
Android Malware Detection Based
on Sensitive Permissions and APIs

Chunhui Zhao1,2(B), Chundong Wang1,2, and Wenbai Zheng1,2

1 Key Laboratory of Computer Vision and System, Ministry of Education,
Tianjin University of Technology, Tianjin 300384, China

574878671@qq.com
2 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,

Ministry of Education, Tianjin University of Technology, Tianjin 300384, China

Abstract. With the widespread use of the Android operating system,
the number of applications based on the Android platform is growing.
How to effectively identify malware is critical to the security of phones.
This paper proposes an Android malware detection method based on
the combination of sensitive permissions and API features. This method
extracts the permission features and API features by decompiling the
APK file, and then uses the mutual information to select sensitive per-
missions and APIs as feature sets. On this basis, an ensemble learning
model based on decision tree classifier and KNN classifier is used to
quickly and accurately detect unknown APKs. The experimental results
show that the discriminative accuracy of the proposed method is higher
than that of the permission set or the API set alone, and the accuracy
rate can reach up to 95.5%.

Keywords: Permissions and APIs · Android malware detection ·
Mutual information · Ensemble learning algorithm

1 Introduction

With the continuous development of mobile phone hardware performance, smart
phones have become more and more popular in people’s daily life, and the cor-
responding Android applications are also growing. Since Android apps can earn
revenue through advertising, etc., many independent developers may pursue ben-
efits and steal the privacy, property, etc. of the downloaded users, which results
in the creation of a large number of malicious applications. In addition to the
Google Play market, there are many other third-party application download

Our work is supported by NSFC: The United Foundation of General Technology and
Fundamental Research (No. U1536122), the General Project of Tianjin Municipal Sci-
ence and Technology Commission under Grant (No. 15JCYBJC15600), and the Major
Project of Tianjin Municipal Science and Technology Commission under Grant (No.
15ZXDSGX00030).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

J. Li et al. (Eds.): SPNCE 2019, LNICST 284, pp. 105–113, 2019.

https://doi.org/10.1007/978-3-030-21373-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21373-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-21373-2_10


106 C. Zhao et al.

platforms on the market [1]. However, the supervision of relevant departments is
often limited, resulting in some malicious applications flowing into the market,
and the crazy spreading of people’s downloads has caused huge losses to peo-
ple. According to the 2017 Android malware special report released by 360 Fire
Lab [2], the total number of malware samples on the Android platform inter-
cepted in 2017 was 7.573 million, an average of 21,000 per day. Therefore, how
to effectively detect malicious applications from a large number of programs to
protect the security and interests of Android mobile phone users is a necessary
and urgent challenge for researchers.

The paper proposes an Android malicious application detection method
based on sensitive permissions and APIs. The method is mainly divided into two
parts: training phase and detection phase. In the training phase, the permissions
and API features in the APK file are extracted in batches by decompilation, and
then use the mutual information model to generate feature sets with 10 sensitive
permissions and 20 sensitive APIs ranking from high to low. The results of the
two classifiers of the tree classifier and the KNN classifier are linearly correlated
to generate the final result, which is used as an ensemble learning model. In the
detection phase, using the above set learning model to quickly classify a large
number of APKs. Experiments show that the detection method that combines
sensitive permissions and APIs is more accurate than the detection by using
permission or API alone.

2 Related Work

Malware detection and classification are challenging problems, especially on
mobile platforms. Researchers have made great efforts to address these prob-
lems in various ways. In this section, the previous work addressing malware
problems is discussed.

2.1 Dynamic Analysis Approaches

Android application dynamic analysis is to trace the relevant memory, such
as register contents, function execution results, memory usage, etc., to analyze
function functions, clarify code logic, and mine possible loopholes in the case of
running code. The advantage of the behavior-based detection method is that it
can handle the obfuscated encryption of the code very well. Many researchers
have deeply analyzed the application from a dynamic perspective. Cai and Chen
[3] proposed that there are some unique advantages of behavior-based dynamic
detection techniques. The feature databases are small and do not require frequent
updates. TaintDroid [4] identified sensitive information at a taint source, and
tracked, dynamically, the impact of labeled data to other data that might leak
the original sensitive information. The impacted data were identified before they
left the system at a taint sink. DroidScope [5] collected detailed native and
Dalvik instruction traces to track information leakage through both Java and
native components. These dynamic methods all aim to conduct taint analysis to



Android Malware Detection Based on Sensitive Permissions and APIs 107

detect suspicious behaviors during runtime. However, behavior-based detection
technology needs to be monitored in real time during the running of the program.
It requires high automation and real-time, and requires more time and memory
resources.

