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Abstract. In recent years, many revocable group signatures schemes
were proposed; however, the backward security, which can disable a
revoked signer to generate group signatures pertaining to future time
periods, was not fully realized through those schemes. In this paper, we
present a security model with the definition of backward security and
propose a revocable group signatures scheme that is more efficient than
previous ones, especially in Sign and Verify algorithms, which are per-
formed much more frequently than others. In addition, considering the
heavy workload of group manager in original group signatures, we sepa-
rate a group into groups by employing a decentralized model to make our
scheme more scalable, and thus more practical in real-life applications.

Keywords: Group signature · Revocation · Backward security ·
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1 Introduction

As a widely recognized extension to digital signatures, Chaum and Heyst pro-
posed group signatures for the first time in 1991 [15]. With group signatures,
members of a group are able to sign messages on behalf of the group while main-
taining anonymity [4]. The verifier can only verify if the signature was generated
by a member but cannot specify the identity of the signer. When necessary, the
group manager is able to look into the signature to track the identity of the signer
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(traceability [4]). At the same time, group signatures have non-frameability [5],
that is, even the group manager cannot forge signatures of group members. These
important features of group signatures have attracted many real-life applica-
tions like network identity escrow [26], online anonymous electronic voting elec-
tion [35], anonymous certificate systems [14], trusted computing [12], in addition
to wireless MESH networks [22] and VANET networks [44].

After group signatures were proposed [6–8,10,23], providing revocation is
regarded as a major research topic, that is, an authority can revoke the member-
ship of a user. This is called revocable group signatures and it is a very important
feature for real-life applications as in many cases, a system must clearly identify
the validity of a member in a timely manner to avoid any potential threat.

With revocable group signatures, there are several obvious ways of revoking a
member’s signature. For example, when revoking a member, the group manager
can publish a new public key and provide a new signing key to each valid member,
except those who have been revoked. This approach is not suitable in practice
because it requires the generation of a new key and updating all members and
verifiers for every such revocation. An alternative way is to revoke the member
and distribute a message to existing signers. As a consequence, the signer must
then prove its validity when signing. Unfortunately, this is still not considered a
suitable method for revocation in real-life applications, as existing members must
track the revocation message. In a word, the difficulty of providing revocation to
group signatures is for the verifier to publicly confirm the status of revocation
for an anonymous signer. Furthermore, the cost of such revocation is relative to
the number of revoked signers so that both its communication and computation
overhead can be a burden for the group manager and a performance bottleneck
of the system.

To overcome such difficulties, there are some more in-depth attempts and
they can be classified as follows.

– Signers are explicitly checked by the verifier for their revocation status [9,11,
13,14,16,19,24,28,32,36,40,41,45].

– Revoked signers are not allowed to generate a signature to pass the verifica-
tion; in this case, an explicit revocation check is not necessary [1,2,20,25,29–
31,34,37–39,42].

And in the following subsection, we go through these two types of attempts in
more details.

1.1 Related Works

In earlier group signature schemes with revocation, both the signing cost and
the verification cost depend on the number of revoked members. In 2002,
Camenisch et al. [14] proposed a method based on dynamic accumulator. It
maps a set of values to a fixed-length string and allows for a valid membership
certificate. However, this approach requires existing members to track revoked
users, therefore increasing existing member’s workload.
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Brickell et al. propose a simple revocation mechanism in 2003 [11]. It is called
Verifier-Local Revocation (VLR). Its formal definitions are given by Boneh and
Shacham [9] and some extensions to it were proposed in [32,36,45]. In these
schemes, the group member maintains a revocation list. The information of the
revoked members is only sent to the verifier for verification, the signing cost
is not relevant to the number of revoked group members, but the revocation
list is updated every time when the group member is revoked. Therefore, the
verification overhead increases as the number of revoked members increases.
Recently, some VLR-type schemes have achieved sub-linear/constant verification
costs [28,40,41]. However, they haven’t considered backward unlinkability, that
is, there are linkable parts in signatures to efficiently carry out verifications.

In 2012, a scalable scheme of the second type was presented by Libert, Peters
and Yung (LPY) [31]. In this scheme, a ciphertext of broadcast encryption is
periodically published while non-revoked members can decrypt this ciphertext
and prove that they haven’t been revoked through such decryption. As revoked
signers cannot decrypt the ciphertext, they cannot generate the signature that
passes the verification at early stage. For such schemes, in addition to prove its
membership of the group, the signer also needs to prove that it has not been
revoked. As follow-up works of the LPY scheme [1,2,29,30,37,42], revocable
group signatures with compact revocation list have also been proposed.

In recent years, Ohara et al. [39] proposed an efficient revocable group signa-
tures scheme to retain a constant revocation check complexity by employing the
Complete Subtree (CS) method in LPY construction [31]. In this scheme, each
group member is assigned to the leaf node of a tree. Instead of the identity-based
encryption used in LPY, Ohara et al. uses the BBS signature scheme [21] in CS
method, that is, signatures of nodes are written to a revocation list (RLt), where
signatures of revoked members are not in the list at a revocation epoch t. Thus,
a non-revoked member can prove that its signature is in the list. In 2017, based
on the method presented by Ohara et al. [39], Emura et al. [20] proposed a new
revocable group signatures scheme with time-bound keys, where the notion of
time-bound keys (TBK) is introduced by Chu et al. [16], that is, each signing key
is given an expiry time. In 2018, Emura et al. [25] proposed and implemented a
revocable group signatures scheme with scalability based on simple assumptions.

