
Time Bound Robot Mission Planning
for Priority Machine Using Linear Temporal

Logic for Multi Goals

Venkata Beri(&), Rahul Kala, and Gora Chand Nandi

Robotics and Machine Intelligence Laboratory,
Indian Institute of Information Technology, Allahabad, Allahabad, India

venkat.beri@gmail.com, rkala001@gmail.com,

gcnandi@gmail.com

Abstract. In this paper, we implement a Linear Temporal Logic-based motion
planning algorithm for a prioritized mission scenario. The classic robot motion
planning solves the problem of moving a robot from a source to a goal con-
figuration while avoiding obstacles. This problem of motion planning gets
complicated when the robot is asked to solve a complex goal specification
incorporating boolean and temporal constraints between the atomic goals. This
problem is referred to as the mission planning. The paper assumes that the
mission to be solved is a collection of smaller tasks, wherein each task con-
stituting the mission must be finished within a given amount of time. We assign
the priorities for the tasks such that, the higher priority tasks should be com-
pleted beforehand. The planner solves the missions in multiple groups, instead
of the classic approach of solving all the tasks at once. The group is dynamic
and is a function of how many tasks can be incorporated such that no time
deadline is lost. The grouping based prioritized and time-based planning saves a
significant amount of time as compared to the inclusion of time information in
the verification engine that complicates the search logic. NuSMV tool is used to
verify the logic. Comparisons are made by solving all tasks at once and solving
the tasks one-by-one. Experimental results reveal that the proposed solver is able
to meet the deadlines of nearly all tasks while taking a small computation time.

Keywords: Linear temporal logic � Mission planning �
Robot mission planning � Model checking � NuSMV

1 Introduction

The problem of robot motion planning is to empower a robot to explore and advance
out in a confused hindrance or an obstacle-prone environment. A number of technology
applications for mission planning and self-governing frameworks [1], (e.g., autono-
mous vehicle, unmanned air vehicles) require effective procedures that can produce the
desired sequence of operations to be done to achieve the user defined mission, correctly
and effectively. Over the period of time, the idea of correctness and efficiency has
become more and more sophisticated. This results in providing tasks consisting of
many other sub tasks with Boolean and temporal constraints, rather than a single goal

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
N. Kumar and R. Venkatesha Prasad (Eds.): UBICNET 2019, LNICST 276, pp. 250–263, 2019.
https://doi.org/10.1007/978-3-030-20615-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-20615-4_19

problem constituting the classical motion planning problem. The complex goals and
several environmental constraints can make a robot wander infinitely in an environment
for a given problem statement.

This paper consequently solves the high-level mission planning problem, where the
mission is given as linear temporal logic (LTL) formula and develops controllers for
the same. It generates the path for the robot which satisfies the given LTL formula. One
of the qualities of this system is that it considers assignments in which the conduct of
the robot relies upon the data it assembled at runtime. If the task is feasible, then the
LTL will be generating a sequence so as to give a path to the robot that accomplishes
the mission. There are bisimulation methods which provide a finite transition system to
provide an optimal run [2]. The model checking tools NuSMV [3, 4] and LTLMoP [5],
provide us the guarantee that the specifications can be guaranteed.

Temporal logic has been used for many complex specifications [6–8]. We construct
the problem into a map by partitioning the workspace of the robot [9] and formulating
an LTL for its desired behavior. This paper describes the problem of solving a mission
planning with the help of LTL specified goals. Metric Temporal logic is another such
instance used for obtaining the results in the desired way [10]. Temporal logic has been
used for sampling-based motion planning where a multi layered approach has been
presented [11]. A mechanism to deal with the large computation time of Temporal
Logic is also to use restricted languages and evolutionary techniques to generate
iterative solutions [12, 13].

