
Secure Multi-keyword Fuzzy Search
Supporting Logic Query over Encrypted

Cloud Data

Qi Zhang1, Shaojing Fu1,2(B), Nan Jia1, Jianchao Tang1, and Ming Xu1

1 College of Computer, National University of Defense Technology, Changsha, China
shaojing1984@163.com

2 State Key Laboratory of Cryptology, Beijing, China

Abstract. Compared with exact search, fuzzy search will meet more
practical requirements in searchable encryption since it can handle
spelling errors or search the keywords with similar spelling. However,
most of the existing fuzzy search schemes adopt bloom filter and locality
sensitive hashing which cannot resist Sparse Non-negative Matrix Fac-
torization based attack (SNMF attack). In this paper, we propose a new
secure multi-keyword fuzzy search scheme for encrypted cloud data, our
scheme leverages random redundancy method to handle the deterministic
of bloom filter to resist SNMF attack. The scheme allows users to con-
duct complicated fuzzy search with logic operations (“AND”, “OR” and
“NOT”), which can meet more flexible and fine-grained query demands.
The theoretical analysis and experiments on real-world data show the
security and high performance of our scheme.

Keywords: Searchable encryption · Fuzzy search · Logic query ·
Bloom filter

1 Introduction

Recently, Cloud storage services have become more and more prevalent and many
individuals and businesses choose to outsource their local data to remote cloud
service providers to reduce local storage and computing overhead. In order to
protect the privacy of the outsourced data, data encryption is usually used, mak-
ing it impossible for an attacker to recover the original data from the encrypted
data. However, data encryption will cause a decrease in data availability, mak-
ing it difficult to perform operations such as information retrieval on ciphertext.
How to implement secure search over encrypted cloud data becomes a topic
worth studying.

Searchable encryption technology can realized the function of information
retrieval on encrypted cloud data while protecting privacy. Most of the search-
able encryption schemes can only support exact keyword search which does not
have fault tolerance. Fuzzy search is mainly designed for misspelling, similar
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 210–225, 2019.

https://doi.org/10.1007/978-3-030-21373-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_17


Secure Multi-keyword Fuzzy Search Supporting Logic Query 211

query and other scenarios. According to some similarity metrics, such as edit
distance, Jaccard distance, Euclidean distance etc., the similarity between the
index and the trapdoor can be calculated, and the scheme can return the results
with higher similarity to the query. Existing fuzzy searches mainly fall into two
directions. One is to construct a pre-defined wildcard-based fuzzy keyword set
for each keyword which will result in high storage and can only support single
keyword search. The other is using bloom filter and locality sensitive hashing
[8] to construct index which can map similar keywords to the same position to
realize multi-keyword fuzzy search. However, the structure of bloom filter cannot
resist ciphertext-only attack which will leak the search pattern [12].

Aiming at the security flaws of existing fuzzy search schemes, our paper pro-
poses a multi-keyword fuzzy search scheme with high security and can support
logical query. Our paper add random number redundancy to confuse the original
keyword features, so that the search pattern will be protected and the scheme
can resist ciphertext-only attack. In addition, our paper extends to implement
logic query function, i.e. “AND”, “OR” and “NOT” which is practical in appli-
cations. Users can customize the files that must contain certain keywords, or the
files that does not contain certain keywords, thereby obtaining the search results
that are more in line with the user’s needs. Finally, this paper theoretically ana-
lyzes the security of the scheme and analyzes its performance on the real-world
text dataset. Our contributions can be summarized as follows:

(1) To resist the ciphertext-only attack basing on sparse non-negative matrix
factorization, we randomized the index by adding random redundancy to
mask the deterministic of bloom filter and improve the security of scheme
proposed by Wang et al. [15] as a result.

(2) To realize flexible query for users, we extend the scheme to support logic
query, the mixed “AND”, “OR” and “NOT” operations, to exclude the
results users don’t need, and pick out the results they want, and last rank
the relevance scores according to the possibly existing keywords.

(3) The scheme is proved secure against two threat model by theoretical analysis,
and has high performance by evaluating on the real-world dataset.

The remaining sections of this paper are organized as follows. In Sect. 2, we
outline the system model, threat model, design goals and the notations used
in this scheme. And Sect. 3 introduces the basic theoretical knowledge of the
scheme. Section 4 describes the technical details of the scheme. Section 5 gives
the theoretical analysis of the security of the scheme. The experiment results
of the scheme are given in Sect. 6. Section 6.1 gives a brief introduction of the
related work. Finally Sect. 7 concludes the paper.