However, for security models of schemes that do not allow revoked signers
to generate signatures to pass the verification, backward security is not suffi-
ciently considered. We believe it is a security feature which is required to be
explicitly defined, especially for revokable group signatures schemes relied on
revocation periods. In our definition of backward security, capabilities and win-
ning conditions of adversaries are different from other security features. When an
adversary obtained private keys and credentials of all group members at a time t,
he/she is able to generate a valid group signature for a revoked member who was
revoked within t∗ ≤ t − 1. This security feature thus ensures the rationality of a
fact that when verifiers verify group signatures, it is not necessary for them to
download RLt.
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In terms of performance, considering the fact that both Sign and Verify are
the most frequently used algorithms for group signatures, although the above
schemes [16,19,40] perform well under the random oracle model, to further
improve their performance is still a good motivation for the practical application
of group signatures. So this is also one of the targets of our proposal.

In addition, for previous revokable group signatures schemes [15], the group
manager is responsible for issuing certificates to group members and periodically
updating the revocation list for signers to download. This is inevitably a bot-
tleneck for the deployment of group signatures at scale. Therefore, it is another
concern of this work as to improve the system model of previous revokable group
signatures schemes.

1.2 Our Contributions

Targeting at defects of existing work, we present a new revocable group signa-
tures scheme in this paper. Contributions of our work are summarized as follows.

– Our scheme realizes the backward security, which disables a revoked signer
to generate group signatures pertaining to future time periods. This helps
complete the security model for group signatures.

– Our proposal allows deployments in a much larger scale as with its decen-
tralized design, the group manager are freed from maintaining the revocation
list while the trusted third party can be freed from the generation of group
member certificates.

– Both Sign and Verify operations are highly optimized with our proposal.
As both operations are dominating, we have therefore cut the computation
overhead significantly.

– Security features, such as backward security, non-frameability, traceability
and anonymity are fully guaranteed as our scheme is constructed with the
XDH, DL and q-SDH assumptions.

Other sections are organized as below. In Sect. 2, we introduce basic knowl-
edge of cryptography for our work. In Sect. 3, we give definitions of our scheme,
its security model and our purposes. We then propose a new group signatures
scheme in Sect. 4. Section 5 conducts security analyses and certifications. Com-
parisons between the proposed scheme and other existing schemes are made
in Sect. 6. Finally, Sect. 7 concludes our work.

2 Preliminaries

In this section, we review bilinear groups, the complexity assumptions which our
scheme relies on, complete sub-tree methods, and BBS+ signatures.
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2.1 Bilinear Groups and Complexity Assumptions

Let G1 and G2 be cyclic groups of prime order p, and g1, g2 be generators of G1

and G2, respectively. Let GT be a multiplicative cyclic group with the same order,
and define parBilinear = (p,G1, G2, GT , e, g1, g2) as the set of pairing group
parameters. Bilinear pair e(G1, G2) → GT is a map and it satisfies properties
below:

– Bilinearity: e(ga
1 , gb

2) = e(g1, g2)ab for all a, b ∈ Zp, any g1 ∈ G1 and g2 ∈ G2.
– Non-degeneracy: e(g1, g2) �= 1.
– Computability: The function e is efficiently computable.

Definition 1 (The Discrete Logarithm assumption (DL)). The DL assumption
holds in G1 if the probability below is negligible in security parameter κ for all
adversaries A and all parameters parBilinear:

AdvDL
A (κ) = Pr[x ← Zp;u = vx, v ← G1 : A(u, v, parBilinear) → x]

Definition 2 (The Decisional Diffie-Hellman assumption). The DDH assump-
tion holds if the probability below is negligible in security parameter κ for all
adversaries A:

AdvDDH
A (κ) = Pr[A(u, uα, uβ , z) = 1|z = uα·β ] − Pr[A(u, uα, uβ , z) = 1|z = uγ ]

Definition 3 (The eXternal Diffie-Hellman assumption). Let e : G1×G2 → GT

be an asymmetric bilinear map, if the DDH assumption is hard in group G1,
then the XDH assumption will hold.

Definition 4 (The q-Strong Diffie-Hellman assumption). The q-SDH assump-
tion holds if the probability below is negligible in security parameter κ, for all
adversaries A and all parameter sets parBilinear:

Advq−SDH
A (κ) = Pr[x ← Zp; g

x
1 , gx

2

1 , ..., gx
q

1 ← G1; g
x
2

← G2 : (gx1 , gx
2

1 , ..., gx
q

1 , gx2 , parBilinear) → (g
1/(x+c)
1 , c ∈ Zp)]

2.2 BBS+ Signature

The BBS+ signature scheme [21] is introduced as follows:
Given parBilinear = (p,G1, G2, GT , e), let g0, g1, ..., gL, gL+1 be the genera-

tors of G1 and h be a generator of G2.

