
A Taxonomy of Methods and Models
Used in Program Transformation

and Parallelization

Sesha Kalyur(B) and G. S. Nagaraja

Department of Computer Science and Engineering, R. V. College of Engineering,
VTU, Bangalore, India

Sesha.Kalyur@Gmail.Com, nagarajags@rvce.edu.in

Abstract. Developing Application and System Software in a High level
programming language, has greatly improved programmer productivity,
by reducing the total time and effort spent. The higher level abstrac-
tions provided by these languages, enable users to seamlessly translate
ideas into design and structure data and code effectively. However these
structures have to be efficiently translated, to generate code that can
optimally exploit the target architecture. The translation pass normally
generates code, that is sub optimal from an execution perspective. Sub-
sequent passes are needed to clean up generated code, that is optimal
or near optimal in running time. Generated code can be optimized by
Transformation, which involves changing or removing inefficient code.
Parallelization is another optimization technique, that involves finding
threads of execution, which can be run concurrently on multiple pro-
cessors to improve the running time. The topic of code optimization
and parallelization is quite vast and replete with complex problems and
interesting solutions. Hence it becomes necessary to classify the various
available techniques, to reduce the complexity and to get a grasp of the
subject domain. However our search for good survey papers in the sub-
ject area, did not yield interesting outcomes. This work is an attempt to
fill this void and help scholars in the field, by providing a comprehen-
sive survey and taxonomy of the various optimization and parallelization
methods and the models used to generate solutions.

Keywords: Taxonomy · Method · Model · Optimization ·
Transformation · Parallelization

1 Introduction

Software development in higher level languages, greatly reduces the burden on
the programmer, to seek solutions to problems in the system and application
domains. However, translation of programs from source languages to object code,
generates inferior, inefficient code due to the inherent nature, of the structure

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

N. Kumar and R. Venkatesha Prasad (Eds.): UBICNET 2019, LNICST 276, pp. 233–249, 2019.

https://doi.org/10.1007/978-3-030-20615-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_18&domain=pdf
http://orcid.org/0000-0002-3964-8117
https://doi.org/10.1007/978-3-030-20615-4_18


234 S. Kalyur and G. S. Nagaraja

of the programming languages. To generate code that is optimal from an exe-
cution perspective, cleanup of the translated code is necessary, an activity that
is usually referred to as Code Optimization. Code optimization is possible from
several perspectives namely, reduction of execution time, reduction of storage
requirement or reduction of energy requirement. In the present context, we use
the term code optimization to mean code transformation, to improve the run-
ning characteristics of the program. We sometimes use the term Optimization to
mean either transformation or parallelization. Program transformation includes
code changes, that affect a particular aspect of code, such as the instruction
count. Program parallelization involves finding concurrent threads of execution,
that can be run on separate processing elements.

The Program transformation landscape is quite fertile, and myriad solutions
exist. Although the primary goal of all transformation methods, is to improve
the running time of the program, the methodology followed by each technique, in
reaching the goal is unique. However it is possible to categorize these individual
techniques, based on one or more of the following criteria, namely those that
target the Instruction Count, Memory Latency, Locality and those that enable
other transformations and parallelization.

Program parallelization is a related problem, that is interesting as well, and
can be classified along multiple axes. At a very high level the parallelism that
is inherent in a program, can be visualized from a code or data perspective,
and accordingly we have parallelism that is code centric or data centric. Based
on the Programmer Involvement required or Ease of Use, parallelization can be
categorized as Manual, Semi-Automated or Explicit and Automated or Implicit.
Considering the Granularity of the Parallel Tasks, parallelization can be catego-
rized as Fine Grained or Coarse Grained. Parallelism in a program is contained,
in different regions and structures and accordingly can be classified as Loop
Level parallelism, Thread Level parallelism or Process Level parallelism. From a
performance criteria, parallelization can be classified as Task Level, Instruction
Level and Pipeline parallelism. Depending on the Architectural characteristics of
the target machine and the resulting Scalability, parallelization can be classified
as Shared Memory Parallelization, or Distributed Memory Parallelization. Par-
allelization could also be categorized, based on the latest emerging trends in the
field, as Parallelization by Speculation [1] and Parallelization by Comprehension.
Parallelization presents some interesting sub-problems, such as Sub-Program
Creation, Orchestration and Distribution which could also serve as criteria for
classification.