2 Problem Formulation

2.1 System Model and Threat Model

As shown in Fig. 1, the system consists of three entities: data owner, cloud server
and data user. Before outsourcing data to the server, the owner needs to encrypt



212 Q. Zhang et al.

Fig. 1. System model

the data, construct secure indexes, and upload them to the cloud. The keys used
in symmetric encryption algorithm for documents and secure kNN algorithm for
indexes are transmitted to the data user via a secure channel. When search-
ing a certain file, data user generates the trapdoor according to the input of
“AND”, “OR”, “NOT” operations, and encrypts it using the same key for index
encryption, and then sends it to cloud server. After receiving the query trap-
door, cloud server calculates the relevance scores one by one for the encrypted
indexes, and returns the most satisfactory results to data user. When the query
results returned, data user decrypts them locally using the key for document
encryption.

We assumes that the cloud server is honest but curious. In other words, the
cloud server will honestly follow the steps of algorithms, but will be curious about
the content of files, keywords, and other additional information. In this model,
in addition to the encrypted information introduced above, cloud server will
obtain additional background information, such as trapdoor correlation. This
information will be used for statistical attacks to infer the keywords contained
in search requests.

2.2 Preliminaries

Bloom Filter. Bloom Filter [1] is a data structure with high space efficiency
which can determine whether the collection contain the element.



Secure Multi-keyword Fuzzy Search Supporting Logic Query 213

The structure of bloom filter is shown in Fig. 2. Bloom filter uses a fixed-
length vector with m bits to represent a set of elements. For a given collection
with n elements S = {s1, s2, . . . , sn}, use l hash functions from a hash family
H = {hi|hi : S → [1,m], 1 ≤ i ≤ l} to map the elements to l positions of the
vector and set the value to be 1, others set to be 0. The l position represents the
element. To check whether the input element x is in the collection, first calculate
the element x with the same l hash function to get l positions. If the value in all
positions are 0, then x /∈ S; otherwise, we predicate x ∈ S.

Bloom filter have significant advantages. First of all, the size of the bloom
filter is fixed and is not limited by the number of elements in the set. At the same
time, it does not need to store the information of the element itself, which will
not leak any information of the collection and elements. But on the other hand,
it has false positive result, that is, the non-existent element will be predicated
to existent. The false positive rate is approximately (1 − e− ln

m )l.

0 1 1 0 1 0 1 0 1 0 0 1

x
h1

h3h2

y

w

Fig. 2. Structure of bloom filter

Locality Sensitive Hashing. Locality sensitive hashing function is an algo-
rithm used to solve near-neighbor search. It can map similar elements to the same
bucket with high probability, thus deciding the similarity between elements. The
hash function family is defined as [8]:

Definition 1. For any two points x and y are satisfied:
If d(x, y) ≤ r1, Pr[h(x) = h(y)] ≥ p1;
If d(x, y) ≥ r2, Pr[h(x) = h(y)] ≤ p2.
Where d(x, y) is the distance between x and y, r1 < r2, p1 > p2, and h(x)

is the hash value for x. Then the hash function family H can be defined as
(r1, r2, p1, p2)-sensitive.

This definition shows that two adjacent points in the original space will be
mapped into two points still adjacent, and the non-adjacent points are still not
adjacent after mapping. Based on this property, LSH can be used in bloom filter
to replace the original hash function to achieve fuzzy search.



214 Q. Zhang et al.

3 The Proposed Scheme

3.1 Previous Scheme and Security Defect

The first multi-keyword fuzzy search scheme using bloom filter and locality sen-
sitive hashing is proposed by Wang et al. [15]. There are 4 main processes in the
scheme:

1. Keyword transformation. Since LSH function uses a vector as input, this
process converts the keyword string into a vector. The scheme uses bi-gram
set that contains all of the two consecutive letters to represent the keyword.
For example, the bi-gram set of the keyword “network” is {ne, et, tw, wo,
or, rk}. Later, the scheme transforms the bi-gram set to 262-bit vector, and
we eet the position to 1 if the element exist in the bi-gram set. Through this
expression, a keyword can have many different forms of spelling errors, but it
can still be represented by a vector with very close distance with the correct
one.

2. Index construction. This process use bloom filter with LSH to build an index
for each file, which will hash similar inputs to the same output with high
probability.