Key Generation: Select γ ← Zp randomly and let w = hγ . The secret key
is sk = γ and the verification key is vk = w.
Signing: For message (m1, ...,mL), choose η, ζ ← Zp randomly and compute
s = (g0g

ζ
1g

m1
2 ...gmL

L+1)
λ where λ = (η+γ)−1. Let the signature be σ = (s, η, ζ).

Verifying: For signature σ = (s, η, ζ) and message (m1, ...,mL), if
e(s, hηvk) = e(g0g

ζ
1g

m1
2 ...gmL

L+1, h), then the output is 1, otherwise it is 0.

This BBS+ signature scheme has unforgeability against chosen message
attack (CMA) under the q-SDH assumption [8].
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2.3 Complete Sub-tree Methods

In this section, we briefly introduce the Complete Subtree method [18]. Let N
be the set of all signers and R ⊂ N be the set of revoked signers. With the CS
method, N \ R is divided into m disjoint sets, that is, N \ R = S1 ∪ ... ∪ Sm,
where m = O(R · log(N \ R)).

Definition 5 (Complete Subtree Algorithm). When a signer with index i is
revoked at time t, the Complete Subtree algorithm takes the binary tree BT and
a set of revoked signers Rt as inputs, where i ∈ Rt, and outputs a set of nodes.
The description of CS is stated below.

CS(BT, Rt)
X,Y ← ∅
Add Path(i) to X
∀x ∈ X
If xleft /∈ X, then add xleft to Y;
If xright /∈ X, then add xright to Y;
If | RLt | = 0, then add root to Y;
Return Y;

In our scheme, a private key is assigned to each node of the binary tree and
each user is assigned to a leaf node of the binary tree. Let {n0, n1, . . . , nl} be the
path from the root node to the leaf node where l is the height of the complete
binary tree. The user then gets a key associated with each ni ∈ {n0, n1, . . . , nl}
and a ciphertext is computed by keys of nodes. Let Θ = {n′

0, n
′, . . . , n′

m} be a
set of nodes and their corresponding keys are used for encryption. If the path
of a user is {n0, n1, . . . , nl}, which is indicated as the authorized receiver, then
there is a node ε such that ε ∈ {n0, n1, . . . , nl}∩{n′

0, n
′, . . . , n′

m}. Therefore, the
user can decrypt the ciphertext using this private key corresponding to node ε.

In the proposed scheme, the Revoke and Update algorithms are constructed
with the complete subtree method to ensure that non-revoked group members
can generate valid signatures.

3 Definition of the Group Signatures Scheme and the
Security Model

The model of our scheme is presented in Fig. 1. It consists of four entities, i.e., a
trusted authority (TA), the group manager (GM), group members and verifiers.
Their properties are as follows:

Trusted Authority: In our scheme, The TA is responsible for maintaining sys-
tem global security parameters and is trusted. If a dispute needs to be resolved,
the TA has the ability to trace real identities of group members. After revealing
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the actual identity, the TA can revoke malicious users and renew the revocation
list (RL) which contains a set of revoked identities and a set of non-revoked
tokens. We assume the revocable group signatures scheme that has its lifetime
divided into epochs for revocation while at the beginning of which the trusted
authority updates its revocation list.

Group Members

Trusted Authority

Verifier

Group Manager

Group Members

Group Manager

GROUP 1 GROUP N

Fig. 1. The model of our scheme.

Group Manager: In our scheme, when a user wants to join a group, the
GM is given the ability to generate and issue a group certificate to the user.
For each group member, the GM is responsible for helping them to update
the newest non-revoked tokens at a new epoch.
Group Member: Before being a group member, the user should register with
TA to obtain a tag which helps him to get the non-revoked token. After joining
a group, the group member is able to anonymously sign messages on behalf
of the group with his secret signing key, group certificate and non-revoked
token, where the non-revoked token can be updated periodically from GM.
Verifier: The verifier can verify signatures using the global public parameters
and the group public key from TA or GM. When necessary, it can also forward
the group signature to TA to trace a group member.

Next, we give definitions of our scheme which has seven probabilistic
polynomial-time algorithms as shown in Fig. 1. Then we show security prop-
erties of our scheme.
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3.1 Definitions of Our Scheme

In our proposal, the revocable group signatures scheme is made up of the fol-
lowing eight algorithms/protocols.

(1) KeyGen algorithm
KeyGen(λ): Every entity in our scheme performs this algorithm.

– TAKg(λ): TA executes this algorithm at the setup stage with a security
parameter λ ∈ N as the input to produce the global public key gpk, the
secret tracing key tkTA and the non-revoked token secret key rkTA. After
such key generations, TA then publishes gpk.

– GMKg(gpk): Taking gpk as the input, it generates the secret key skGM and
the group public key pkGM of the group manager.

– UKg(gpk): Every new user before interacting with TA and GM executes this
algorithm. Taking gpk as the input, it generates the secret signing key skM

and the personal public key pkM for a user.