Since by nature the problems and their solutions, in the field of program
transformation and parallelization are non trivial, precise mathematical mod-
els are required, to represent the problems and subsequently derive solutions.
The range of models used and reported, in the literature is quite vast. We have
models based on Trees, Graphs, Machine Learning, Algebra, Statistics, Enu-
meration, Heuristics among others [2]. From the above presented arguments, it
should clear to the reader that the transformation and parallelization domain is



A Taxonomy of Methods and Models Used in Program Transformation 235

exhaustive, and diverse and requires classification and categorization, to simplify
and comprehend.

This research work is an effort in this direction and we attempt to fill the
void by providing comprehensive taxonomies of the methods and models used
in the domain of program transformation and parallelization. Section 2 provides
the taxonomy of methods used in program transformation. Section 3 contains
the taxonomic details of the methods used in program parallelization. Section 4
is dedicated to a discussion of the taxonomies of various models used in program
transformation and parallelization. Section 5 presents the various taxonomies
discussed earlier in graphical form, for easy comprehension.

2 Taxonomy of Methods Used in Program Transformation

The domain of Program transformation contains several techniques or methods
that can be classified along the following characteristics,

– Instruction Count Reduction
– Locality Improvement
– Memory Latency Reduction
– Parallelization Enablement
– Transformation Enablement.

2.1 Instruction Count Reduction

Instruction count for a given program, is the number of instructions executed,
for a certain run of the program. This metric is usually obtained, with the help
of dedicated hardware counters present in the architecture. This metric has a
direct bearing, on the execution time of the program. So one way to reduce the
running time of the program, is to reduce the instruction count.

Table 1 lists several popular transformation methods along with their descrip-
tions, which can be categorized as techniques that aim for the reduction of
Instruction Execution Count.

2.2 Locality Improvement

Program Locality is the term used to refer to the program behavior, wherein
recently used code and data are once again accessed, in a short time span.
Hardware caches are used, to store a subset of the recently used code and datum.
Accessing these items once again, can result in a cache hit. Since accessing
an item from the cache takes fewer execution cycles, than getting them from
memory, this can induce a substantial savings in the run time of a program.

The following table, Table 2 provides a listing of techniques and their expla-
nations, whose primary goal is to improve the Locality behavior of the program,
through caching of both code and data.



236 S. Kalyur and G. S. Nagaraja

Table 1. Instruction count reducing transformations

Method Description

1 Dead Code Elimination Removal of code controlled by an expression that always
evaluates to false

2 Flow of Control
Optimization

Removal of redundant jumps to jump instructions

3 Algebraic Simplification Replacement of algebraic expressions with simpler ones

4 Reduction in Strength Replacement of expressions with those that take fewer
run cycles

5 Machine Idioms Replacement of operations by more efficient ones

6 Common Sub-expression
Elimination

Eliminate the redundant expressions by saving the
result and using the result instead

7 Code Motion Move an expression that produces a constant value in
every loop iteration out of the body or header

8 Induction Variable Strength
Reduction

Replace operations that involve induction variables with
more efficient ones

9 Partial Redundancy
Elimination

Replace redundant expressions by storing results and
then using them subsequently