Solving the problem of mission planning hence requires representing the mission as
a LTL formula and solving the same using any LTL based verification system. There
are two problems that occur in this methodology. First, that the verification of a
solution in LTL has an exponential complexity and therefore there is a limited size that
the formula can have. Second, the real-life missions can be very complex, requiring
time for the robot to compute a solution, however the real-life missions are also real
time in nature and beyond a time the solution is needless as the facts requiring the
solution may have changed (like the need to have a coffee in a meeting) or a person
may volunteer to himself/herself carry the job without the robot.

A typical way of solving the problem is by incorporating timing information
associated with the missions and its components thereon for verification. However, the
robot first plans and then executes the mission, and the time incurred in the planning
stage is significantly high and cannot be assumed to be zero that the current approaches
assume. Further, adding time information complicates the search space for a solution in
the verification engine and this severely complicates the time.

In this paper, the same problem is solved by decomposition. We assume that a
mission is composed of smaller sub-missions called tasks. Each task has its own
priority and hence a time within which the task must complete. The search incre-
mentally groups tasks to make a mission, such that the total incurred computation time
and expected processing time is within the threshold of time and the solution is hence
useful. The grouping also ensures that the number of propositional variables in the LTL
formula are small and the computation time as per the exponential complexity of LTL
is hence limited.

Time Bound Robot Mission Planning 251

This paper has been discussed as per the following sections. Section 2 provides a
brief about Linear temporal logic. Section 3 discusses the proposed methodology.
Section 4 details about the results and simulations. Finally, Sect. 5 concludes the paper.

2 Linear Temporal Logic

Linear temporal logic defines set of logic operators which are bound with a factor of
time in contrast to the traditional Boolean logic. The linear temporal logic consists of
the operators such as eventually (◊), next (□), always (○) and until (U). These
operators are further described by the assumptions such as safety, liveliness,
sequencing and reachability.

The typical LTL operators used are notably used as: Next or ○/, meaning / is true
in the next moment in time; Always or □/, meaning / is true in all future moments of
time; Eventually or ◊/, meaning / is true in some future moment; and Until or / U w,
meaning / is true until w is true. The LTL has some properties with environment
assumptions these include:

Safety:Which describes the condition which must be always satisfied, for example like
“Always avoid obstacles”. The LTL formula negation (¬) is used to describe the
conditions ¬(O1 _ O2 _ O3 _ … _ On) U R means eventually reach region R by
avoiding all obstacles Oi, i = 1, 2, … n.
Liveness: This specifies that goals which always must be eventually satisfied by some
actions in the future (e.g. “if region A is visited then must visit region B infinitely
often”).
Sequencing: This describes the sequence of goals to be followed in any order. The LTL
formula ◊ specifies that we must visit all regions (i.e. R1, R2, R3, R4, R5) as per
requirement ◊ (R1 ^ ◊ (R2 ^ ◊ (R3 _ ◊ R4))) in given environments.
Reachability: An individual state assume is reachable from any initial present states.
Moreover, this kind of goal specification is more useful when the problem is similar
corresponds to a single/multi goals without any complex specifications.

3 Proposed Methodology

3.1 Overall Solution Design

The general approach for motion planning comprises of generating the graphical image
or representation of the given map from the environment as based on the conditions,
mission specification, navigation, control and planning shown in Fig. 1.

Mission Specification describes how we achieve the end goal. For example, it can
be to reach a point B from Point A without reaching a particular point C. Mission
Planner tells on an overlay how this specific goal can be achieved. Low level planning
involves various strategies. The control specification lets us control the robot in the
specific directions with the concerned motion.

252 V. Beri et al.

Mapping involves looking at the real-world as it is. It depicts the arrangement of the
system in the real-world. Localization tells us where the particular object is with respect
to the map. It takes into consideration the robots’ exact coordinates. The entire real-
world system or experimental scenario is represented using a map. Map of real-life
environments may 2D or 3D. The map conversion from real-world to workspace
environment can happen through camera calibrations, distance information of obstacle
to regions, navigable path area, etc.