(2) Register protocol
Register(User:(skM , pkM ),TA:(BinaryTree)): Before joining a group, each
user needs to interact with TA to prove the knowledge of private key skM with
some zero-knowledge proof protocol. TA will then assign a tagi to user i.

(3) Join protocol
Join(User:(gpk, skM , pkM ),GM:(gpk, pkGM , skGM ,RLt)): It is interactive
between the group manager and a user when the latter turns into a member.
For the first time when a user joins a group, this protocol terminates with the
user i obtaining a group membership certificate gCerti. It is to be noted that
any revoked member in the revoked user set Rt is not allowed to join a group.

(4) Update algorithm
For each revocation epoch, group members need to update their non-revoked
tokens by communicating with the GM giving an assumption that the GM can
obtain the current revocation list RLt.
Update(Member:(tag),GM:(RLt)): At a revocation epoch t, a member i sends
a request to the GM to obtain a new non-revoked token. When receiving such
request, the GM checks if member i is in Rt. If not, the GM forms a token
tokeni,t from the set Φ in RLt according to the member’s tagi, and then returns
it to the member.

(5) Sign algorithm
Sign(gpk, t, tokeni,t, gCerti, skM ,msg): When being given an epoch t with an
updated tokeni,t, a group membership certificate gCerti, a secret signing key
skM , and a message msg, this algorithm will generate a group signature σ.

(6) Verify algorithm
Verify(σ,msg, t, gpk, pkGM ): When being given a signature σ, a revocation
epoch t, a message msg, the global public key gpk, and the group public key
pkGM , this deterministic algorithm will output either 0 (if invalid) or 1 (if valid).
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(7) Trace algorithm
Trace(gpk, tkTA,RLt,msg, σ): This deterministic verifiable algorithm traces a
signer by taking gpk, the tracing key tkTA, RLt, and the message-signature pair
(msg, σ) as inputs while returning the identity of this signer i.

(8) Revoke algorithm
Revoke(gpk, rkTA, t,Rt): This algorithm allows TA to generate an updated
revocation list RLt = {t,Rt, Φ = {tokeni,t}m

i=0} for a new revocation epoch
t, where the token set Φ has all tokens of non-revoked users. It accepts the set
Rt of identities of revoked members for gpk, rkTA and revocation epoch t as
inputs while it outputs the revocation list RLt for epoch t.

3.2 The Security Model

Here, we introduce security properties of our scheme. First, notations and the
oracles used in the definitions are given as follows:

Oa−join: The adversary A executes Join algorithm with honest group manager,
and the member that collude with the adversary is added to the group. Then the
number of members is incremented and adds the information of new member to
a registration table Reg.

Ob−join: The adversary A executes Join algorithm while colluding the group
manager (this member does not collude with the adversary). Then the num-
ber of members is incremented and adds the information of new member to a
registration table Reg.

OAddM: By calling this oracle with an argument, an identity i, the adversary can
add i to the group as an honest user where HM is the set of honest members. It
also picks a pair of personal public and private keys (skM,i, pkM,i) for i. It then
executes the Join protocol (on behalf of i). When finished, it adds the information
of i to the registration table Reg. The calling adversary then receives pkM,i.

OSign: It receives a query that is a message msg and identity i and returns ⊥ if
i /∈ HM, and otherwise returns σ for the member i and epoch t.

OTrace: The adversary A can call this oracle with arguments, a message msg and
signature σ, to obtain the output of the Trace algorithm on msg, σ, computed
under the tracing key tkTA given that σ was not previously returned as a response
for any query to OCh.

OCh: On input i0, i1 ∈ HM, and a message msg, the challenge oracle computes
signature σ by performing the Sign algorithm with the private signing key of
ib, where b ∈R {0, 1}, and returns σ. The oracle keeps as record the message-
signature pair to make sure that the adversary does not call the tracing oracle
on it later.

OMSK: On input i, the member secret key oracle reveals (skM,i, pkM,i) and adds
i to the set CM of corrupted members.
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OWReg: On input i, the oracle allows the adversary to modify member i in the
registration table Reg.

ORReg: On input i, the oracle allows the adversary to read member i in the
registration table Reg.

ORRL: On input i and t∗, the oracle allows the adversary to read member i of
the revocation List RLt∗ at an epoch t∗.

OUpdate: At an epoch t, the adversary can call this oracle with an argument, an
identity i, to obtain the corresponding non-revoked token tokeni,t.

ORevoke: It revokes a member from the group. It receives a query of member
identity i ∈ HM and increments t, adds i to RLt and updates RLt.

Next, we define the anonymity with backward unlinkability (BU-anonymity),
which guarantees that no adversary (who does not have tkTA) can distinguish
if signers (even if the signer has been revoked) of two group signatures are the
same.

Definition 1: BU-Anonymity is defined by the following game.
Attack-Game Gamebu−anon

A (λ):

b ∈R {0, 1}
(gpk, pkGM , skGM , rkTA, tkTA) ← KeyGen(λ)
CM ← ∅,HM ← ∅,RLt ← ∅
d ← A(gpk, pkGM , skGM : OCh,Ob−join,OWReg,OMSK,OTrace,ORevoke,
OUpdate,OSign)
If d = b return 1 else 0.