10 Bounds Check Elimination Costly array access checks are substituted by similar
checks at compile time

11 Leaf Routine Optimization Eliminate or reduce the function prologue and epilogue
overheads

12 Shrink Wrapping A prologue and epilogue overhead elimination technique
for non leaf routines

Table 2. Locality improving transformations

Method Description

1 Blocking Split a matrix in to sub-blocks and process a sub-block in its
entirety before processing another

2 Changing Data
Layout

Rearrange data structures in memory to exploit locality

3 Fusion Merge two adjacent loops

4 Reindexing Shift iterations by a constant term

5 Scaling Shift iterations by a constant factor

6 Reversal Process the loop in reverse order

7 Permutation Loops of a loop-nest are processed in the reverse order

8 Skewing Process iterations at an angle

9 Array Contraction An array variable in a loop is replaced by a scalar to improve
cache locality

10 Strip Mining Similar to Blocking but targets only a subset of loops in a
loop-nest

11 Procedure Sorting Rearrange procedure code based on its calling relationship and
frequency



A Taxonomy of Methods and Models Used in Program Transformation 237

2.3 Memory Latency Reduction

For programs that do not exhibit good locality, caches cannot improve the run-
ning time. Techniques such as Prefetching are employed, whereby an item in
memory is fetched in anticipation, before it is actually needed. Such techniques
work, by hiding the memory latency from the user.

Redundant Load Store Elimination is a transformation, that falls under the
category and involves removal of back-to-back Store followed by Load or vice-
versa. Prefetching is another transformation of this kind, which attempts to fetch
code and data to the cache in anticipation, before their actual reference. Cache
Block Alignment is aimed at eliminating multiple fetch requests to objects, that
span two cache lines by alignment, so that the request can be fulfilled in a single
request.

2.4 Parallalization Enablement

Techniques such as Loop Unrolling, that prepare code and data to effectively
enable the parallelization, which follows this step, can be referred to as Paral-
lelization Enablers. They basically transform code so that they are more paral-
lelization friendly even though they may not produce results right away.

Table 3 lists some transformations, that are parallelization enablers.

Table 3. Parallelization enabling transformations

Method Description

1 Loop Unrolling Replace loop with straight-line code by duplicating the body the
required number of times

2 Function Inlining Replace function calls by the code constituting the function
body

3 Fission Split a loop into two or more resulting loops

4 Tail Recursion
Removal

Replace recursive function calls by loop with calls to the
function in its body

5 Predicated
Execution

Replace the condition and controlled code with speculation and
conditional moves

6 Software
Pipelining

A compact loop unrolling technique based on the hardware
pipelining concept

7 Scalar
Privatization

Replace a scalar in a loop with an array so that each iteration
has a private copy of the variable

8 Pipelining Perform parallel execution in pipeline fashion

9 Wave Fronting Transform inner loops of loop-nest so that the data
dependencies are eliminated

10 Successive Over
Relaxation

A Parallelization technique for solving simultaneous linear
equations

11 Vectorization Replace operations on array elements with a single vector
operation that operates on all array locations



238 S. Kalyur and G. S. Nagaraja

2.5 Transformation Enablement

There are some transformations such as Copy Propagation, which don’t offer
benefits right away. However other transformations which follow, can benefit
from these preparatory transformations. These transformation techniques, can
be referred to as Transformation Enablers.

Transformations such as Copy Propagation, Constant Propagation and
Pointer Alias Analysis constitute the category of transformations enabling other
transformations. Copy Propagation aims to replace the assignee of an assignment
by the assigned in subsequent operations. Constant Propagation is a related
transformation, that propagates constant values among, a sequence of related
variables.

3 Taxonomy of Methods Used in Program Parallelization

The domain of program parallelization offers an interesting ensemble of methods
and techniques, which can be grouped as follows,

– Simplicity and Ease of Use
– Performance
– Granularity
– Program Structure and Module
– Scalability
– Novelty
– Orchestration and Management.

3.1 Simplicity and Ease of Use

A Parallelization technique can be viewed, on the basis of how simple or easy
it is to implement and use. For instance, manually parallelizing a program is
cumbersome to users, compared to the compiler technique which automatically
parallelizes a program.

Table 4 categorizes parallelization, based on the criteria of their simplicity
and ease of use.

