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Abstract. The patients’ health information is often kept as electronic
health records (EHRs). To improve the quality and efficiency of the care,
EHRs can be shared among different organizations. However, the inap-
propriate sharing or usage of these healthcare data could threaten peo-
ple’s privacy. It becomes increasingly important to preserve the privacy
of the published EHRs. An attacker is apt to identify an individual from
the published EHRs by partial measurement information as background
knowledge, with attacks through the record linkage and attribute linkage.
To resist the above types of attacks, we propose a privacy preservation
with perturbation in the published healthcare data (PPHR). To pro-
tect the privacy of sensitive information, we first determine the critical
sequences based on which some specific records are easy to be identified.
Then, we adopt perturbation on these sequences by adding or deleting
some points while ensuring the published data to satisfy l-diversity. A
comprehensive set of real-life healthcare data sets are applied to evaluate
the performance of our anonymization approach. Simulations show our
scheme possesses better privacy while ensuring higher utility.

Keywords: Privacy Preservation · Perturbation ·
Electronic health records

1 Introduction

The traditional paper-based health records may cause much inconvenience in
collecting and storing various types of patient data. With the development of
information and communications technologies, there is a great interest in moving
from paper-based health records to electronic health records (EHRs). In 2003
and 2004, EHRs were used in 18% of the estimated 1.8 billion physicians in
the U.S. In 2016, over 70% of physicians have used EHRs [20]. By storing a
patient’s medical history in electronic form, errors due to bad handwriting can
be eliminated and it is easier for doctors to follow a patient’s health condition.
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On the one hand, disseminating these data can provide better quality of care and
thereby improve the public health [17]. For example, doctors in the San Diego
Beacon Community (SDBC) can provide a cheaper, faster and more efficient
diagnosis by obtaining the patient’s EHR from his/her healthcare provider. On
the other hand, researchers can benefit from the shared EHRs. In 2012, a group
of UCLA researchers set out to mine thousands of EHRs for a more accurate and
less expensive way to identify people who have undiagnosed Type 2 diabetes.

While the publication of EHRs is greatly beneficial, it can still entail a pri-
vacy threat for the users if some sensitive information is released with each EHR
consisting of the patient’s name, measurement history of physiological indicators,
medical history, and other health data information. The measurement history
or medical history is in chronological order which called healthcare trajectory or
patient trajectory. A recent study has summarized that approximately 87% of
the population of the United States can be identified by a given data set [26].
Therefore, it is critical to conserve the privacy of published health data, espe-
cially the sensitive information. The HIPAA Privacy Rule also proposed that the
privacy of individually identifiable health information should be protected [15].

The original data tables or EHRs such as in Table 1 typically consist of
four types of attributes, direct identifier, quasi-identifier, sensitive attribute, and
non-sensitive attribute [8,25]. Direct identifier such as name and social security
number can identify an individual uniquely, which is usually removed from the
published tables. Each specific Quasi-Identifier (QI) such as healthcare trajectory
in Table 1 cannot uniquely identify an individual, but the combination of some
points can cause identity disclosure. Sensitive Attribute (SA) such as disease
in Table 1 contains the private or specific information of each individual. Non-
sensitive attribute can be known for the public without any concern. Based
on the above attributes, it is obvious that privacy threats are related to those
attributes except the last one.

Table 1. An example of healthcare trajectory dataset

ID. Name Healthcare trajectory Disease · · ·
1 Alice a1 → d2 → b3 → e4 → f6 → e8 HIV · · ·
2 Ben d2 → c5 → c7 → e9 Flu · · ·
3 Cary b3 → f6 → c7 → e8 Hepatitis · · ·
4 David b3 → e4 → f6 → e8 Fever · · ·
5 Eric a1 → d2 → c5 → f6 → c7 Flu · · ·
6 Frank c5 → f6 → e9 Hepatitis · · ·
7 Gina f6 → c7 → e8 Fever · · ·
8 Henry a1 → c2 → b3 → c7 → e9 Hepatitis · · ·
9 Kevin e4 → f6 → e8 Fever · · ·
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1.1 Motivation

It is a challenge to prevent the disclosure of a person’s specific healthcare data
from the published EHRs so as to preserve his/her privacy. To achieve anonymity,
the original records should be modified before being published. The existing pri-
vacy preserving approaches of publishing health data are classified into general-
ization and suppression, anatomization and permutation, and perturbation tech-
niques [6,8]. Generalization or suppression technique aims to hide some details
of QIs. Generalization replaces some QI values with a broader category such
as a parent value in the taxonomy of an attribute. Suppression eliminates a
certain number of points in the trajectory for privacy. Both techniques often
result in considerable information loss by modifying the trajectory or sensitive
attributes [21]. Perturbation distorts the original dataset by adding noise, aggre-
gating values, swapping values, or generating synthetic data while preserving
the statistical information of the attributes. Consequently, the transformed data
after perturbation can provide higher utility [19].