Path planning can be done in a structured environment or in an unstructured
environment. In a structured environment, the obstacles are represented using polygon
like figures whereas in the unstructured environment, the size and the shape of the
obstacles are not available. This will generate plans only for valid for the LTL spec-
ifications and synthesis of the LTL specifications.

3.2 Triangulation

While representing the real-world system for our navigation map in workspace con-
figurations, we first need an efficient technique for representing the complicated world
system. Thus, we need to redesign the real-world environmental information for a
robotic map. The path from source to goals is fully dependent on how the real-world
system is represented.

The original map is assumed to be known with polygons acting as the obstacles.
The robot moves in free areas and therefore the free areas are modelled by using
triangulation. Triangulation involves the decomposition of the regions into a polygonal
area or rather a set of triangles [9, 14]. The area classified as the regions covered by the
obstacles which is referred as holes, which is required so that no triangulation happens
inside the obstacles, whereas the rest of the region lies to be under triangulation. Each
of these triangles or regions serve as a well-connected graph, so that the transitions can
be done easily. We consider the map shown in Fig. 2 for all the experiments, which
represents a typical map of any home or office scenario. The same map will be used for
discussions. The regions of interest are labeled. The given map was triangulated and the
result is shown in Fig. 3.

Fig. 1. Overall solution design

Time Bound Robot Mission Planning 253

4 Mission Solver

The main aspect of the problem is solving for a mission. Assume that the mission is
given by w. In our case we assume that the mission is composed of a group of tasks of
the form w = [{</i, pi, hi>}, where /i is the ith task specified as a LTL, pi is the
priority of the ith task and hi is the time within which the task must be completed,
otherwise it will be useless to do the task. In the actual implementation the priorities
and time thresholds are taken to be related in the sense that a higher priority is given to
the tasks with a small time threshold, that is pi, = rank(hi), however in general the two
may not always be related and the algorithm is generic for the same.

The proposed algorithm operates in a greedy manner and takes up tasks in the
increasing order of priority. Therefore, the higher priority tasks get solved first and
have a lesser chance of losing the deadline. The assumption here is that a hard pri-
oritization is followed and a better priority task cannot be compromised to any number

Medical
 Store

Play
School

Bill
Payment

Groceries
Food
Court

Complex

Laundry

Electronics
Shop

Sports
Shop

Dental
Clinic

Gift
Shop

Fig. 2. Pictorial representation of the workspace

Fig. 3. Triangulated region of the workspace

254 V. Beri et al.

of smaller priority tasks. However, the time threshold is soft, meaning that even if a
task cannot be completed on time, it must still be completed as early as possible.
A group G is defined as an ordered sequence of tasks in the prioritized order, given by
Gk ¼ [½\/i; pi; hi [: pi � piþ 1; pj � p0 _ pj � pjGj8\/i; pi; hi [62 Gk�. Here
Gk denotes the kth group. Let Tk = tE + tP + Tk−1 be the total travel time for the robot to
cater to simultaneously solve all the tasks specified in Gk (say execution time, tE), the
time incurred in computing such a plan and division of the group (say planning time,
tP) and the time incurred in planning and executing all previous groups (say Tk−1). The
constraint is that either all tasks in Gk must adhere to their time thresholds, which is the
best possibility; however, in case a task cannot meet its time constraint, then it must be
the first and only task in the group so as to specify that there is no way to solve the task
within the time threshold, given by Tk \maxj2Gkhj _ Gk

�
�

�
� ¼ 1. Obviously, each task

is solved only once (Gk \Gl ¼ £ 8 k 6¼ l) and all tasks are solved (9k:\/i; pi;
hi [2 Gk).

The algorithm is then to iteratively build up the groups. Given the group Gk−1, the
formulation of the group Gk involves iteratively adding in tasks </i, pi, hi> to Gk until
the summation of times tE + tP + Tk−1 is within threshold maxj2Gkhj. A minimum of 1
task is compulsorily added. tP is the continuous summation over all times in the
iterative addition process. Thereafter the group is executed and the information is used
for designing the next group. Algorithm 1 gives a pseudo-code of the process.