3. Trapdoor generation. Generate trapdoor using the same process as index
construction.

4. Search. This process calculates the relevance score to reflect the relevance
of multiple keywords and documents, and rank it according to the result of
inner product.

Ciphertext-Only Attack. The main process in Wang’s scheme can be simply
expressed as the following function:

Ii = f(LSH(Pi), ki)
Tj = f(LSH(Qj), ki)

R = IT
enc,iTenc,j = IT

i Tj

(1)

Where ki is the key for pseudo-random function f , f can be equivalent to
position permutation, Pi and Qj are plaintext keyword vectors, Ii and Tj are
m-bit bloom filter obtained by Pi and Qj through LSH and pseudo-random
function, Ienc,i and Tenc,j are encrypted from Ii and Tj , R is the relevance score.

Analyzing above equations, Ii and Tj cannot be inferred from Pi and Qj

without knowing the key K. However, the generation of the bloom filter is deter-
ministic which means same query vector will generate the same bloom filter and
leak the search pattern as a result. According to the analysis by Lin et al. [12],
an adversary can conjecture Ii and Tj by deploying sparse non-negative matrix



Secure Multi-keyword Fuzzy Search Supporting Logic Query 215

factorization (sparse-NMF) algorithm [9] on the encrypted index Ienc,i and trap-
door Tenc. In other words, The basic scheme is vulnerable to the ciphertext-only
attack (COA). Although Ii and Tj do not directly leak the plaintext Pi and Qj ,
similar Ii and Tj will reflects the relationship of plaintext due to the determin-
istic of LSH and f and make statistical analysis attack feasible which will reveal
the frequency and other information of keywords.

3.2 Secure Scheme Supporting Logic Query

To resist above-mentioned ciphertext-only attack (COA) against the previous
scheme, we extend m-bit vector of the original scheme to (m+U +1)-bit, which
is a combination of bloom filter and random numbers. With the confusion of
random numbers, the location of the keywords and random numbers is indistin-
guishable. Even if two identical trapdoor, it is impossible to determine whether
the same position corresponds to the keyword or the random number, and thus
it is impossible to determine whether the query is the same. It is also unable to
perform statistical analysis to obtain keyword information such as frequency.

Then to increase flexibility of query, we also design a scheme to support logic
query. Users can input keywords with customization that must exist, must not
exist and possibly exist. So that user can exclude undesirable documents, and
select requisite documents.

First, the TF-IDF algorithm used in this scheme is defined as:

S =
∑

wi∈Q

TFfi,wi
× IDFwi

=
∑

wi∈Q

ln(1 + Nf,wi
)√∑

wi∈W (ln(1 + Nf,wi
))2

× ln(1 + N/Nwi
)√∑

wi∈W (ln(1 + N/Nwi
))2

(2)

Then the details of enhanced scheme is shown in the following aspects:

– {SK, sk} ← KeyGen(1ρ). This algorithm is executed on data owner side.
Given a parameter, the algorithm will generate the key SK = {S,M1,M2}
for the index and trapdoor encryption. Our scheme extends the vector from
m bits to (m+U +1) bits, where m-bit vector represents the bloom filter and
U -bit is for random numbers. Thus S is a (m + U + 1)-bit vector S ∈
{0, 1}m+U+1, {M1,M2} are two (m + U + 1) × (m + U + 1)-bit invertible
matrices. At the same time, the key sk of the symmetric encryption algo-
rithm for file encryption and decryption will be generated.

– C ← Enc(F, sk): Data owner encrypts the plaintext document collection
F using a symmetric encryption algorithm, like AES. And the encrypted
documents will be finally uploaded to the cloud server for storage.

– BF ← BuildBF (W ): This algorithm maps the input keyword set to the
bloom filter to generate an index. First initialize a m-bit bloom filter BF , each
of which is set to 0. Then, transform each keyword to a 262-bit vector, W =
{w1, w2, · · · , wn}, wi ∈ {0, 1}262 . Then select l independent hash function



216 Q. Zhang et al.

hj from p-stable LSH function family H = {h : {0, 1}262 → {0, 1}m} and
combine l hash function with the pseudo-random function fki

together to
generate a new hash function {gi|gi = fki

◦ hi, hi ∈ H, 1 ≤ i ≤ l}. Those
pseudo-random functions is equivalent to randomly permutate the positions
of bloom filter, and ki is the key of the random function, which eliminates the
connection between the keyword and bloom filter to resist known background
attack [15]. Then, for each keyword vector wi, use l hash functions gi to get l
positions, set the corresponding position of the bloom filter to its weight. In
this case, the bloom filter is constructed.