By adopting the idea of perturbation, we consider the problem of publishing
EHRs for more accurate analysis while limiting the disclosure of sensitive health
information. Specifically, we want to ensure that an adversary cannot reliably
infer the presence of an individual by linking some QIs. In this paper, we focus
on the privacy breach caused by the healthcare trajectory in EHRs. For example,
the sequence e4 → f6 as background knowledge cannot infer a specific record
in Table 1. Thereby, the privacy of each record is preserved. In this paper, we
introduce a novel data perturbation approach to protect the privacy of sensitive
health data and resist the following two kinds of attacks, record linkage and
attribute linkage [14]. Record disclosure happens when a target user can be
identified from a specific sequences in healthcare trajectory. Attribute disclosure
occurs when some revealed attributes can link to a specific individual or infer
a victims sensitive information. In our approach, we first identify the critical
sequences in the healthcare trajectory that are prone to privacy breaches. For
each sequence, we use addition or subtraction to implement l-diversity so as to
ensure that each sequence matches at least l types of SA values in the published
data.

1.2 Contributions and Organization

In this paper, we propose a novel scheme to preserve the health or medical
privacy of EHRs with a single SA, named Privacy Preservation in Publishing
Electronic Health Records Based on Perturbation (PPHR). Given all the above
considerations, this paper has the following contributions:

– We propose our l-diversity privacy model to protect the sensitive informa-
tion such as Disease in EHRs. l-diversity ensures that at least l records are
matched by the attacker based on the healthcare trajectory sequence as back-
ground knowledge, which can be set according to the owner’ s requirement.
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– Our PPHR includes two steps, determining critical sequences and anonymiz-
ing data using perturbations. To the best of our knowledge, we are the first
to perform perturbation to protect the sensitive attribute in EHRs.

– We evaluate the performance through extensive simulations based on a real-
world data set. Compared with PPTD [14], and KCL-Local [4], our mech-
anism is superior in data utility ratio with better privacy.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
related work. Preliminaries are given in Sect. 3. In Sect. 4, we present the details
of our approach. Simulations on data utility are presented in Sect. 5. Finally, we
conclude our work in Sect. 6.

2 Related Work

In this section, we mainly introduce existing approaches to prevent the privacy
leakage of the published data from the following three categories, generalization,
suppression and perturbation [8,28].

Generalization-Based. Generalization is one of the most common anonymity
operations to implement k-anonymity for privacy protection. Generalization
replaces some QI values with a broader category such as a parent value in the
taxonomy of an attribute. In [12,31], a taxonomy tree was built first and then
a node in the tree was generalized to its parent node, which aimed to reach
k-anonymity. In [16], a node’ s attribute was replaced by its sibling’ s attribute.
Generalization was first proposed in [13] to process trajectories and sensitive
attributes based on different privacy requirements of moving objects. Gao [7]
proposed to use trajectory angle to evaluate trajectory similarity and direction,
and construct an anonymity region on the basis of trajectory distance so as
to achieve k-anonymity. In [9], generalization technique is applied to anonymize
the trajectory data and a heuristic approach is proposed to achieve LKC-privacy
model. A look-up table brute-force (LT-BF) algorithm is proposed to preserve
privacy and maintain the data quality based on LKC-privacy model by applying
the generalization technique in [10].

Suppression-Based. Suppression approaches aim to replace some attributes
with some special symbolic characters. It was first adopted to satisfy the con-
straint of breach probability in [29]. [4] was the first paper to adopt suppression
to prevent record linkage and attribute linkage attacks. In [2], km-anonymity was
proposed to suppress the critical location points chosen from the quasi-identifiers
in order to resist the attacks based on the background knowledge of m moving
points. In [24], locations suppression and trajectories splitting are used to protect
privacy and ensure the accuracy of query answering and frequent subsets.