5 Results and Discussions

For experimentation, we took the tasks given in Table 1 as per the priority assigned to
them in the increasing order, the top being more priority. We started off with the tasks
and carried out one after the other. NuSMV was used as a model verification tool.

• Task 1: Visit the medical store and pick up medicines and a syringe
• Task 2: Visit the laundry store to collect clothes and get them washed

Time Bound Robot Mission Planning 255

• Task 3: Visit the dental clinic to check whether the doctor is available or not until an
appointment is done.

• Task 4: Visit the office to pay the electricity and phone bills
• Task 5: Visit the Groceries shop to pick the kitchen items and utensils
• Task 6: Visit the Food court and order Chinese and continental food item
• Task 7: Visit the child play school and pick toys
• Task 8: Visit the gifts store and pack gift items dinner set and grinder box
• Task 9: Visit the sports shop and pick up a football and Tennis racquet
• Task 10: Visit the electronics Merchandise and bring appliances AC and a geyser
• Task 11: Visit the shopping complex and bring ties and some clips.

5.1 Simulation Scenario 1

The robotwas asked to visit themedical shop to pickmedicines and a syringe, followed by
visiting a laundry shop and getting the clothes washed, followed by a visit to the doctors
clinic until an appointment is being fixed, and visit to the office to pay the electricity bill
and phone bill, and then visit to the groceries shop to collect the kitchen items and utensils,
followed by a visit to the restaurant to order and collect Chinese and Continental food,

Table 1. Region aliases

S. No Area Alias

1 Medical: Medicine A1

2 Medical: Syringe A2

3 Laundry: Clothes B1

4 Laundry: Washing B2

5 Play School C1

6 Play School: Pick Toys C2

7 Bills: Electricity D1

8 Bills: Phone D2

9 Groceries: Kitchen items E1

10 Groceries: Utensils E2

11 Food Court: Chinese F1
12 Food Court: Continental F2
13 Dental Clinic: Doctor available G1

14 Dental Clinic: Appointment G2

15 Gift store: Dinner Set H1

16 Gift Store: Grinder Set H2

17 Sports Shop: Football I1
18 Sports Shop: Tennis Racquet I2
19 Electronics Shop: AC set J1
20 Electronics Shop: immersion rod J2
21 Complex: Ties K1

22 Complex: Clips K2

256 V. Beri et al.

next to the child play school and pick some toys, followed by the visit to a gifts store to
pack items dinner set and grinder box, subsequently to visit the sports shop to pick a
football and a Tennis racquet, followed by a visit to the electronics merchandise shop to
book an Air Conditioner and a geyser, and then finally to a shopping complex to bring
some clips and ties. The LTL specification for the same was as ((◊ A1 ^◊ A2 ^◊ B1 ^
◊B2^ ((◊C1) U (◊C2))^◊D1^◊D2^◊E1^◊E2^◊ F1^◊ F2^◊G1^◊G2^
◊ H1 ^ ◊ H2 ^ ◊ I1 ^ ◊ I2 ^ ◊ J1 ^ ◊ J2 ^ ◊ K1 ^ ◊ K2)).

The problem is solved by using the proposed algorithm. The threshold was set to
35 min. The algorithm succeeded by forming 2 groups only. The First group recorded a
time of 34.19 min for the path length of 139. The path followed by the robot is shown
by Fig. 4(a). Table 2 summarizes the calculations made by the algorithm in the
computation of the path. Group 2 primarily incorporates all other tasks and the path is
shown in Fig. 4(b) while the calculations are shown in Table 3. The total time required
to complete the assigned tasks was 34.26 min. The path length for the tasks to be
finished was 137 each assumed to be of a unit path length. Thus, with the proposed
algorithm, the total time comes out to be 72.47 min and the path length for the same
turns out to be 276 assuming unit lengths each which is less than that of the 290.