The advantage of the adversary A against this game is Advbu−anon
A (λ) =

| Pr[Gamebu−anon
A (λ)] − 1/2 | . We say that our scheme satisfies BU-anonymity

if Advbu−anon
A (λ) is negligible in λ for any probabilistic polynomial-time

algorithm A.
Next, we define non-frameability which guarantees that no adversary (who

can corrupt the GM and the TA) is able to produce group signatures with its
tracing result being an honest user.

Definition 2: Non-frameability is defined by the following game.
Attack-Game Gameframe

A (λ):

(gpk, pkGM , skGM , rkTA, tkTA) ← KeyGen(λ)
CM ← ∅,HM ← ∅,RLt ← ∅
(msg, σ, t,RLt) ← A(gpk, pkGM , skGM , tkTA : Ob−join,OWReg,OSign,
ORevoke,OUpdate)
If Verify(gpk, pkGM ,msg, σ, t) = 0, return 0.
i ← Trace(gpk, rkTA, t,RLt,msg, σ)
If i ∈ HM, return 1.
Reurn 0.
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The advantage of the adversary A against this game is Advframe
A (λ) =

Pr[Gameframe
A (λ) = 1]. We say that our scheme satisfies non-frameability if

Advframe
A (λ) is negligible in λ for any probabilistic polynomial-time algorithm A.

Next, we define traceability which guarantees that no adversary (who does
not have skGM ) can generate a valid group signature with its tracing result being
outside of the set of non-revoked adversarially-controlled users.

Definition 3: Traceability is defined by the following game.
Attack-Game Gametrace

A (λ):

(gpk, pkGM , skGM , rkTA, tkTA) ← KeyGen(λ)
CM ← ∅,HM ← ∅,RLt ← ∅
(msg, σ, t) ← A(gpk, pkGM , tkTA : Oa−join,OAddM,OMSK,ORReg,OSign,
ORevoke,OUpdate)
If Verify(gpk, pkGM , t,msg, σ) = 0, return 0.
i ← Trace(pkGM , tkTA, reg,msg, σ,RLt)
If i /∈ HM∪CM\Rt, return 1.
Reurn 0.

The advantage of the adversary A against this game is Advtrace
A (λ) =

Pr[Gametrace
A (λ) = 1]. We say that our scheme satisfies traceability if

Advframe
A (λ) is negligible in λ for any probabilistic polynomial-time algorithm A.

Next, we define backward security which guarantees that no adversary (who
does not have rkTA) can forge a valid group signature with its tracing result
being in the set of revoked users.

Definition 4: Backward Security is defined by the following game.
Attack-Game Gamebackward

A (λ):

(gpk, pkGM , skGM , rkTA, tkTA) ← KeyGen(λ)
CM ← ∅,HM ← ∅,RLt ← ∅
(msg, σ, t) ← A(gpk, pkGM , skGM , tkTA : Oa−join,OAddM,OMSK,OSign,
ORRL,ORevoke,OUpdate)
If Verify(gpk, pkGM , t,msg, σ) = 0, return 0.
i ← Trace(pkGM , tkTA, reg,msg, σ,RLt)
If i ∈Rt, return 1.
Reurn 0.

The advantage of the adversary A against this game is Advbackward
A (λ) =

Pr[Gamebackward
A (λ) = 1]. We say that our scheme satisfies backward secu-

rity if Advbackward
A (λ) is negligible in λ for any probabilistic polynomial-time

algorithm A.

4 The Proposed Group Signatures Scheme

In this section, we present details of our group signatures scheme. This scheme
is based on an assumption that interactions between new users and the TA/GM
happen through a secure channel.
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KeyGen(λ): In this algorithm, TA generates a private key for itself and param-
eters for the system. In addition, GM and all the users also generate private key
pairs for themselves. Details are stated below:

– TAKg(λ): TA carries out steps below with the security parameter λ:
• Choose an asymmetric bilinear group pair (G1 = 〈g1〉, G2 = 〈g2〉) of prime

order p ∈ {0, 1}λ and a pairing function e : G1 × G2 → GT .
• Select ġ1, g̈1 ← G1 randomly and a secure cryptographic hash function H

where H(·) : {0, 1}∗ → Zp.
• Select a secret key γ ← Zp randomly, and issue (rkTA, pkTA) = (γ, gγ

2 ).
• Select x′

1, x
′
2, y

′
1, y

′
2 ← Zp randomly, and compute ϕ1 = ġ

x′
1

1 g̈
x′
2

1 , ϕ2 =
ġ

y′
1

1 g̈
y′
2

1 .
• Select a secret key ν ← Zp randomly, and compute u = ġν

1 . Let tkTA = ν
be the tracing key of the TA.

• Keep rkTA and tkTA secret.
• Publish global public system parameters gpk = (p,G1, G2, GT , e, g1, g2,

ġ1, g̈1, ϕ1, ϕ2, u,H, pkTA).
– GMKg(gpk): Each GM takes steps below:

• Select a secret key ω ← Zp randomly, and compute (skGM , pkGM ) =
(ω, gω

2 ). pkGM is the group public key and skGM is the private key of
GM.