– Ienc ← Index(F, SK): This algorithm is used to construct the secure
index vector. Data owner extracts the keywords of each document fi in
the document collection F , and obtains the keyword set Wfi

. Then call the
BuildBF (Wfi

) algorithm to generate a m-bit bloom-filter-based index vector
Ii for each file whose value is set to TFwi

. If the collision occurs, the maxi-
mum value is retained. Then, each vector is expanded to a (m + U + 1) bit
vector. The (m + j)th (j ∈ [1, U ]) bit is set to a random number ε(j). The
(m + U + 1)th bit is set to −1. The maximum value D of the vector will
be sent to the user after expanding. Next use the secure kNN algorithm [17]
to encrypt the index vector. First split the index vector Ii into two random
vectors according to the vector S, namely {Ii

′
, Ii

′′}, S is the secret vector
used for splitting. When S[j] = 0, set Ii

′
[j] = Ii

′′
[j] = Ii[j]; when S[j] = 1,

set Ii

′
[j] and Ii

′′
[j] as random numbers, and Ii

′
[j] + Ii

′′
[j] = Ii[j]. Finally,

each index vector is encrypted as Ienc,i = {MT
1 Ii

′
,MT

2 Ii

′′}.
– Tenc ← Trapdoor(Q,SK): We select v random positions j(j ∈ [m,m+U ]) to

be the random number σ(j) which can be equivalent to the keyword of “OR”
operation. Then to realize logic query, the query keywords Q consisting of t
keywords are arranged in the order of “OR”, “AND” and “NOT” operation,
defined as (a1, a2, · · · , al1 , al1+1, · · · , al1+v), (al1+v+1, al1+v+2, · · · , al1+v+l2),
(al1+v+l2+1, al1+v+l2+2, · · · , aN ), which contains l1 “OR” operation keywords,
v random numbers, l2 “AND” operation keywords, and N − l1− l2−v “NOT”
operation keywords, ai is the value of the keyword wi. For l1 keywords of
“OR” operation, the value is set as its own IDF value. For other keywords,
assign a random value satisfying

∑j−1
i=1 l ·ai ·D < aj(j = l1 +1, l1 +2, · · · , N).

Then call BuildBF (Q) for the query keyword to generate a m-bit bloom-
filter-based query vector T . For collision, the maximum value will be selected
as the weight. Append the v positions to expand T to (m + U + 1)-bit vector
and set the (m+U +1)th bit to t = al1+v+l2+1. Next, split T by secret vector
S into two random vectors {T

′
, T

′′}, if S[j] = 1, set T
′
[j] = T

′′
[j] = T [j]; if

S[j] = 0, T
′
[j] and T

′′
[j] are set to random numbers, and T

′
[j]+T

′′
[j] = T [j].

Finally, the trapdoor is encrypted as Tenc = {M−1
1 T

′
,M−1

2 T
′′}.

– R ← Search(Ienc,i, Tenc): After receiving the trapdoor Tenc uploaded by
the data user, cloud server calculates the relevance score between Tenc and
the index vector stored on the cloud server to get the most relevant results.



Secure Multi-keyword Fuzzy Search Supporting Logic Query 217

The relevance score is calculated as:

S = Ienc,i · Tenc

= (MT
1 Ii

′
) · (M−1

1 T
′
) + (MT

2 Ii

′′
) · (M−1

2 T
′′
)

= Ii · T

= r · (P · Q − t)

= r · (
N∑

i=1

γi · score(wi, Fj) · ai − t)

= r · (
l1+v∑

i=1

γi · score(wi, Fj) · ai +
l1+v+l2∑

i=l1+v+1

γi · score(wi, Fj) · ai

+
N∑

i=l1+v+l2+1

γi · score(wi, Fj) · ai − t) (3)

(1) “NOT” operation. Since t = al1+v+l2+1 >
∑l1+v+l2

i=1 γi · score(wi, Fj) · D,
where γi(0 ≤ γi ≤ l) is the amount of the keyword exist in bloom filter
after collision. Once there exist “NOT” operation keywords, Rj = r ·
(
∑l1+v+l2

i=1 γi · score(wi, Fj) · ai +
∑N

i=l1+v+l2+1 γi · score(wi, Fj) · ai −
al1+v+l2+1) > 0, otherwise Rj < 0. This process can eliminate results
that do not meet the requirements, and only go to the next process when
Rj < 0.