Table 4. Parallelization methods based on simplicity and ease of use

Method Description

1 Manual
Parallelization

Programmer manually identifies parallel parts of the program and
implements parallel code

2 Semi-Automatic
Parallelization

Programmer provides informative tags identifying the parallel
pieces and the compiler constructs the parallel program

3 Automatic
Parallelization

Compiler creates the parallel program after extensive analysis of
the given program with out user assistance

4 Explicit
Parallelization

It is just an other name for Manual or Semi-Automatic
Parallelization [3]

5 Implicit

Parallelization

It is a synonym for Automatic Parallelization [4]



A Taxonomy of Methods and Models Used in Program Transformation 239

3.2 Performance

Parallelization exists at various levels in a program, such as procedures or state-
ments. How we unleash it depends on how much performance we are expecting
and the effort we are willing to invest.

Parallelization carried out at the Instruction Level or the level of the Task
and inside the hardware instruction Pipeline, fall under this group. Accordingly,
Instruction Level Parallelization is the parallelization carried out the level of
program statements or instructions. Task Parallelization is realized at the level
of procedures or modules. Pipeline Parallelization is conducted at the level of
machine instructions.

3.3 Granularity

Granularity is a term which is used to refer, to the size of the structure (abstrac-
tion) of a program, such as a module or a procedure. Normally, extracting paral-
lelism from a structure that is coarse grained (large size), is easier than extracting
from a structure, that is fine grained (small size).

Parallelization carried out at the task level, can be classified as Coarse Grain
Parallelization and parallelization carried out at the statement or instruction
level could be termed as Fine Grain Parallelization.

3.4 Program Structure or Module

Parallelism is inherent in program elements, such as Loops and Procedures both
normal and recursive. Based on the available source and the statement grouping
techniques such as multi-programming and threading we can categorize resulting
parallelization.

In Process Parallelization, inherent parallelization is extracted through mul-
tiple invocations of the same program, each invocation acting as parallel compo-
nent of the original program. In Thread Parallelization multiple threads are used,
to achieve parallel run of the given program. Loop Parallelization refers to the
parallelism that is present and subsequently extracted, by concurrent executions
of different group of iterations of the loop.

3.5 Scalability

Certain large scale programs such as those that are numerically intensive, can
rigorously test the limits of the executing hardware. Some of the hardware archi-
tectures can reach a bottleneck, after running the program of a certain size. To
overcome such hardware limits, newer architectures have been proposed to scale
the program.

Shared Memory Parallelization and Distributed Memory Parallelization, are
two parallelization techniques that can be distinguished, based on the target
architecture used to run parallel sub-programs. Shared Memory Parallelization
involves a setup where the parallel programs communicate through shared mem-
ory. In the case of Distributed Memory Parallelization, the parallel components
communicate with the help of explicit Sends and Receive calls.



240 S. Kalyur and G. S. Nagaraja

3.6 Novelty

Published literature, periodically presents novel methodologies, to solve tradi-
tional problems. We have such examples in the parallelization domain also, which
can serve as a basis for classification of parallelization methods.

This category includes Speculative Parallelization and Parallelization by
Comprehension, two techniques that are beneficiaries of seen some recent
research activity. Speculative Parallelization is initially carried out without
dependence testing, but checks for collision and possible rollback are carried
out at a later stage [5]. Parallelization by Comprehension is a parallelization
process, based on the concept of algorithm inference.

3.7 Orchestration and Management

Parallelization process is not complete, with out concurrently executing the par-
allel components identified, during the parallelization phases. The final step in
parallelization, is the control and management of the parallel pieces, of the orig-
inal program which can also serve as a criteria for classifying a parallelization
methodology.

Independent of the facilities offered by the modern programming languages,
one could classify parallel sub-program generation techniques and the paral-
lelization realized as a result. Program Slicing is a technique for creating sub-
programs by splitting the given program. Multi-programming involves creating
sub-programs that are replicas of the original program, but executing only a
subset of instructions in each replica, which when executed together produce
the same result, as executing the original program.

4 Taxonomy of Models Used in Transformation
and Parallelization

The domain of transformation and parallelization is rich, in terms of the math-
ematical models employed, to solve a problem at hand. Here we look at the
various models, provide a definition for each modeling technique, and present a
comprehensive listing of the use cases for each, in the published literature.