Perturbation. Data perturbation is considered as a relatively easy and effective
technique in protecting sensitive electronic data from unauthorized users. There
are two main types of data perturbation appropriate for EHR data protection.
The first type is known as the probability distribution approach and the second
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type is called the value distortion approach. Perturbation distorts the data by
adding noise, swapping values, or generating synthetic data [6]. In [1,3,30], noise
was added to protect the privacy of sensitive attribute by achieving ε-differential
privacy. Sensitive attribute values are exchanged among records to achieve data
swapping [5]. Random edge perturbation was used to resist structural identifi-
cation attack in [27].

Summary of Related Work. To prevent a specific individual from being re-
identified from the published tables, the key solution is to protect the privacy of
some sensitive information. In addition, the design of an anonymization approach
should consider the balance between the data utility and the privacy preserva-
tion. Generalization and suppression often result in considerable information loss
by modifying quasi-identifiers or sensitive attributes, which often causes severe
loss of data analysis [21]. Comparatively, perturbation can maintain the statisti-
cal properties of published data without changing any sensitive attribute. In this
paper, we adopt the perturbation technique to achieve l-diversity of the sensitive
attribute. Compared with k-anonymity, l-diversity is practical and can addresses
the shortcomings of k-anonymity with respect to the background knowledge such
as record linkage attack and attribute linkage attack [18].

3 Preliminaries

In this section, we introduce some knowledge on the database of EHRs and two
kinds of attacks.

3.1 EHRs Database

Patient healthcare trajectory [22] is a recent emergent topic, focusing on the
patient trajectory based on disease management and care. A healthcare trajec-
tory is similar to a moving path, which consists of many different positions at
different timestamps. By regularly collecting the corresponding trajectory of one
patient, the hospital can trace the patient disease and determine the relationship
between disease and patient trajectory. The definitions of healthcare trajectory
and electronic health record are given as follows:

Definition 1 (Healthcare Trajectory). A healthcare trajectory is published
based on the time order. Each trajectory point (such as a1) has two essential
components, a measurement result (such as a) and a time stamp (such as 1),
which indicate where a subject is get a measurement result at a given time instant.

t = (r1, t1) → (r2, t2) → · · · → (rk, tk). (1)

where k is the length of trajectory, ti is a time stamp and ri represents a mea-
surement result of a data owner.
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Definition 2 (Electronic Health Record(EHR) [23]. An EHR is compose
of several attributes such as ID, Name, Healthcare Trajectory, Disease and other
attributes in Table 1.

EHR = <ID,Name, t = (r1, t1) → (r2, t2) → · · · → (rk, tk), SA, ....>, (2)

where SA represents the sensitive attribute such as Disease.

3.2 Privacy Attack

In this paper, we focus on protecting sensitive attributes in publishing EHRs
such as those in Table 1. The attacker uses a sequence of at least one point
in the healthcare trajectory as background knowledge to launch record linkage
attack and attribute linkage attack and thereby infer the sensitive attribute of
the data owner such as Disease.

– Record linkage attack. The attacker matches a specific record according
to the trajectory sequence in the publishing data and can directly identify
the specific data owner. When some trajectory sequences in the data occur
at a low frequency, the attacker can easily identify the specific record of the
data owner from the data. For example, we assume that the attacker knows
that a data owner has a sequence c2→b3 in the healthcare trajectory. It is
easy to speculate that Henry has Hepatitis from Table 1.

– Attribute linkage attack. The attacker cannot lock to a specific record, but
the SA distribution of the matched records is very concentrated. The attacker
can infer that the data owner possess a certain attribute at a higher prob-
ability. For example, we assume that the attacker knows a sequence c7→e9.
He can infer that the data owner may suffer Flu or Hepatitis with the prob-
ability of 1

2 or 1
2 respectively because the 2nd and 8th records contain this

sequence.

To resist these two attacks, we anonymize the original data set T into T ∗

to achieve l-diversity. Assuming that the attacker uses the trajectory sequence
with an upper bound length of m as the background knowledge. l-diversity is
defined as follows:

Definition 3 (l-diversity). The anonymized dataset T ∗ satisfies l-diversity if
for any sequence q that does not exceed m in length, all records that q matches
contain at least l types of SA values: ∀q ∈ T ∗, |SV (q)| ≥ l, where SV (q) repre-
sents all the SA values associated with q.