• Keep skGM secret.
– UKg(gpk): Users take steps below:

• Select a secret key χ ← Zp randomly, and compute (skM , pkM ) = (χ, g̈χ
1 ),

χ is the private key of a user.
• Keep skM secret.

Register(User:(skM , pkM ),TA:(BinaryTree)): This protocol is based on an
assumption that interactions between new users and the TA is carried out in
a secure channel.

– Users interact with the TA with some zero-knowledge proof protocol to obtain
the tag used for getting the non-revoked token later.

• In order to prove the knowledge of the secret signing key skM,i = χi, the
user i randomly chooses γχ ← Zp, and computes Rχ = g̈

γχ

1 , c = H(gpk ‖
pkM,i ‖ Rχ) and sχ = γχ + c · χi.

• Through the above operations, the user sends the proof (pkM,i, c, sχ) to
TA.

• TA computes Řχ = g̈
sχ

1 pkc
M , and checks whether that c = H(gpk ‖

pkM,i ‖ Řχ). The proof is valid if positive and this means that user i
knows the knowledge of the secret key χi.

– According to the CS method in Sect. 2.3, the TA will give user i an available
leaf node νi of the binary tree and a path ρi := 〈n0 = ε, n1, . . . , nl = νi〉
connecting the leaf νi to the root ε. The TA will then send a path ρi to user
i. Here we name ρi as tag tagi of i, which is used to request the non-revoked
token from the GM.
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– Next, the TA will carry out the Revoke algorithm to update the set of non-
revoked tokens and store {i, pkM,i, tagi, ∗} in the registration table Reg, where
the symbol ∗ denotes the group membership certificates of user i and it will
be generated by the Join protocol.

Join(User:(gpk, skM , pkM ),GM:(gpk, pkGM , skGM ,RLt)): This protocol is inter-
active between the GM and users.

– To obtain a group membership certificate from the GM, at first, the user need
to perform a zero-knowledge proof protocol as described in Register to prove
the knowledge of its secret signing key.

– Next, the user sends a node ε ∈ tag to the GM (The node ε was determined
in Update).

– After receiving the node ε, the GM takes steps below.
• Checks whether user i exists in the Rt. If positive, move on; otherwise,

abort this step.
• Compute the group membership certificate gCerti = (g1ġε

1 ·
pkM,i)1/(skGM+η), where η ∈R Zp.

• Send (gCerti, η) to the user.
• Send a copy of the user’s (i, pkM,i, gCerti) to the TA who will update the

registration information of user i with the copy.
• After receiving the response (gCerti, η) from the GM, user i checks if

e(gCerti, pkGM · gη
2 ) = e(pkM,i, g2) · e(g1ġε

1, g2). If yes, the user accepts its
group certificate gCerti = (g1ġε

1g̈
χ
1 )1/(ω+η).

Sign(gpk, t, tokeni,t, gCerti, skM ,msg): Upon entering msg ∈ {0, 1}∗, the GM
signs it with SIGN and sends the signature with msg. Details are stated below:

– Select ζ ← Zp randomly, and output: ψ1 = gCert · uζ , ψ2 = tokenε,t · gζ
1 ,

ψ3 = ġζ
1 , ψ4 = g̈ζ

1 , ψ5 = (ϕ1ϕ
h
2 )ζ , where h = H(ψ1 ‖ ψ2 ‖ ψ3 ‖ ψ4). Let

α = ζ · η and β = ζ · η′.
– Compute the signature of knowledge (SPK) as below. V = SPK{(ζ, α, β,

ε, χ, η, η′):
e(ψ1, g2)−ηe(g̈1, g2)χe(u, g2)αe(u, pkGM )ζe(ġ1, g2)ε = e(ψ1, pkGM )/e(g1, g2),
e(ψ2, g2)−η′

e(g̈1, g2)te(g1, g2)βe(g1, pkTA)ζe(ġ1, g2)ε = e(ψ2, pkTA)/e(g1, g2),
ψ3 = ġζ

1 ,ψ4 = g̈ζ
1 ,ψ5 = (ϕ1ϕ

h
2 )ζ}(msg)

The SPK is computed using the following steps.
• Pick blind factors rα, rβ , rζ , rε, rχ, rη, rη′ ← Zp and compute:

R1 ← ġ
rζ

1

R2 ← g̈
rζ

1

R3 ← (ϕ1ϕ
h
2 )rζ

RgCert ← e(ġ1, g2)rεe(ψ1, g2)−rηe(g̈1, g2)rχ · e(u, g2)rαe(u, pkGM )rζ

Rtoken ← e(ġ1, g2)rεe(ψ2, g2)−rη′ e(g̈1, g2)t · e(g1, g2)rβ e(g1, pkTA)rζ

• Compute c = H(msg ‖ ψ1 ‖ ψ2 ‖ ψ3 ‖ ψ4 ‖ ψ5 ‖ R1 ‖ R2 ‖ R3 ‖ RgCert ‖
Rtoken).
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• With results above, values below are computed.
sα ← rα + c · α
sβ ← rβ + c · β
sζ ← rζ + c · ζ
sη ← rη + c · η
sη′ ← rη′ + c · η′

sχ ← rχ + c · χ
sε ← rε + c · ε

The group signature is σ = (c, sα, sβ , sη, sζ , sη′ , sχ, sε, ψ1, ψ2, ψ3, ψ4, ψ5).