The various Models that are employed in the transformation and paralleliza-
tion activity, can be categorized along the following criteria,

– Models based on the Tree concept
– Models based on the Graph concept
– Models based on Machine Learning
– Models based on Algebra
– Models based on Statistics
– Models based on Enumeration
– Models based on Heuristics.



A Taxonomy of Methods and Models Used in Program Transformation 241

4.1 Tree Based Models

Tree is a very basic mathematical model, that is widely used in the optimization
domain and Parse tree is a specialized model that falls under this category.
It graphically shows how a string is derived in some language [6]. Parse tree
has been employed by researchers in implementing optimizations such as the
Common Sub-expression Elimination [6].

4.2 Graph Based Models

Graph is the most popular model to solve problems, in the program transforma-
tion and parallelization domain. Table 5, provides a description of several models
based on the graph concept. The following table, Table 6, provides a listing of
their use cases in published literature.

4.3 Machine Learning Based Models

Machine learning offers several opportunities to solve problems, in the domain
of transformation and parallelization. Table 7, provides a description of models
based on Machine Learning followed by table, Table 8, which lists out their uses.

4.4 Models Based on Algebra

Several models exist in the domain based on the Algebra model. Models based on
Integer Linear Programming, Polyhedra, Linear Algebra and Symbolic Algebra
fall under this category.

Integer Linear Programming is a system with a set of variables to be opti-
mized, based on a function and a set of constraints. Integer Linear Programming
has been used to solve problem such as, finding the Longest path length of a
loop-nest, Locality optimization, Loop-nest parallelization, Register allocator
optimization [25], Speculative instruction scheduler [1]. Polyhedral models use
linear algebra abstractions such as matrices and their operations. [26,27]. Poly-
hedral models have been used in literature to implement, Code size reduction,
Vectorization selection [26], Compute loop iteration counts [28], Identify fusion-
able loops [29], Improve cache misses [30] Linear Algebra models use matrices,
determinants, linear equations and their transformations and vector spaces. Lin-
ear Algebra models find use in solving Data Layout Transformation problems.
Symbolic Algebra models are a collection of techniques for symbolically manipu-
lating mathematical expressions. Symbolic Algebra has been employed in Power
optimization, Floating point to fixed point conversion, Model conditions, loops,
and procedures in programs.



242 S. Kalyur and G. S. Nagaraja

Table 5. Description of graph models

Model Description

1 Call Graph Procedures and Modules are nodes and edges represent call

information

2 Data Dependence

Graph

Nodes are operations and edges are the data values

3 Data Flow Graph Basic blocks are the nodes and the data paths form the edges

4 Control Dependence

Graph

Nodes are executable statements and edges are the dependence on

the control node

5 Program

Dependence Graph

Operators and operands are the nodes and the dependence is

captured in the edges

6 Control Flow Graph Nodes represent instructions and edges the control transfer

7 Hammock Graph Are sections of control flow graphs with one entry and one exit node

8 Partition Graph A graph where nodes are execution sets and edges denote partition

relations, between nodes

9 Register

Interference Graph

A graph where nodes represent live variables and edges denote

overlapping live ranges of variables

10 Bayesian Network A graph where nodes represent random variables and edges capture

the conditional dependencies [7,8]

11 Binary Decision

Diagram

Are directed acyclic graphs that correspond to a function that

returns a boolean result

12 Finite State

Machine

A machine where nodes are states and edges represent the

transitions

Table 6. Application of graph models

Model Application

1 Call Graph Detect phase transitions, Program Comprehension, Discover

program structure, Procedure call relationship, Loop and array

transformations

2 Data Dependence

Graph

Critical path reduction, Inter-module dependency detection,

Optimum code layout [9]

3 Data Flow Graph Common sub-expression elimination, Hot path prediction,

Parallelization

4 Control Dependence

Graph

Detect phase transitions, Program Comprehension, Discover

program structure, Procedure call relationship, Loop and array

transformations

5 Program

Dependence Graph

Automatic program distribution [10]