(2) “AND” operation. Mod Rj by (−r ·al1+v+l2+1, r ·γl1+v+l2 ·al1+v+l2 , · · · , r ·
γl1+v+1 · al1+v+1) iteratively and judge whether the keyword is exist.
First, mod Rj with −r · al1+v+l2+1 to eliminate the effect of s and obtain
the remainder result.

Rj = (r · (
l1+v∑

i=1

γi · score(wi, Fj) · ai +
l1+v+l2∑

i=l1+v+1

γi · score(wi, Fj) · ai

+
N∑

i=l1+v+l2+1

γi · score(wi, Fj) · ai) − t)mod(−r · al1+v+l2+1)

= r · (
l1+v∑

i=1

γi · score(wi, Fj) · ai +
l1+v+l2∑

i=l1+v+1

γi · score(wi, Fj) · ai

− al1+v+l2+1)mod(−r · al1+v+l2+1)

= r · (
l1+v∑

i=1

γi · score(wi, Fj) · ai +
l1+v+l2∑

i=l1+v+1

γi · score(wi, Fj) · ai) (4)

The quotient of equation is 1, and the remainder is the sum of the previous
l1 + v + l2 items.



218 Q. Zhang et al.

Then we mod Rj with the remaining reverse ordering keywords (r ·
γl1+v+l2 · al1+v+l2 , r · γl1+v+l2−1 · al1+v+l2−1, · · · , r · γl1+v+1 · al1+v+1) in
turn. If the quotient of Rjmod(r · γl1+v+l2 · al1+v+l2) is greater than 1,
it can be determined that the keyword wl1+l2 exists in the index vec-
tor, then assign the remainder to Rj = r · (

∑l1+v
i=1 γi · score(wi, Fj) · ai +∑l1+v+l2−1

i=l1+v+1 γi · score(wi, Fj) · ai). Otherwise we break the iteration and
check next index.

(3) “OR” operation. When all the keywords in “AND” operation are success-
fully checked, the obtained Rj = r · (

∑l1+v
i=1 γi · score(wi, Fj) · ai) is the

final relevance score for rank search.
– PR ← Dec(R, sk). The data user decrypts the returned result R using the

key sk transmitted from the data owner via the secure channel, resulting in
the plaintext results PR.

4 Security Analysis

4.1 Known Ciphertext Model

The cloud server can only obtain encrypted documents, encrypted indexes and
trapdoors under this model. The difference between the indexes and documents
depends mainly on the index generation algorithm I ← Index(F, SK) and file
encryption algorithm C ← Enc(F, sk). The index vector has (m + U + 1) bits.
The first m bits represent the weight of the keyword. The U bits are randomly
selected. And the last 1 bit is set to −1.

For the index generation, the index vector is first split into two vectors. The
value of the vector is randomly set if the value in S is 1. Assuming that the total
number of “1” in the first m bit and the last one bit is μ1, and each dimension
of index is ηf bits, then there will be (2ηf )μ1 · (2ηf )U possible values. Then the
two vectors are encrypted by two random (m + U + 1) × (m + U + 1)-bit secret
matrices. Assuming each element in the matrix has ηM bits, then there will be
(2ηM )(m+U+1)2×2 possible values. Therefore, the probability of same indexes for
two documents can be calculated as:

Pd =
1

(2ηf )μ1 · (2ηf )U · (2ηM )(n+U+1)2×2

=
1

2μ1ηf+Uηf+2ηM (n+U+1)2

(5)

In addition, under known ciphertext attack, it is also necessary to consider the
case where multiple ciphertext pairs are known to be (I

′
i , T

′
) and the relevance

score for each result after querying Security. According to the attack method
described in the third section of this chapter, the adversary can decompose the
(Ii, T ) pair before encryption based on the ciphertext pair and the relevance
score. First of all, due to the role of the pseudo-random function, the plaintext
index and the query vector pair (Pi, Q) cannot be pushed out without knowing
the key of the pseudo-random function. At the same time, even if the same two



Secure Multi-keyword Fuzzy Search Supporting Logic Query 219

query vectors Q are used, the trapdoors will be different because of the addition
of random numbers. At the same time, after random replacement, the positions
of the keywords and the trapdoors will be indistinguishable, even if the decom-
position gets the same trapdoor. It is also impossible to distinguish whether it
is a keyword, and thus subsequent operations such as frequency statistics have
no meaning.