Verify(σ,msg, t, gpk, pkGM ): The verifier executes Verify to validate the
received message (msg, σ). Details are stated below:

– Compute values below.
ŘgCert ← e(ġ1, g2)sεe(ψ1, g2)−sηe(g̈1, g2)sχe(u, g2)sαe(u, pkGM )sζ (e(g1, g2)/
e(ψ1, pkGM ))c

Řtoken ← e(ġ1, g2)sεe(ψ2, g2)−sη′ e(g1, g2)sβ e(g1, pkTA)sζ (e(g̈t
1g1, g2)/e(ψ2,

pkTA))c

Ř1 ← ġ
sζ

1 ψ−c
3

Ř2 ← g̈
sζ

1 ψ−c
4

Ř3 ← (ϕ1, ϕ
h
2 )sζ ψ−c

5 , whereh = H(ψ1 ‖ ψ2 ‖ ψ3 ‖ ψ4).
– Check whether c = H(msg ‖ ψ1 ‖ ψ2 ‖ ψ3 ‖ ψ4 ‖ ψ5 ‖ Ř1 ‖ Ř2 ‖ Ř3 ‖

ŘgCert ‖ Řtoken). The verifier will accept the message if the equation holds;
otherwise the message will be rejected.

Trace(gpk, tkTA,RLt,msg, σ): It is possible to identify the actual signer with
the valid group signature σ on message msg. The steps are as follows.

– Compute the group certificate gCert = ψ1/ψtkT A
3 .

– Look up gCert in the registration table and retrieve its registration infor-
mation {i, pkM,i, tagi, gCert}. If matched, return i. Otherwise, output 0 and
abort with a failure.

Revoke(gpk, rkTA, t,Rt): In general, the TA periodically updates RLt; or it
updates when a member is revoked. Meanwhile, the TA will also update the
non-revoked token set Φ, and the revoked user set Rt with an epoch t. Details
are presented below.

– Determine the non-revoked node set Θ = {n0, n1, . . . , nm}, where m is the
number of non-revoked users, with the CS covering algorithm.

– For i = 1 to m, select η′
i ← Zp randomly, and output the non-revoked token

(tokeni,t = (g1ġni
1 g̈t

1)
1/(rkT A+η′

i), η′
i).

– Send the updated RLt = {t,Rt, {tokeni,t}m
i=0, Θ} to each GM via an authen-

ticated and secure channel.
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Update(Member:(tag),GM:(RLt)): Group members periodically update their
non-revoked tokens from the GM. Interactions between group members and the
GM are presented below.

– The member forwards pkM and tag to GM.
– Upon receiving pkM and tag, the GM performs steps as follows:

• Find out if member i exists in Rt. If no, move on; otherwise, abort.
• Select a node ε from the intersection of the tag and the node set Θ, as in

Sect. 2.3.
• Search in the non-revoked token set Φ = {tokeni}m

i=1 in RLt for tokenε,t

corresponding to node ε.
• Encrypt the selected tokenε,t and ε for the member.

– After the response is received, the member checks if e((g1ġε
1g̈

t
1)

1/(rkT A+η′
i),

pkTA · gη′
2 ) = e(g̈t

1, g2) · e(g1ġε
1, g2). If yes, the member accepts it.

5 Security Analyses

Here, we discuss the security of our scheme. That is, we explain that our scheme
satisfies backward security, BU-anonymity, non-frameability, traceability defined
in Sect. 3.1. For backward security, the attack on backward security is to fake a
BBS+ signature as a non-revoked token. Therefore, the security against back-
ward security attacks can be simplified as the unforgeability of the BBS+ signa-
ture scheme, which was proved in [21]. For traceability, the adversary is essen-
tially concerned with faking a valid group membership certificate. This also can
be reduced to the unforgeability of the BBS+ scheme. For security against fram-
ing attacks, in the join protocol of our proposal, a user chooses its secret signing
key skM while the GM does not know it. Therefore, from a forged signature
output by the adversary of framing attacks, an algorithm can be constructed so
that it extracts this secret key and solves the DL problem with it. Furthermore,
because of the CCA security of the Cramer-Shoup encryption scheme [17], our
scheme is anonymous. Due to space constraints, we will present security proofs
of the following theorems in an extended version of this paper.

Theorem 1. The proposed group signatures scheme has BU-anonymity in the
random oracle model if the XDH assumption holds in (G1, G2, GT ).

Theorem 2. The proposed group signatures scheme has non-frameability in the
random oracle model under the DL assumption.

Theorem 3. The proposed group signatures scheme has traceability in the ran-
dom oracle model under the q-SDH assumption.