6 Control Flow Graph Region detection, Partial redundancy elimination, Edge profiling,

Dynamic data dependencies [11]

7 Hammock Graph Unstructured branch conversion

8 Partition Graph Hyper-block scheduling

9 Register

Interference Graph

Improve thread context switch performance

10 Bayesian Network Iterative optimization sequence [8]

11 Binary Decision

Diagram

Predict path occurrence in Hardware Definition Language [12]

12 Finite State

Machine

Behavioural synthesis, Predictor generation



A Taxonomy of Methods and Models Used in Program Transformation 243

Table 7. Description of machine learning based models

Model Description

1 Genetic Algorithm An Evolutionary method to find the individual of maximum
fitness from a random population

2 Genetic
Programming

Evolutionary technique to find the most optimized program

3 Simulated
Annealing

Search techniques with a stochastic basis

4 Markov Model A probability model where each event depends in a previous
event

5 Hill Climbing A search technique that starts with a random location, and in a
local fashion advances towards goal

6 Artificial Neural
Network

A system whose operational characteristics are stored in trained
inter-unit connection weights

7 Nearest Neighbor Labels are generated for unseen features from a set of stored
trained features

8 Support Vector
Machine

A technique where Kernel functions map features to
corresponding classes

9 Linear Regression A system where a function maps a predictor variable to a
response variable [13]

10 Decision Tree A mapping from a feature (non-leaf node) to a class (leaf-node)
[14]

Table 8. Application of machine learning based models

Model Application

1 Genetic Algorithm Reduce code size [15], Register allocation and Instruction
scheduling, Instruction template selection [16], Optimize energy
consumption [17]

2 Genetic
Programming

Super-block scheduling [18], Loop unrolling [19]

3 Simulated
Annealing

Compiler tuning [20]

4 Markov Model Optimization space search

5 Hill Climbing Numerical analysis

6 Artificial Neural
Network

Power draw prediction [21], Graph coloring [22]

7 Nearest Neighbor Loop unroll prediction

8 Support Vector
Machine

Predict benefits of loop unrolling, Combining optimization
options [23]

9 Linear Regression Chip energy optimization [24]

10 Decision Tree Convert program spatial features for Machine Learning [14]



244 S. Kalyur and G. S. Nagaraja

4.5 Models Based on Statistics

There are several models employed in the domain that are stochastic in nature.
Orthogonal Arrays and Principal Component Analysis are models based on

the Statistics model. Orthogonal Arrays measure the influence of a process of
independent variables, on response or dependent variables. It has been used to
influence Compiler Option Selection. Principal Component Analysis model can
be used to prune the program feature space. It has been used to solve Iterative
Optimization problems.

4.6 Models Based on Enumeration

When the problems involves search, Enumeration provides several opportunities.
Models based on Branch and Bound, Nelder-Mead Simplex and Enumeration

fall under this category. Branch and Bound is a recursive search technique that
uses trees [31]. It has been used in the past for Combining Optimization Options
[31]. Nelder-Mead Simplex is a multi-dimensional search technique. It has been
employed to solve Iterative Parameter Search problems [32]. Enumeration is a
search space pruning technique that uses history data. Researchers have used
enumeration to implement Optimal Scheduling of Super-blocks.

4.7 Models Based on Heuristics

When exhaustive methods do not provide solutions in a prescribed amount of
time, Heuristic methods provide approximate solutions to fill the void.

Heuristics provide approximate solutions to NP-Hard problems and have
been used to solve optimization problems, in the domain of translation and
parallelization such as Combinatorial Optimization [33].

5 A Graphical Taxonomy of Methods and Models
Used in Transformation and Parallelization

This section presents the taxonomy, of the various methods and models used in
program translation and parallelization in graphical form.

5.1 A Graphical Taxonomy of Methods Used in Transformation

The various program transformation techniques, that are available today were
chronicled earlier. Figure 1 provides a taxonomy of the transformation techniques
in graphical form.