4.2 Known Background Model

In this model, the adversary can obtain additional statistical information to infer
keywords or other information. The trapdoor is represented by a (m+U +1)-bit
vector, where the first m bits indicates whether the keyword exists in the query,
and U bits will contain v random number while the other bits are 0, the last 1
bit is set to s.

First, the vector is expanded by ηr-bit random number r, which has 2ηr

possible values. Then use the (m + U + 1)-bit vector S to split into two vectors.
Assuming that the value of each dimension is ηq-bit and the number of 0 is
μ0, then there are (2ηq )μ0 possible values. Finally, the two query vectors are
encrypted with two random matrices. Therefore, the probability to distinguish
two trapdoor is calculated as follows:

Pq =
1

2ηr · (2ηq )μ0 · (2ηM )(n+U+1)2×2 (6)

It can be indistinguishable by setting a larger ηr, ηq μ0 and ηM . For example,
if ηr = 1024, Pq < 1/21024 and can be negligible.

4.3 Privacy

1. Data privacy. Each document will be encrypted by a symmetric encryption
algorithm like AES before outsourcing. Since AES is known as semantic secu-
rity [5], the adversary can not infer any information or content of the doc-
ument without getting the key sk. So the confidentiality of the encrypted
document can be well protected.

2. Index and trapdoor privacy. In this scheme, secure kNN algorithm is used
to encrypt the index and trapdoor vector. When encrypting, both S and
{M1,M2} are randomly generated, so as long as the key SK = {S,M1,M2}
is kept secret, the cloud server cannot analyze the index or trapdoor from
encrypted index and trapdoor, which has been proved secure under known
ciphertext model in previous subsection.

3. Trapdoor unlinkability. In the (m + U + 1)-bit trapdoor vector, only the key-
word in “OR” operation is set to IDF value, others are random values. In
addition, the trapdoor vector is scaled by random number r. Those random
numbers protects the search patter, so that the trapdoor can not be distin-
guished even for the same query. It has been proved secure under known
background model in previous subsection.



220 Q. Zhang et al.

4. Keyword privacy. The (m + U + 1)-bit trapdoor vector consists of m-bit
bloom filter, U -bit random number, and 1 bit fixed number. The bloom filter
itself uses multiple locations to indicate a certain keyword, so the relationship
between keywords and locations is reduced. At the same time, the random
numbers εi randomize the information in the vector, so that the keyword is
indistinguishable from the random number. Therefore, the statistical analysis
will no longer effect.

5 Performance Analysis

To evaluate performance, we implement our scheme on real-world dataset using
C# language on the Inter(R) Core(TM) i5-4590 CPU 3.30 GHz Windows 7
server.

5.1 Precision

The precision is defined as: Precision = k
′
/k, where k

′
is the number of doc-

uments that actually satisfy the query, and k is the number of the documents
returned. In this scenario, in addition to the relevance of the document, the
false positive rate of bloom filter will also influence the precision of the results.
Figure 3 gives the influence of the number of query keywords on precision. It
is easy to observe that the less query keyword, the lower precision of the fuzzy
query, but as the number of query keywords increases, the precision will increases
since the impact of false positive rate on the results will decrease.

Fig. 3. Search precision

5.2 Efficiency

Index Construction. The construction of the index consists of two processes:
one is to construct bloom filter for each document, and the other is to encrypt
each bloom filter to generate an encrypted index. The results are shown in Fig. 4.
When constructing bloom filter, the time complexity of the bloom filter construc-
tion is linearly related to the file keyword set size, the number of hash functions,
and the number of documents. And in index encryption, since the encryption
process uses a decomposition vector s and two secret matrices {M1,M2}, the



Secure Multi-keyword Fuzzy Search Supporting Logic Query 221

complexity of the encryption depends on the size of bloom filter O(m2), and
since the index is generated for each document, it is also linearly related to the
size of collection O(N). Since the process is one-time on data owner side, the
time overhead is acceptable.

Fig. 4. The time cost of index construction. (a) The relationship between the time
of bloom filter construction with the number of keywords in dictionary. (b) The rela-
tionship between the time of bloom filter construction with the number of LSH hash
functions. (c) The relationship between the time of bloom filter construction and index
encryption with the number of documents in collection. (d) The relationship between
the time of index encryption with the size of bloom filter.

Trapdoor Generation. The complexity of the trapdoor generation depends
on the secret vector S for splitting and secret matrices {M1,M2}. Therefore, its
complexity is related to the bloom filter size O(m2), as shown in Fig. 5(a), while
(b) shows that the number of query keywords and hash functions has little effect
on trapdoor generation. This process is generated once at the data user side and
the time overhead is acceptable.