Theorem 4. The proposed group signatures scheme has backward security in
the random oracle model under the q-SDH assumption.
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6 Performance Evaluations

We evaluate the computation and communication overhead of our scheme in
this section and compare its performance to two existing schemes [20,39]. Our
scheme is implemented with the Barreto-Naehrig (BN) curves [3] over a 382-bit
prime field to ensure 128-bit security [27,43]. Our implementation was simulated
on a workstation with specifications as follows:

– CPU: Intel Xeon E5-2680v2 (3.6 GHz)
– OS: Windows Server 2012
– Compilation environment: Microsoft Visual Studio C++ 2017
– Crypto-library: the PBC library [33]

For above-mentioned experimental settings, Table 1 summarizes the benchmarks
used in our work.

Table 1. Benchmarks of group operations on a 382-bit BN curve.

Operations Time (µsec)

Mul(G1) 344.5

Mul(G2) 471.3

Exp(GT) 981.6

P 1847.3

Here, Mul(G1), Mul(G2), Exp(GT) are scalar multiplication on G1, G2, and
exponentiation on GT , respectively. P is the time to perform a pairing operation.
We only consider the influence of these four operations as the speed of signature
generation/verification actually depends on them. We firstly consider the load of
computation for our algorithms according to benchmarks of the PBC library. We
reduce the computation overhead of the Sign/Verify algorithms by decreasing
the number of exponentiations on GT .

For the Sign algorithm, we transform RgCert and Rtoken as RgCert ←
e(ġrε

1 g̈
rχ

1 urαψ
−rη

1 , g2)e(urζ , pkGM ), Rtoken ← e(ġrε
1 g̈t

1g
rβ

1 ψ
−rη′
2 , g2)e(g

rζ

1 , pkTA).
By precomputing pairing values, such as e(ġ1, g2), original computations require
2Mul(G1)+7Exp(GT)+2P. But 9Mul(G1)+4P are required in our modifications.

For the Verify algorithm, we also transform ŘgCert and Řtoken as ŘgCert

← e(ġsε
1 ψ

−sη

1 g̈
sχ

1 usαgc
1, g2)e(u

sζ ψ−c
1 , pkGM ), Řtoken ← e(ġsε

1 ψ
−sη′
2 g̈tc

1 g
c+sβ

1 , g2)
e(ψ−c

2 g
sζ

1 , pkTA) which originally requires 5Mul(G1)+7Exp(GT)+5P with pre-
computed pairing values, but our modifications require 12Mul(G1)+4P.
In Table 2, we present comparisons of the computation overhead between our
proposal and schemes in [39] and [20]. Our attention was laid on two specific algo-
rithms: Sign (signature generation algorithm) and Verify (signature correctness
verifying algorithm). We focus on them as they need to be frequently performed
by the GM and the verifier.
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Table 2. Comparisons of the computation overhead.

Schemes Sign (opt.) Verify (opt.)

Ohara et al. [39] 20Mul(G1)+1Exp(G2)+4P 21Mul(G1)+6P

Emura et al. [20] 28Mul(G1)+2Exp(GT)+4P 20Mul(G1)+12Exp(G2)+2Mul(GT)+8P

Proposed 17Mul(G1)+4P 18Mul(G1)+4P

In Table 2, It can be seen that our proposal takes low computational cost
among the existing schemes to perform signature generation and signature verifi-
cation processes. For Sign algorithm, the proposed scheme can generate a group
signature with 13.25 ms whereas the other two schemes [39] and [20] take 14.75 ms
and 19 ms respectively. When verifying a signature, our proposal takes 13.6 ms
but the schemes [39] and [20] take 18.3 ms and 32.73 ms.

Table 3. Comparisons of the communication overhead.

Schemes Element Size Signature Length

Ohara et al. [39] 20G1+11Zp 871 bytes

Emura et al. [20] 12G1+4Zp 780 bytes

Proposed 5G1+8Zp 629 bytes

The communication overhead is presented in TABLE 3. With our proposal, a
group signature has 13 group elements (5 elements in G1 and 8 elements in Zp).
On the other hand, in the schemes [39] and [20], each signature has 18 group
elements (7 elements in G1 and 11 elements in Zp) or 16 group elements (12
elements in G1 and 4 elements in Zp). When BN&382-bit is employed, the size
of a value in Zp, an element in G1, an element in G2 and an element in GT are
48 bytes, 49 bytes, 97 bytes and 384 bytes, respectively. Therefore, the signature
length in our proposal is 629 bytes and it is smaller than the other two schemes.

7 Conclusions

In this paper, we have further improved revocable group signatures with respect
to signature generations/verifications and the signature size. In our security
model, we present a new security feature, backward security; we believe this
feature is necessary for revocable group signature schemes as it ensures unforge-
ability of group signatures when group members were revoked and rationality
for verifications without the RL, especially for LPY-type schemes. For real-life
applications, our scheme applies a decentralized group model to relax the orig-
inal group manager from the heavy workload of revocation list maintenance
which makes the deployment of group signatures more practical in providing
privacy-preserving authentications.
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