B1

B2

A1

A2

E2

C2

C1

E1 F1 F2

K1

K2

D1

D2

G2

G1

I2

I1
J2

J1

H1

H2

b)

a)

Fig. 4. Output of the algorithm (a) First group (b) Second group

Time Bound Robot Mission Planning 257

Overall with the proposed algorithm the computational time and the path length both
turned out to be modestly small, while the algorithm could cater to the time thresholds
of most of the tasks.

Table 2. First group with the relative path length

S. No No. of
propositions

Computation
time (secs)

Path
length

Robot driving
time (secs)

Total time
(mins)

1 2 151 43 645 10.75
2 4 313 53 795 13.25
3 6 537 83 1245 20.75
4 8 867 93 1395 23.26
5 10 1046 117 1755 29.26
6 12 2434 139 2085 34.19
7 14 3945 151 2265 37.81

Table 3. Second group with the relative path length

S. No No. of
propositions

Computational
time (secs)

Path
length

Robot driving
time (secs)

Total time
(mins)

1 2 147 65 975 16.25
2 4 425 86 1290 21.51
3 6 526 104 1560 26.01
4 8 794 122 1830 30.51
5 10 945 137 2055 34.26

A1

A2
B2
B1

C1

C2

D1

D2

E1

E2 F1 F2

H2

H1

J1
J2

I2

I1

G1

G2

K1

K2

Fig. 5. The Final Path depicting the tasks

258 V. Beri et al.

In order to compare the approach, two baselines are proposed. The first baseline is a
typical implementation of model verification using LTL, in which the entire mission is
given as one group to the mission solver, and is called as all at once for comparisons.
The second baseline is based upon the heuristics that the tasks are already available in
some prioritized manner. The baseline takes the missions in a greedy manner, in the
increasing order of priority and solves them one by one, called as one by one for
comparisons.

The results of the first baseline are shown in Fig. 5. The total path length taken to
traverse all the satisfying regions avoiding the obstacles was observed as 290. These
tasks were performed without having any time constraint. The total time taken for the
above specified specification was around 92.51 min for solving 22 proposition vari-
ables with 1200 s as the computation time and 4350 s as the robot driving time.

To compare the results, we use 3 metrics path length, total time (planning time and
execution time) and number of real time tasks whose time threshold was met. It can be
seen that the proposed algorithm performed better in all metrics as compared to the
baselines. The number of regions covered by our algorithm within the required
threshold was 8 as compared to the others which were 2. The results of the three
algorithms are summarized in Table 4. A more detailed view showing every task and
the performance on a per task basis can be seen from Table 5.

Table 4. Overall comparisons for scenario 1

Path length Total time (mins) No. of pass

Proposed algorithm 276 72.47 8
One by one 290 92.51 2
All at once 360 82.42 2

Table 5. Task level comparisons between algorithms for scenario 1

S. No Region Proposed algorithm One by one All at once

1 Medical 110, Pass 360, Fail 269, Fail
2 Laundry: 112, Pass 317, Fail 278, Fail
3 Play School 124, Pass 287, Fail 245, Fail
4 Bills: 68, Pass 261, Fail 233, Fail
5 Groceries 26, Pass 237, Fail 188, Fail
6 Food Court: 60, Pass 209, Fail 159, Fail
7 Dental Clinic 38, Pass 184, Fail 139, Fail
8 Gift store: 50, Pass 148, Fail 129, Fail
9 Sports Shop: 98, Fail 110, Fail 87, Pass
10 Electronics Shop 53, Fail 62, Fail 49, Pass
11 Complex: 16, Fail 14, Pass 15, Pass

Time Bound Robot Mission Planning 259

5.2 Simulation Scenario 2

The robot was asked to dental clinic to check whether the doctor was present or not,
followed by a visit to the groceries shop to pick some kitchen items, and then visit the
sports shop to find the new cricket bat and new hockey stick has arrived or not, suc-
ceeded by a visit to the laundry shop until the visit to the electronics shop to get a
washing machine, and visit to the play school to pick the toys for the children, followed
by the visit to the complex to get some new pins and ties, and then visit to the gift shop to
get some gift items packed. The temporal logic specification for the same is as
(((◊ G1) U (◊ G2)) ^◊ E1 ^◊ E2 ^◊ I1 ^◊ I2 ^◊ B1 ^◊ B2 ^◊ J1 ^◊ J2 ^◊ C1

^ ◊ C2 ^ ◊ K1 ^ ◊ K2 ^ ◊ H1 ^ ◊ H2). The total path length was observed to be 187.
The path length for the tasks to be finished was 137 with our proposed algorithm.