4 Privacy Preservation in Publishing Electronic Health
Records Based on Perturbation (PPHR)

Our goal is to protect sensitive information in publishing EHRs by implementing
l-diversity and to provide the data utility. The notations commonly used in this
section are listed in Table 2.
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Table 2. Notations

Notations Description

T The original data before being published

m Maximum length of the trajectory sequence as the adversary’s background knowledge

CS Set of sequences whose SA values do not satisfy l-diversity

T (q) Records including q in T

SV (q) All the SA values associated with q in T

SP Set of sequences in CS that need subtraction operation

AP Set of sequences in CS that need addition operation

4.1 Overview

Our PPHR aims to protect the privacy of sensitive attribute and resist the
attacks based on the background knowledge of a part of healthcare trajectory.
PPHR can be divided into two steps: identifying critical sequences in the trajec-
tory data and anonymizing the dataset T . A critical sequence is one whose length
does not exceed m and the number of SA values corresponding to this sequence
does not satisfy l-diversity. To achieve l-diversity of SA values, we implement
perturbation by adding or subtracting points in the trajectory sequences includ-
ing the critical sequences as shown in Fig. 1:

Fig. 1. Architecture of PPHR
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4.2 Algorithm

In order to achieve l-diversity of SA values, we use perturbation to obscure the
correlation between healthcare trajectory and SA. We first identify the critical
sequences that are easy to reveal the privacy of patients, and then revise the
matching records of these sequences to achieve l-diversity.

Determining Critical Sequences. In this process, we find those sequences
whose length is equal to m and does not satisfy l-diversity. The steps to determine
the critical sequence in the trajectory are listed as follows:

Step 1: First, the trajectory sequences of length m in each record are deter-
mined. In addition, if the whole length of a user’s health trajectory is less than
m, the trajectory will be checked whether it can be treated as a critical sequence
in the next step.

Step 2: For each sequence q got in Step 1, if the number of types of the
corresponding SA values matched by q in T is less than l, i.e. |SV (q)| < l,
q will be regarded as a critical sequence and be added into CS, where |SV (q)|
represents all the SA values associated with q in T and CS is the set of sequences
whose SA values do not satisfy l-diversity.

Algorithm 1. Determining critical sequences
Require:

Original dataset of EHRs: T
Ensure:

Critical sequences: CS

1: CS ← Null � set of sequences whose SA values do not satisfy l-diversity.
2: for each trajectory t ∈ T do
3: if length(t) ≤ m then
4: if | SV (t) |< l then
5: add t → CS
6: end if
7: else
8: Q ← Null � set of sequences of length m
9: Add all the sequences q of length m in t to Q

10: for each sequenceq ∈ Q do
11: if | SV (t) |< l then
12: add q → CS
13: end if
14: end for
15: end if
16: end for
17: return CS



Privacy Preservation in Publishing Electronic Health Records 133

Performing the Anonymization. In this process, we execute addition or
substraction operation to make SA satisfy l-diversity. For each sequence q in
CS, we first determine the addition or substraction operation by evaluating the
data utility. Then, l-diversity of SA values corresponding to q will be satisfied
by adding or substracting points in the healthcare trajectory of records corre-
sponding to q.

Algorithm 2. Performing the anonymization
Require:

Original dataset of EHRs:T
Ensure:

Anonymous dataset of EHRs: T ∗

1: T ∗ ← T
2: CS ← Null � set of sequences whose SA values do not satisfy l-diversity.
3: SP ← Null � Set of sequences in CS that need substraction operation.
4: AP ← Null � Set of sequences in CS that need addition operation.
5: for each sequence q ∈ CS do
6: if |T (q)| ≤ (l − |SV (q)|) ∗ |q| then
7: add q → SP
8: else
9: add q → AP

10: end if
11: end for
12: for each sequence q ∈ SP do
13: for each point p ∈ q do
14: if no new critical sequence caused by subtracting p then
15: subtracting p from T ∗(q)
16: end if
17: end for
18: end for
19: for each sequence ∈ AD do
20: AlterRec ← Null � The records can be constructed q
21: Add the records whose SA values are not in SV (q) and there is no location

conflict at the corresponding timestamp into AlterRec
22: sort AlterRec by LCS
23: constructed q in first l − |SV (q)| records of AlterRec in T ∗