2.2 Static Analysis Approaches

Static code analysis is an analysis of code correctness and compliance that can
be performed without executing a program. The advantage of static code analy-
sis is the high speed of detection. Because there is no need to run, the detection
speed is fast. Apposcopy [6] proposed a high-level language to capture the sig-
natures describing semantic characteristics of malware families. Based on the
extracted signatures, a static analysis was conducted to detect certain malware
families. The literature [7] proposed a model based on API calls, and used the
permissions available in various Android applications to capture the functions
related to malware behavior, but there is a problem of high false positive rate
in this model, which needs to be solved in the future. Literature [8] proposed a
tool called Stowaway. With the help of this tool, people can identify whether the
programmer has excessive permission to apply for permission during the devel-
opment of Apps, because of this seemingly inconspicuous behavior there will be
many security risks for the application. Wang et al. [9] considered each permis-
sion as a feature to establish a feature vector and distinguish between malicious
programs and normal programs through classification algorithms. However, there
are limitations to only having permissions as features, because this does not fully
describe the characteristics of malware.

3 System Design and Implementation

The malware detection process framework designed in this paper is shown in
Fig. 1. The main process is divided into two parts: feature generation and inte-
grated learning model.

APK file Feature 
extraction

Collection of 
permission and 

API calls

Feature 
vector

DT
Classifier

Classification 
result

Classification 
result

kNN
Classifier

Result

Feature Generation

Ensemble Learning Mode

LWSM

Fig. 1. Flow chart of malware detection



108 C. Zhao et al.

3.1 Feature Generation

The feature generation phase mainly includes three modules: feature extraction,
generation permission application and collection of API calls, and feature vector
generation.

Feature extraction: APK is the Android application package file, which is
an application installation file format on the Android operating system. Struc-
turally, APK is a file based on the zip file format, which is similar to the way
jar files are constructed [10]. The permission information and API information
used in this article are respectively stored in the manifest.xml file and the smali
file. This article uses the python script file provided by the Androguard tool to
decompile static analysis. For this purpose, a python script program is written
to extract and output the application permissions and API calls information in
the APK file to the specified file in batches in order to complete the first step of
the experiment to extract features.

Generating a collection of permission requests and API calls: through the
above, the permissions and API information of the application have been col-
lected, but there are tens of thousands of known permissions and APIs, and
malicious applications and benign applications are different in the permission
applications and API calls. The extracted information features need to be fil-
tered. This paper uses the mutual information method to filter out the top 10
sensitive permissions and the 20 top sensitive APIs (see Table 1). Mutual infor-
mation can measure the relevance of specific permissions, APIs, with applica-
tions. A collection of permissions and APIs are choosed based on the relevance.
The formula for mutual information is as follows:

I(X,Y ) =
∑

xi

∑

yj

p(X = xi, Y = yj) × log
p(X = xi, Y = yj)

p(X = xi) × p(Y = yj)
(1)

Among them, the variable X indicates whether the permission or API appears
in an application, the variable Y represents the category of the application
(belonging to normal software or malware), and p(X = xi) indicates the prob-
ability that the variable X is xi, p(Y = yj) represents the probability that the
value of the variable Y is yj . According to the mutual information formula, the
correlation value I(X,Y ) of each permission or API with software is obtained.
The value ranges from 0 to 1. The larger the value, the higher the correlation
between the two. The value of 0 means there is no correlation between the two,
and the value of 1 means there must be a correlation.

Feature vector generation: for each application, create a 30-dimensional vec-
tor [feature]1∗30, including the 10 permission features and 20 API features pre-
viously filtered. Then this vector is uniformly formatted, that is, processed into
CSV format. If the feature of the corresponding dimension of the vector appears
in the file output in the feature extraction step, the dimension is set to 1, oth-
erwise it is set to 0.



Android Malware Detection Based on Sensitive Permissions and APIs 109

Table 1. The 10 most sensitive permissions and 20 most sensitive API calls

Permissions API calls

1 READ SMS 1 sendMultipartTextMessage() 11 getSimOperator()

2 SEND SMS 2 getNETWORKCountryIso() 12 getAccountsByType()

3 READ PHONE STATE 3 openConnection() 13 getDisplayMessageBody()

4 READ CONTACTS 4 chmod() 14 com.android.contacts()

5 RECEIVE SMS 5 abortBroadcast() 15 getOutputStream()

6 ACCESS NETWORK STATE 6 writeTextMessage() 16 getDeviceId()

7 INTERNET 7 writeExternalStorageState() 17 getInputStream()

8 CALL PHONE 8 sendTextMessage() 18 startService()

9 WRITE SMS 9 getLine1Number() 19 getRunningTasks()

10 INSTALL PACKAGES 10 getLastKnownLocation() 20 updateConfigurationLocked()

3.2 Ensemble Learning Model

The classification algorithm is trained by using the feature vector [11] of the
collected samples, and then discriminates the unknown samples. Different clas-
sification algorithms are trained and tested for the same batch of samples, and
the resulting classification results will be different. Therefore, using the ensemble
learning method to classify the training of samples. This study uses the ensemble
learning method based on kNN and decision tree to train and classify samples.
In the ensemble learning model, a single weak classifier performs training pre-
diction on the sample data, and then combines the prediction results of these
weak classifiers to vote for the final prediction result. This approach reduces
the variance of the base class classification by introducing randomness into the
model building process [12].