With the proposed algorithm, the total time comes out to be 52.34 min with respect to
the original time of 69.21 min and the path length turns out to be 137 assuming unit
lengths each which is less than that of the 187. Overall, with the proposed algorithm,
the computational time and the path length both turned out to be less. The number of
regions covered by our algorithm within the required threshold was 8 as compared to
the others which were 7. Table 6 shows the comparison of the path lengths when the
tasks were carried by proposed algorithm, all tasks taken in go and when a single task
at a time for scenario 2. Table 7 gives the calculations on a per task basis.

Table 6. Overall comparisons for scenario 2

Scenario 2 Path length Total time (mins) No. of pass

Proposed algorithm 137 52.34 8
One by one 149 62.42 7
All at once 187 69.21 1

Table 7. Task level comparisons between algorithms for scenario 2

Region Proposed algorithm One by one All at once

Dental Clinic: 48, Pass 187, Fail 61, Pass
Groceries 72, Pass 170, Fail 171, Fail
Sports Shop: 52, Pass 145, Fail 138, Pass
Laundry: 85, Pass 110, Fail 85, Pass
Electronics Shop: 91, Pass 95, Fail 91, Pass
Play School 72, Pass 81, Fail 72, Pass
Complex: 45, Pass 48, Fail 45, Pass
Gift store: 16, Pass 16, Pass 16, Pass

260 V. Beri et al.

5.3 Simulation Scenario 3

The robot was asked to dental clinic to check whether the doctor was present or not,
followed by a visit to the groceries shop to pick some kitchen items, and then visit the
sports shop to find the new cricket bat and new hockey stick has arrived or not,
succeeded by a visit to the laundry shop until the visit to the electronics shop to get a
washing machine, and visit to the play school to pick the toys for the children followed
by the visit to the complex to get some new pins and ties and then visit to the gift shop
to get some gift items packed. The temporal logic specification for the same is as (((◊
C1 ^ ◊ C2) U (◊ F1 ^ ◊ F2)) ^ ◊ D1 ^ ◊ D2 ^ ◊ J1 ^ ◊ J2 ^ ◊ I1 ^ ◊ I2 ^ ◊ K1 ^
◊ K2). The total path length was observed to be 125.

The total time required to complete the assigned tasks was 46.25 min. The path
length for the tasks to be finished was 137. With the proposed algorithm, the total time
comes out to be 46.25 min and the path length for the same turns out to be 125, which
is less than that of the 156. Table 8 shows the comparison of the chosen metrics with
the baselines for Scenario 3. Overall with the proposed algorithm the computational
time and the path length both turned out to be less. The number of regions covered by
our algorithm within the required threshold was 6 as compared to the others which
were 4 and 3 respectively. A detailed per-task view can be seen in Table 9.

6 Conclusions

In this paper, we have proposed a solution to the robotics mission planning problem
expressed with temporal logic with complex specifications wherein the mission is
composed of a prioritized set of tasks, each task has a time threshold within which it
must preferably be solved. We have demonstrated that the approach works much faster
as compared to the two baselines, solving the complete mission in a go and solving the

Table 8. Overall comparisons for scenario 3

Scenario 3 Path length Total time (mins) No. of pass

Proposed algorithm 125 46.25 6
One by one 149 56.42 4
All at once 156 62.45 3

Table 9. Task level comparisons between algorithms for scenario 3

Region Proposed algorithm Single task All at once

Play School 48, Pass 156, Fail 48, Pass
Food Court: 41, Pass 119, Fail 118, Fail
Bills: 54, Pass 103, Fail 104,Fail
Electronics Shop: 87, Pass 82, Pass 88, Fail
Sports Shop: 35, Pass 50, Pass 53, Fail
Complex: 15, Pass 15, Pass 15, Pass

Time Bound Robot Mission Planning 261

tasks one by one. This is one of the only papers that defines optimality as a mixture of
computation time and execution time of the robot which is a more realistic modelling.