24: end for
25: return T ∗

Step 1: We define the following criteria to determine addition or substraction
operation,

CR(q) = |T (q)| − (l − |SV (q)|) ∗ |q|, (3)

where |T (q)| represents the number of records that include q, SV (q) all the SA
values associated with q, and |q| the length of q. When l-diversity is not satisfied,
l−|SV (q)| indicates the number of different SA values that need to be added in
order to satisfy l-diversity. (l−|SV (q)|)∗|q| represents the upper limit of number
of points to be add to achieve l-diversity. CR(q) ≤ 0 means the number of points
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modified in the anonymized data will be smaller if the subtraction operation is
executed. In this case, a better data utility can be provided. q will be add to the
set SP . Otherwise, if CR(q) > 0 holds, the addition operation is necessary and
q will be add to the set AP .

Step 2: For each critical sequence q in SP , we use the subtraction method
to eliminate q from T , but a new critical sequence cannot be generated. When a
special point is moved from all the records in T (q), q will not appear any more
in the published data. Consequently, there is no any privacy leakage caused by q.
If a new critical sequence is caused by executing the subtraction operation, q will
be added into AD.

For example, 2-diversity is not satisfied for the sequence q = f6 → e9 in
Table 1, because there is only one SA value such as Ben’s disease. To achieve
2-diversity, we execute subtraction to process q. If f6 is moved from q = f6 → e9,
e9 can achieve 2-diversity such as the 2nd and 8th records in Table 1. But,
c5 → f6 will be a new critical sequence, because only one value for this sequence
such as the 5th record exists. If e9 is moved from q = f6 → e9, there is no new
critical sequence generated. Finally, we will subtract e9 to eliminate the privacy
threat of the original sequence q = f6 → e9.

Step 3: For each sequence q in AP , we use addition operation to construct
q on the selected records to satisfy l-diversity.

First of all, we select the records whose SA values are not in SV (q) because we
must increase the variety of SA values in order to achieve l-diversity. In addition,
we need to add points at some timestamps to construct q. When adding a point,
we must ensure that there is no same point at the corresponding timestamp in T .

Last, we use the Longest Common Subsequence (LCS) to sort the selected
records. A sequence will be the longest common subsequence if it is a subsequence
of two or more sequences and is the longest of all subsequences. For example,
the LCS of a1 → d2 → c5 → f6 → c7 and c5 → f6 → e9 is c5 → f6. We choose
l − |SV (q)| records which have longer LCS to construct q to satisfy l-diversity.

4.3 Privacy Analysis

In our algorithm, we only need to consider sequences of length m. We use per-
turbation to process the sequences of length m to achieve l-diversity of SA. In
this section, we aim to prove that those sequences of length less than m make
l-diversity be satisfied if l-diversity is met for all sequences of length m.

For each sequence q of length less than m, we assume q is the subsequence of
n parent sequences q1, q2..., qn which qi represents a sequence of length m. The
records in SV (q) are composed of all records in SV (qi) for i = 1 · · · n. We can
get the following equations:

SV (q) = SV (q1) ∪ SV (q2) · · · ∪ SV (qn)
|SV (q)| = |SV (q1) ∪ · · · ∪ SV (qn)|

≥ |SV (qi)|
≥ l (4)
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Consequently, we can prove that all the sequences of length no more than m
can make l-diversity be satisfied in the anonymized data T ∗. l-diversity of the
SA values is achieved in T ∗.

5 Performance Evaluations

To evaluate the performance of our PPHR, we use a real-world dataset MIMIC-
III dataset [11]. MIMIC is a publicly available data set which includes identi-
fied health data associated with approximately 40,000 patients. It includes per-
sonal information, diagnostic information, medication information, measurement
results, etc. We selected the health data of 11,047 patients. Disease as SA con-
tains 32 possible values and 8 of them are considered as sensitive values. The health
measurement history of these 11,047 patients contains 90 types of disease and 24
different timestamps. We implement our PPHR algorithm in Python. We evaluate
the performance on a PC with an Intel Core i7 2.5 GHz CPU and 8 GB RAM.

We compare our PPHR with PPTD [14], and KCL-Local [4]. KCL-Local
combines local suppression and global suppression to implement (k,C)m-privacy
model. (k,C)m-privacy model can implement k-anonymity to resist record link-
age attack and implement C confidence to resist attribute linkage attack. m is
the upper limit of the attacker’s background knowledge as defined in this paper.
PPTD achieve personalized privacy with sensitive attribute generalization and
trajectory local suppression which also resist record linkage attack and attribute
linkage attack.

