeast protein-protein interaction network [13], the large-scale web Facebook [14], and
the North American Power Grid [15]. The basic attributes of the networks are listed in
Table 2. We set the propagation probability lij of each edge to follow the uniform
distribution on (0,1). Previous work [16, 17] has proved that the distribution of
propagation probability will not affect the accuracy of SI model. We randomly select
different threat sources that satisfy the conditions to generate the dissemination data as
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the basic fact. Under each parameter setting, our method is used to simulate 100
propagation processes and identify the source of each propagation.

5.1 Evaluation Source Detection Algorithm

In this section, we test source identification methods. In order to compare the perfor-

mance with other methods, we match the estimated source S
!¼ s1

!; � � � sk!
� �

with the
real source S� ¼ s1; s2; � � � skf g. So that the total error distance between them is the
smallest. The average error distance formula is

D ¼ 1
S�j j

XS�j j

i¼1

gðsi; si!Þ ð17Þ

The average error distances of the three real source network topologies are shown
in Table 3. Table 3 shows that the average error distance is very small compared with
other methods. This shows that our method is superior to other methods. In order to
make a clearer comparison, we show a histogram of the average error distance ðDÞ as
shown in Figs. 3 and 4. Frequency is used to express the percentage of test times when
the average error distance is fixed.

We applied the algorithm to the Yeast protein-protein interaction network, the
large-scale web Facebook and the North American Power Grid. As shown in Figs. 3
and 4.

We have made histograms for different cases where the true source S is 2 and 3
respectively. When the source is 2, on the Power Grid, the error range is often active in
the range of 1 to 2 hops, indicating that our method performs well. And with the
Dynamic Age method [4], the average error distance shows 3–5 hops, the maximum
number of errors is 3 hops. Multi-rumor-center (MRC) [18] method shows an average
error range of 3 to 4 hops. The most common error is 4 hops. The K-center [8] method
shows an error range of 1 to 3 hops. On the Yeast network, our method show that the
average error is 2 hops. And with the Dynamic Age method, the average error distance
is 3–4 hops. The average error distance between the Multi-rumor-center method and
the K-Center method is 2–4 hops, and the most experimental results are 3 hops. On the
Facebook network, the most performance of our method is 1–3 hops. And with the
Dynamic Age method, the average error distance shows 3–5 hops. The average error
distance of the Multi-rumor-center method shows 3–4 hops. K-Center method is active
around 2–3 hops, but the most performance is 3 hops.

Table 2. Basic attributes of real networks

Dataset Power Grid Yeast Facebook

Number of nodes 4,941 2,361 45,813
Number of edges 13,188 13,554 370,532
Average degree 2.67 5.74 8.09
Maximum degree 19 64 223
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Similarly, when the source is 3, In any network, the average error of our method is
more 1–3 hops. Therefore, compared with other methods, our method estimates that the
diffusion source is very close to the real source.

5.2 Evaluation of the Number of Sources

In this section, we evaluate the proposed method for estimating the number of sources
and predict the diffusion time. When the number of sources is determined, the prop-
agation time of the source can be estimated. Table 4 shows the average and standard
variance of estimated time. The results show that the mean of estimated time is close to
the true propagation time, and the results of standard deviation are mostly less than 1.
This shows that our method can estimate the real diffusion time of the source.

Fig. 3. When the number of sources is 2, the average error distance of different methods on the
following three networks. (A) Power Grid; (B) Yeast; (C) Facebook

Fig. 4. When the number of sources is 3, the average error distance of different methods on the
following three networks. (A) Power Grid; (B) Yeast; (C) Facebook.

Table 3. Accuracy of multi-source identification

Experiment
settings

Average error distance

Network S�j j PJC Dynamic age MRC K-center

Power grid 2
3

1.600
2.460

3.510
4.626

3.135
4.246

1.750
2.670

Yeast 2
3

2.521
2.632

3.175
3.146

2.710
3.520

2.680
2.733

Facebook 2
3

3.237
3.681

3.950
4.763

3.433
4.667

3.215
4.073
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We simulated experiments on North American Power Grid, Facebook and Yeast
networks to estimate the number of diffusion sources. As shown in Fig. 5. We let
the number of diffusion sources range from 1 to 3. The horizontal axis represents the
estimated number of sources and the vertical axis represents the percentage of
the estimated number of sources in the experimental operation. On the Power Grid
network, when the number of propagation sources is 1, about 78% of the experimental
results can accurately estimate the number of sources. When the number of sources is 2,
more than 80% of the experimental results can accurately estimate the number of
sources. When the number of sources is 3, more than 60% of the experimental results
can accurately estimate the number of sources. Similarly, it is obvious that at least half of
the experiments can accurately identify the number of sources in the other two networks.