Search. The search process can be summarized as the inner product of each
index vector and trapdoor vector. Therefore, the complexity depends mainly on
the size of document collection and the size of the bloom filter. Figure 6(a) and
(b) give the influence of the size of document collection and bloom filter, while
(c) proves the number of query keywords has little influence on search.



222 Q. Zhang et al.

Fig. 5. The time cost of trapdoor generation. (a) For the different size of bloom filter.
(b) For the different number of query keywords and LSH functions.

Fig. 6. The time cost of search. (a) For the different number of documents in collection.
(b) For the different size of bloom filter. (c) For the different number of query keywords
in “AND” and “OR” operations.

6 Related Work

6.1 Exact Search

Song et al. [13] first proposed a solution for searching single keyword on encrypted
data with sequential scan which was provably secure but in high cost. Goh [7]
defined a secure index using bloom filter and pseudo-random functions, but the
scheme only support single keyword search. To provide multi-keyword function,
conjunctive multi-keyword search first proposed. Boneh et al. [2] proposed a
public-key scheme supporting conjunctive search and subset, range query. Wang
et al. [14] designed an public-key searchable encryption scheme based on inverted
index and private set intersection. Later ranked multi-keyword scheme was



Secure Multi-keyword Fuzzy Search Supporting Logic Query 223

proposed to improve the boolean search. Cao et al. [3] first proposed a basic
multi-keyword ranked search scheme (MRSE) using secure kNN computation
which had low overhead on computation and communication. Chen et al. [4]
used k-means algorithm to construct a hierarchical cluster index tree to develop
the search efficiency.

6.2 Fuzzy Search

Fuzzy search scheme using a wildcard-based fuzzy keyword set was first pro-
posed by Li et al. [11]. They used the edit distance to judge the keyword rel-
evance. The scheme first constructs a wildcard-based fuzzy keyword set Swi,d

which contains the keyword variant with an edit distance less than d, such as
SCASTLE,1 = {CASTLE, ∗CASTLE, ∗ASTLE,C ∗ ASTLE,C ∗ STLE, · · · ,
CASTL∗E,CASTL∗, CASTLE∗} defines the variants of “CASTLE” with 1 edit
distance. And then each element in the fuzzy set is encrypted. When searching, the
user first generates the same encrypted fuzzy keyword set, and then the cloud server
finds the corresponding fuzzy keyword and returns the corresponding file. Later,
Zheng et al. [18] gave an effective attack against [11], and proved that Li et al.’s
scheme [11] had low security. Wang et al. [16] made further improvements based on
the work of [11] and proposed an efficient fuzzy search mechanism. The efficiency
of search is improved by constructing an index tree structure based on the key-
words. However, above methods must pre-configure a predefined dictionary which
will cause overhead in time and storage space, and usually only support single key-
word queries.

Later, locality sensitive hashing [8] was proposed to construct index which
can map similar keywords to the same position to implement multi-keyword
fuzzy search. At present, the research direction of fuzzy query is mainly on the
innovation of the construction and functionality of fuzzy keyword index. Kuzu et
al. [10] first designed the fuzzy search scheme based on Jaccard similarity, which
used the bloom filter and locality sensitive hashing function minhash to map the
keyword to multiple random positions to form an inverted index. The sum of the
values in the same address is used to obtain the similarity between the index and
the trapdoor. At the same time, the scheme also gives a multi-server public key
encryption scheme, which uses the homomorphic Paillier encryption algorithm.
However, due to the inverted index, the scheme only support single keyword
search. Wang et al. [15] proposed the first basic scheme of multi-keyword fuzzy
search based on bloom filter and locality sensitive hashing. Firstly, they trans-
formed the keyword string into bi-gram set and used the 262 bits binary vector
to represent the set. Later they mapped the vector into a fixed-length bloom
filter by LSH function, and the relevance score is obtained by calculating the
inner product of the index and the trapdoor. Fu et al. [6] improved the scheme
in [15] through two main optimization. Firstly, they used stemming algorithm
to extract keyword stems. Thus the keywords with same stem will be simpli-
fied to one common word which can represent more variant and provide more
query request. Secondly, they selected uni-gram vector to represent the keyword.
Each keyword first transformed into the uni-gram set consisting of one letter and



224 Q. Zhang et al.

one number to indicate the position of the letter. Later, they mapped the set into
a 160-bit vector to represent the keyword. These optimizations can provide more
variants of the query keyword, such as the repeated letters, and the Euclidean
distance of the two keywords will be smaller which will lead to more accurate
search results.