Weak classifier: first of all, the kNN classification algorithm is easy to imple-
ment and understand, and it has high classification accuracy in the classification
algorithm. In addition, KNN is an online technology, new data can be directly
added to the data set without retraining, so the kNN classifier is more suitable
than other classifiers. The “information gain” approach is used in the attribute
selection of the decision tree algorithm, which is much the same as the mutual
information method used in this study. Therefore, the decision tree classifier is
used.

Weighted voting: better classification results can be obtained by combining
multiple individual classifiers into one strong classifier. This paper assigns dif-
ferent weights to KNN and decision tree classifier. Finally, the weight of 0.4
is assigned to KNN, and the weight of 0.6 is assigned to the decision tree. If
the detected application is benign, then result-DT and result-kNN are set to 1.
Otherwise, set it to 0. In addition, our detection model has a threshold set to
0.5. This is because the probability that an unknown application is considered
malicious is theoretically the same as a benign probability. Specifically, using
the Linear Weighted Weights Method (LWSM) to calculate the probability that



110 C. Zhao et al.

an unknown application is classified as a vicious or benign program. The linear
weighted sum calculation is shown in Eq. 2:

Result =
1
2
(R1 ∗ P1 + R2 ∗ P2) (2)

Where Ri represents the result of the classifier, its value is 0 or 1, which
means that the application is a malicious application or a benign application. Pi

represents the weight of the two classifiers, and P1 + P2 = 1. Based on this, the
following four results are obtained:

• when result-DT = 1 & result-kNN = 1:
Result = 1

2 (1 ∗ 0.6 + 1 ∗ 0.4) = 0.5
• when result-DT = 1 & result-kNN = 0:

Result = 1
2 (1 ∗ 0.6 + 0 ∗ 0.4) < 0.5

• when result-DT = 0 & result-kNN = 1:
Result = 1

2 (0 ∗ 0.6 + 1 ∗ 0.4) < 0.5
• when result-DT = 0 & result-kNN = 0:

Result = 1
2 (0 ∗ 0.6 + 0 ∗ 0.4) < 0.5

If the result is equal to 0.5, the application will be judged as a benign appli-
cation. Otherwise, it will be a malicious application.

4 Experimental Results and Analysis

4.1 Experimental Environment

In this experiment, 2474 normal applications and 3526 malicious applications
are selected as experimental data sets. Among them, the normal Android appli-
cations are collected from third-party application market and Google Android
Market [13] by using web crawler programs, and the malicious applications are
provided by the malicious sample set of the virusShare.com [14]. The experi-
mental environment is: operating system of Windows 10, processor: Intel Core
i5, 4 GB of memory, Python 2.7 scripting languages.

4.2 Results and Analysis

In order to evaluate the detection model, testing a large number of samples for
experiments and conducted multiple sets of comparative experiments to demon-
strate the superior performance of proposed test models. The results of the
experiment are evaluated by TPR, FPR, Precision and Accuracy.

Overall performance: as shown in Fig. 2, experiments are performed on 5,000
samples by selecting different features. The distribution ratio of test set and
training set is 1:3. As can be seen from the figure, the overall detection accuracy
of the model can reach 95.5%. Our proposed method of combining permissions
and API as a feature has a better classification effect than the detection of a
feature alone. It can be clearly seen that the single feature detection in detection

http://virusShare.com


Android Malware Detection Based on Sensitive Permissions and APIs 111

Fig. 2. Overall performance

Fig. 3. Ensemble learning model performance

accuracy is lower than the permission and API combination detection. And our
method has a significant reduction in the false positive rate, but the false positive
rate is still high, which is a problem needed to be solved in the future. In short,
the malware detection method proposed based on sensitive permissions and API
has better detection results.

Ensemble learning model effect: the ensemble learning model is evaluated
by comparing the combined classification method of k-nearest neighbors and
decision trees with the classification method using only one of them. The effect
diagram is shown in Fig. 3. Through Fig. 3, all aspects of using the ensemble
learning model are better than using any of the classifiers alone, so using the
ensemble learning model to detect and classify is effective.