Table 4. Accuracy of spreading time estimation

Experiment
settings

Estimated spreading time

Network S�j j T = 4 T = 5 T = 6

Power grid 2

3

4:012� 0:710

4:032� 0:580

5:122� 1:790

5:021� 0:860

5:987� 1:365

6:025� 1:225

Yeast 2

3

4:521� 0:652

4:340� 0:370

5:180� 0:420

5:065� 1:210

5:851� 0:401

5:921� 1:225

Facebook 2

3

4:242� 0:840

4:432� 0:450

5:273� 0:521

5:120� 0:721

5:820� 0:725

5:790� 0:414

Fig. 5. Estimated number of sources in the following different networks. (A) Power Grid;
(B) Yeast; (C) Facebook

5.3 Correlation Between the Real Sources and the Estimated Sources

By the Eq. (6), we detect the correlation between the objective function values on the
Power Grid, Year and Facebook networks. As shown in Figs. 6 and 7 below. When the
number of sources is 2, the distribution of points on the Power Grid shows an obvious
linear relationship. This shows that the objective function values are highly correlated.
On Yeast and Facebook, though there are fewer dots scattered, many dots float smaller
around a line. This shows that the objective function values are also linearly correlated.
Similarly, when the number of sources is 3, the objective function values are linearly
correlated regardless of the network. It shows that we can use the proposed source
detection method to estimate the location of the real source.
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6 Related Work

In large-scale networks, the problem of outbreak threat propagation has become par-
ticularly serious. It becomes very meaningful to identify the source of propagation.
However, most of the work focuses on the identification of single source in tree
networks. Trees do not contain loops, but only a path between any pair of nodes. This
greatly reduces the uncertainty of diffusion and the complexity of propagation, and
further reduces the computational complexity. In real networks, threat propagation
mostly involves multi-source problems, and the network is more complex. Diffusion
processes of different sources are usually interactive and have uncertainties in the
propagation process.

We mainly compare with the following multi-source identification methods. Fioriti
et al. [4] proposes a dynamic aging method, which takes advantage of the correlation
between eigenvalues and the “age” of nodes. The oldest nodes associated with the
largest eigenvalues are considered diffusion sources. It essentially calculates the
reduction of the maximum eigenvalue of the adjacent matrix after removing nodes.
This method is based on the prior knowledge of the number of diffusion sources, and
this method is not suitable for large-scale network source identification. Luo et al. [18]
identifies multiple sources by expanding a single rumor center. For multiple sources,
they propose a two-step method. They divide all infected nodes into different partitions
by using Voronoi segmentation algorithm [19]. We need to calculate the number of
different propagation paths from the sets. This method is difficult to use in large
networks. The K-center [8] method is also a concept of introducing effective distances,
using a Voronoi-like partitioning method to partition the network.

Fig. 6. When the number of sources is 2, the correlation between the objective function values is
in the following network. (A) Power Grid; (B) Yeast; (C) Facebook

Fig. 7. When the number of sources is 3, the correlation between the objective function values is
in the following network. (A) Power Grid; (B) Yeast; (C) Facebook
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7 Conclusion

Most of the current technologies are based on tree networks, and few studies are
focused on multi-source problems. In this paper, a novel PJC method is proposed to
identify multi-source problems and estimate the number of sources. Considering that
there are many overlapping nodes when the source nodes are very close, the same
nodes are similarly infected. This makes the dissemination scope is smaller, and it is
not suitable to study this propagation mode in large-scale networks. Therefore, this
paper considers that there is a certain distance between the source nodes, which can
avoid too many overlapping nodes. This can increase the probability of propagation.
The experimental results show that our method is very effective.
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