A Taxonomy of Methods and Models Used in Program Transformation 245

5.2 A Graphical Taxonomy of Methods Used in Parallelization

A classification of the various parallelization methods, cited in published litera-
ture are presented here in graphical form. See Fig. 2 for details.

Program
Transformation

Instruction
Count

Improvement

Memory
Latency

Improvement

Locality
Improvement

Optimization
Enabler

Parallelization
Enabler

Dead
Code

Elimination
Algebraic

Simplification

Machine
Idioms

Redundant
Load-Store
Elimination

Prefetching

Cache-Block
Alignment

Blocking

Changing
Data
Layout

Fission

Copy
Propogation

Constant
Propogation

Pointer
Analysis

Loop
Unrolling

Function
Inlining

Scalar
Privatization

Fig. 1. Taxonomy of methods used in transformation

Program
Parallelization

Simplicity

Performance

Granularity

Structure

Scalability

Novelty

Orchestration

Manual

Automatic

Explicit

Implicit

Instruction
Level

Task
Level

Pipeline
Level

Fine
Grained

Coarse
Grained

Loop
Level

Thread
Level

Process
Level

Shared
Memory

Distributed
Memory

Speculative

Comprehension

Slicing

Multiprogramming

Fig. 2. Taxonomy of methods used in parallelization



246 S. Kalyur and G. S. Nagaraja

Transformation/
Parallelization

Models

Tree

Graph

Machine
Learning

Algebra

Statistics

Heuristics

Enumeration

Parse
Tree

Control
Flow
Graph

Data
Dependence

Graph

Register
Interference

Graph

Finite
State

Machine

Artificial
Neural
Net

Support
Vector
Machine

Genetic
Algorithms

Linear
Algebra

Symbolic
Algebra

Polyhedra

Orthogonal
Arrays

Principal
Component
Analysis

Nelder
Mead

Simplex

Branch
And
Bound

Fig. 3. Taxonomy of models used in transformation and parallelization

5.3 A Graphical Taxonomy of Models Used in Transformation
and Parallelization

We discussed the various transformation and parallelization models found in
published literature earlier. Here we provide a taxonomy of the models in a
hierarchical graph representation. See Fig. 3 for details.

6 Conclusion

We started this research work, with the goal of developing a detailed taxonomy
of methods and models, used in the program transformation and parallelization
domain, which would foster learning and mastering of the subject area. We
classified the program transformation methods along the following axes namely,
instruction count reduction, locality improvement, memory latency reduction,
parallelization enablement and transformation enablement. In a similar vein,
program parallelization methods were categorized based on the following criteria
namely, simplicity and ease of use, performance, granularity, program structure
and module, scalability, novelty, and orchestration and management. Models
used in the transformation and parallelization domain, allow the problems to
be represented mathematically and subsequently develop solutions. The various
models used in the domain as reported in published literature were classified as
follows: models based on the tree concept, models based on the graph concept,
models based on machine learning, models based on algebra, models based on
statistics, models based on enumeration and models based on heuristics. The
outcomes of our research are organized in the form of tables and graphs for easy



A Taxonomy of Methods and Models Used in Program Transformation 247

comprehension. We hope the comprehensive taxonomy we have developed here,
will benefit researchers and practitioners alike, and help them in their respective
endeavors.

References

1. Winkel, S.: Optimal versus heuristic global code scheduling. In: 40th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2007, pp. 43–
55, December 2007

2. Kalyur, S., Nagaraja, G.S.: A survey of modeling techniques used in compiler
design and implementation. In: 2016 International Conference on Computation
System and Information Technology for Sustainable Solutions (CSITSS), pp. 355–
358, October 2016

3. Ayguade, E., et al.: The design of OpenMP tasks. IEEE Trans. Parallel Distrib.
Syst. 20(3), 404–418 (2009)

4. Bondhugula, U., et al.: Towards effective automatic parallelization for multicore
systems. In: IEEE International Symposium on Parallel and Distributed Process-
ing, IPDPS 2008, pp. 1–5, April 2008