The future work is to actually use the algorithm on a real robot and to ask it to
perform the operations. Furthermore, the algorithm may also be extended to the case of
multiple robots and task division among the robots is another interesting problem to be
looked into the future. The generic temporal logic does not give much scope to design
heuristic measures while the problem can best be solved if there are powerful heuristics
to attack. This makes the problem challenging.

Another typicality that can be considered is that the robot will interact with the
humans and the time for the same cannot be ascertained. This becomes more important
considering that the humans may not necessarily be at the workplace but somewhere
around as well as their presence or absence is stochastic in nature. So, the robot must be
able to locate the human in the vicinity, approach the human and get the needed
interaction done along with the human. These are all complex problems.

Acknowledgement. The research is supported by the Indian Institute of Information Technol-
ogy, Allahabad and the Science and Engineering Research Board, Department of Science and
Technology, Government of India through project number ECR/2015/000406.

References

1. Choset, H., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge (2005)

2. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 25(5), 279–295 (1997)
3. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking. In:

Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

4. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Logic in Computer Science, pp. 322–331 (1986)

5. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: experimenting with language, temporal
Logic and robot control. In: 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 18–22 October 2010, pp. 1988–1993 (2010)

6. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile
robots. In: Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain, pp. 2020–2025 (2005). https://doi.org/10.1109/robot.2005.
1570410

7. Antoniotti, M., Mishra, B.: Discrete event models+temporal logic=supervisory controller:
automatic synthesis of locomotion controllers. In: Proceedings of 1995 IEEE International
Conference on Robotics and Automation, Nagoya, Japan, vol. 2, pp. 1441–1446 (1995).
https://doi.org/10.1109/robot.1995.525480

8. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and
motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009). https://doi.org/10.1109/
TRO.2009.2030225

9. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and Delaunay
triangulator. In: Lin, M.C., Manocha, D. (eds.) WACG 1996. LNCS, vol. 1148, pp. 203–
222. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0014497

262 V. Beri et al.

http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1109/robot.2005.1570410
http://dx.doi.org/10.1109/robot.2005.1570410
http://dx.doi.org/10.1109/robot.1995.525480
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1007/BFb0014497

10. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications.
In: IEEE DCC, December 2008

11. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal
goals. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), 3–7
May 2010, pp. 2689–2696 (2010). https://doi.org/10.1109/robot.2010.5509503

12. Kala, R.: Sampling based mission planning for multiple robots. In: Proceedings of the 2016
IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, pp. 662–669 (2016)

13. Kala, R.: Dynamic programming accelerated evolutionary planning for constrained robotic
missions. In: Proceedings of the IEEE Conference on Simulation, Modelling and
Programming for Autonomous Robots, Brisbane, Australia, pp. 81–86 (2018)

14. Ruppert, J.: A delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. Algorithms 18(3), 548–585 (1995)

Time Bound Robot Mission Planning 263

http://dx.doi.org/10.1109/robot.2010.5509503

	Time Bound Robot Mission Planning for Priority Machine Using Linear Temporal Logic for Multi Goals
	Abstract
	1 Introduction
	2 Linear Temporal Logic
	3 Proposed Methodology
	3.1 Overall Solution Design
	3.2 Triangulation

	4 Mission Solver
	5 Results and Discussions
	5.1 Simulation Scenario 1
	5.2 Simulation Scenario 2
	5.3 Simulation Scenario 3

	6 Conclusions
	Acknowledgement
	References