5.1 Utility Loss

In this section, we the following metrics to evaluate the performance of data
utility [4,14].

– Trajectory Points Loss (TPL), the loss rate of trajectory points data after
anonymization which contains ratios for increasing and decreasing trajectory
points, is defined as |P (T∗)−P (T )|+|P (T )−P (T∗)|

|P (T )| , where P (T ∗) and P (T ) are
the sets of trajectory points in T ∗ and T .

– Frequent Sequences Loss (FSL), the loss rate of frequent sequences which
contains ratios for increasing and decreasing frequent sequences, is defined as
|F (T∗)−F (T )|+|F (T )−F (T∗)|

|F (T )| , where F (T ∗) and F (T ) are the sets of frequent
sequences in T ∗ and T .

To study the effectiveness of PPHR, we evaluate the utility loss by varying
l and m. For frequent sequences loss, we choose K ′ = 70 which is the frequency
threshold of frequent trajectory sequences.
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Effect of l. Figure 2 shows that the impact of l on TPL and FSL. As l varies
from 3 to 7, both types of utility loss increase slowly because as privacy require-
ments increase, more points need to be added or subtracted in our PPHR. For
different sequences, we take n appropriate addition or substraction operation
to achieve l-diversity, which can effectively reduce the utility loss. Addition is
more conducive to protect the frequent sequences. In addition, as m increases,
utility loss also increases.
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Fig. 2. Utility Loss vs. l-diversity.

5.2 Leakage Probability

We use the leakage probability as a measure of the probability that each sequence
could cause a privacy breach. The leakage probability of a sequence q is defined as:

Prleak(q) = max(
1

|SV (q)| ,
maxSA

|T (q)| ),

where 1
|SV (q)| and maxSA

|T (q)| represent the probability of identity disclosure and that
of attribute disclosure respectively.

We randomly sample 20k sequences whose length is not more than m to cal-
culate the leakage probability of each sequence. The average leakage probability
is shown in Fig. 3. As l increases, leakage probability gradually decreases because
both the number of records that q matches and the types of SA increase.
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5.3 Comparison

We compare our PPHR with KCL-Local and PPTD on both types of utility
loss and runtime. Our PPHR achieves l-diversity to defend against both attacks
while KCL-Local and PPTD achieve (k,C)m-privacy model. Though these kinds
of schemes implement different privacy models, they can resist record linkage
attack and attribute linkage attack. Consequently, we compare them by evaluat-
ing the leakage probability as the privacy protection degree. Then, we compare
the utility loss under the same level of privacy protection. For example, leak-
age probability of 3-diversity and (5, 0.5)-privacy model means the same level of
privacy protection.
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Fig. 4. Utility loss

We vary l from 3 to 7 with m = 3 to compare the effect of l on PPHR. We
set the values of k and C to ensure these 3 schemes can provide the same privacy
level as l varies. Figure 4 shows KCL-Local has the worst performance because
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a large number of points are subtracted by the global suppression and therefore
utility loss is caused severely. The performance of PPTD is better than KCL-
Local, because PPTD only handles records that may cause privacy breaches. Our
PPHR chooses addition or subtraction options to achieve the best data utility
by trying to change fewer points.
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Fig. 5. Runtime

Runtime. Figure 5 shows the runtime increases with l because more sequences
are processed, causing more time. PPTD has the longest running time because it
takes some time to determine new critical sequences. Our PPHR has the shortest
running time because we only process the sequences of length m but KCL-Local
and PPTD should deal with the sequences of length no more than m. Besides,
it is no necessary to consider the influence of new critical sequences during the
addition operation in our PPHR.

6 Conclusion

We design and implement an anonymous technique to protect the sensitive
attribute during publishing the EHRs. In our scheme, we first determine the
critical sequences based on which some specific patients are easy to be identi-
fied. To resist the record linkage attack and attribute linkage attack, we adopt
perturbation to process these critical sequences by adding or deleting some points
to make the SA values in the published data satisfy l-diversity. Our performance
studies based on a comprehensive set of real-world data demonstrate that our
scheme can provide higher data utility compared to peer schemes. In the future
work, we plan to optimization our algorithm to resist other linkage attacks.
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