7 Conclusion

This paper proposes a multi-keyword fuzzy search scheme that supports logic
queries and can resist ciphertext-only attack. We focus on the security defect of
existing fuzzy search scheme, and improve the basic scheme by randomizing the
bloom filter to protect the search pattern. To meet more search demands, we
extend the scheme to support logic query on fuzzy search. We give a theoretical
analysis of the security against two threat model and apply our scheme on real
dataset to analyze the performance.

For the further work, we can extend to support semantic query and synonym
query, which can scale the concept of fuzzy query, not only can consider keyword
spelling errors, but also semantically similar queries. And also consider designing
a scheme to support double judgments which can combine both exact and fuzzy
search.

Acknowledgments. This work is supported by the National Nature Science Foun-
dation of China (NSFC) under grant 61572026, 61672195, Open Foundation of State
Key Laboratory of Cryptology (No: MMKFKT201617).

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970). https://ci.nii.ac.jp/naid/20001345133/en/

2. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

3. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014)

4. Chen, C., et al.: An efficient privacy-preserving ranked keyword search method.
IEEE Trans. Parallel Distrib. Syst. 27(4), 951–963 (2016). https://doi.org/10.
1109/TPDS.2015.2425407

5. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: ACM Conference on Com-
puter and Communications Security, pp. 79–88 (2006)

6. Fu, Z., Wu, X., Guan, C., Sun, X., Ren, K.: Towards efficient multi-keyword fuzzy
search over encrypted outsourced data with accuracy improvement. IEEE Trans.
Inf. Forensics Secur. 11(12), 2706–2716 (2017)

7. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
https://eprint.iacr.org/2003/216

https://ci.nii.ac.jp/naid/20001345133/en/
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1109/TPDS.2015.2425407
https://doi.org/10.1109/TPDS.2015.2425407
https://eprint.iacr.org/2003/216


Secure Multi-keyword Fuzzy Search Supporting Logic Query 225

8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing
the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New
York (1998). https://doi.org/10.1145/276698.276876. http://doi.acm.org/10.1145/
276698.276876

9. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-
negativity-constrained least squares for microarray data analysis. Bioinformatics
23(12), 1495–1502 (2007)

10. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: IEEE International Conference on Data Engineering, pp. 1156–1167
(2012)

11. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: Conference on Information Communica-
tions, pp. 441–445 (2010)

12. Lin, W., Wang, K., Zhang, Z., Chen, H.: Revisiting security risks of asymmet-
ric scalar product preserving encryption and its variants. In: IEEE International
Conference on Distributed Computing Systems, pp. 1116–1125 (2017)

13. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceeding 2000 IEEE Symposium on Security and Privacy, SP 2000, pp.
44–55 (2000). https://doi.org/10.1109/SECPRI.2000.848445

14. Wang, B., Song, W., Lou, W., Hou, Y.T.: Inverted index based multi-keyword
public-key searchable encryption with strong privacy guarantee. In: Computer
Communications, pp. 2092–2100 (2015)

15. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: IEEE INFOCOM, pp. 2112–2120
(2014)

16. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: IEEE INFOCOM, pp. 451–459
(2012)

17. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN computation on
encrypted databases. In: ACM SIGMOD International Conference on Management
of Data, pp. 139–152 (2009)

18. Zheng, M., Zhou, H.: An efficient attack on a fuzzy keyword search scheme over
encrypted data. In: IEEE International Conference on High Performance Com-
puting and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing, pp. 1647–1651 (2014)

https://doi.org/10.1145/276698.276876
http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/276698.276876
https://doi.org/10.1109/SECPRI.2000.848445

	Secure Multi-keyword Fuzzy Search Supporting Logic Query over Encrypted Cloud Data
	1 Introduction
	2 Problem Formulation
	2.1 System Model and Threat Model
	2.2 Preliminaries

	3 The Proposed Scheme
	3.1 Previous Scheme and Security Defect
	3.2 Secure Scheme Supporting Logic Query

	4 Security Analysis
	4.1 Known Ciphertext Model
	4.2 Known Background Model
	4.3 Privacy

	5 Performance Analysis
	5.1 Precision
	5.2 Efficiency

	6 Related Work
	6.1 Exact Search
	6.2 Fuzzy Search

	7 Conclusion
	References