Ensemble learning model weight selection: the ensemble learning model needs
to assign a weighting ratio to the classification results of each classifier to obtain



112 C. Zhao et al.

Fig. 4. The effect of weight on accuracy

the final classification result. Different weights have a significant impact on the
final classification result. For this reason, selecting the test weighting interval to
be 0.1 to obtain the detection accuracy of different weight ratios as shown in
Fig. 4. It can be seen from the figure that different weight selection has a great
influence on the accuracy of the whole model. According to the figure, the final
choice is to assign a weight of 0.6 to the decision tree classifier and assign 0.4
to the kNN classifier. This is also because the kNN algorithm itself is relatively
simple, and it has a certain influence on the experimental results when facing
the unbalanced data set.

5 Conclusion

Starting from the two characteristics of the Android application’s permissions
and API, we collect the feature set of the application software sample through
decompilation, and then extract the high-risk API and permission features using
the mutual information model, and combine the two to generate the permission-
API feature. The vector is then used to implement classification detection of
Android malicious applications through an ensemble learning model. The simu-
lation experiments on 3526 malicious applications and 2474 normal applications
show that the proposed method has good effects on accuracy and true posi-
tive rate. This method can effectively improve the accuracy of Android mali-
cious application detection, more comprehensively reflect the characteristics of
Android applications, but the false positive rate of this method is still slightly
higher, and we need further improvement in subsequent research.



Android Malware Detection Based on Sensitive Permissions and APIs 113

References

1. Wu, D.J., Mao, C.H., Lee, H.M., Wu, K.P.: DroidMat: Android malware detec-
tion through manifest and API calls tracing. In: 7th Asia Joint Conference on
Information Security, Tokyo, Japan, pp. 62–69 (2012)

2. 360 Campfire Lab: 2017 Android malware special report. http://blogs.360.cn/post/
review android malware of 2017-2.html. Accessed 3 Jan 2018

3. Cai, L., Chen, T.: Research review and outlook on Android mobile malware detec-
tion. In: Netinfo Security 2016, vol. 9, pp. 218–222 (2016)

4. Enck, W., et al.: TaintDroid: an information-flow tracking system for real time
privacy monitoring on smartphones. ACM Trans. Comput. Syst 32(2), 5 (2014)

5. Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: Proceedings of 21st
USENIX Security Symposium, pp. 569–584 (2012)

6. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection
of Android malware through static analysis. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
576–587 (2014)

7. Sharma, A., Dash, S.K.: Mining API calls and permissions for Android malware
detection. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 191–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12280-9 13

8. Felt, A.P., Chin, E., Hanna, S., et al.: Android permissions demystified. In: Pro-
ceedings of 18th ACM Conference on Computer and Communications Security, pp.
627–638 (2011)

9. Wang, W., Wang, X., Feng, D.W., et al.: Exploring permission-induced risk in
Android applications for malicious application detection. IEEE Trans. Inf. Foren-
sics Secur. 9(11), 1869–1882 (2014)

10. APK. http://zh.wikipedia.org/wiki/APK
11. Xiang, C., Yang, P., Tian, C., Liu, Y.: Calibrate without calibrating: an iterative

approach in participatory sensing network. IEEE Trans. Parallel Distrib. Syst.
26(2), 351–356 (2015)

12. Yang, Z., Wu, C., Zhou, Z., Zhang, X., Wang, X., Liu, Y.: Mobility increases
localizability: a survey on wireless indoor localization using inertial sensors. ACM
Comput. Surv. 47(3), 1–34 (2015)

13. Google Android Market. http://play.google.com/store/apps?
feature=corpusselector. Accessed 30 Jan 2017

14. Virusshare. http://virusshare.com. Accessed 30 Sept 2017

http://blogs.360.cn/post/review_android_malware_of_2017-2.html
http://blogs.360.cn/post/review_android_malware_of_2017-2.html
https://doi.org/10.1007/978-3-319-12280-9_13
https://doi.org/10.1007/978-3-319-12280-9_13
http://zh.wikipedia.org/wiki/APK
http://play.google.com/store/apps?feature=corpusselector
http://play.google.com/store/apps?feature=corpusselector
http://virusshare.com

	Android Malware Detection Based on Sensitive Permissions and APIs
	1 Introduction
	2 Related Work
	2.1 Dynamic Analysis Approaches
	2.2 Static Analysis Approaches

	3 System Design and Implementation
	3.1 Feature Generation
	3.2 Ensemble Learning Model

	4 Experimental Results and Analysis
	4.1 Experimental Environment
	4.2 Results and Analysis

	5 Conclusion
	References