5. Hertzberg, B., Olukotun, K.: Runtime automatic speculative parallelization. In:
2011 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 64–73, April 2011

6. Canedo, A., Sowa, M., Abderazek, B.A.: Quantitative evaluation of common subex-
pression elimination on queue machines. In: International Symposium on Parallel
Architectures, Algorithms, and Networks, I-SPAN 2008, pp. 25–30, May 2008

7. Chin, G., Choudhury, S., Kangas, L., McFarlane, S., Marquez, A.: Evaluating
in-clique and topological parallelism strategies for junction tree-based Bayesian
network inference algorithm on the cray XMT. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), pp. 1710–1719, May 2011

8. Ashouri, A.H., Mariani, G., Palermo, G., Silvano, C.: A bayesian network approach
for compiler auto-tuning for embedded processors. In: 2014 IEEE 12th Symposium
on Embedded Systems for Real-Time Multimedia (ESTIMedia), pp. 90–97, Octo-
ber 2014

9. Li, P., Luo, H., Ding, C., Hu, Z., Ye, H.: Code layout optimization for defensiveness
and politeness in shared cache. In: 2014 43rd International Conference on Parallel
Processing (ICPP), pp. 151–161, September 2014

10. Kalyur, S., Nagaraja, G.S.: ParaCite: auto-parallelization of a sequential program
using the program dependence graph. In: 2016 International Conference on Com-
putation System and Information Technology for Sustainable Solutions (CSITSS),
pp. 7–12, October 2016

11. Tineo, A., Corbera, F., Navarro, A., Asenjo, R., Zapata, E.L.: A novel approach
for detecting heap-based loop-carried dependences. In: International Conference
on Parallel Processing, ICPP 2005, pp. 99–106, June 2005

12. Jayaraman, D., Tragoudas, S.: Occurrence probability analysis of a path at the
architectural level. In: 2011 12th International Symposium on Quality Electronic
Design (ISQED), pp. 1–5, March 2011

13. Vaswani, K., Thazhuthaveetil, M.J., Srikant, Y.N., Joseph, P.J.: Microarchitecture
sensitive empirical models for compiler optimizations. In: International Symposium
on Code Generation and Optimization, CGO 2007, pp. 131–143, March 2007



248 S. Kalyur and G. S. Nagaraja

14. Malik, A.M.: Spatial based feature generation for machine learning based optimiza-
tion compilation. In: 2010 Ninth International Conference on Machine Learning
and Applications (ICMLA), pp. 925–930, December 2010

15. Zhou, Y.-Q., Lin, N.-W.: A study on optimizing execution time and code size in
iterative compilation. In: 2012 Third International Conference on Innovations in
Bio-Inspired Computing and Applications (IBICA), pp. 104–109, September 2012

16. Mahalingam, P.R.: Knowledge-augmented genetic algorithms for effective instruc-
tion template selection in compilers. In: 2013 Third International Conference on
Advances in Computing and Communications (ICACC), pp. 21–24, August 2013

17. Azeemi, N.Z.: Multicriteria energy efficient source code compilation for dependable
embedded applications. Innov. Inf. Technol. 2006, 1–5 (2006)

18. Mahajan, A., Ali, M.S.: Superblock scheduling using genetic programming for
embedded systems. In: 7th IEEE International Conference on Cognitive Informat-
ics, ICCI 2008, pp. 261–266, August 2008

19. Leather, H., Bonilla, E., O’Boyle, M.: Automatic feature generation for machine
learning based optimizing compilation. In: International Symposium on Code Gen-
eration and Optimization, CGO 2009, pp. 81–91, March 2009

20. Zhong, S., Shen, Y., Hao, F.: Tuning compiler optimization options via simulated
annealing. In: Second International Conference on Future Information Technology
and Management Engineering, FITME 2009, pp. 305–308, December 2009

21. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum (IPDPSW), pp. 990–998,
May 2012

22. Wang, X., Qiao, Q.: Solving graph coloring problems based on a chaos neural net-
work with non-monotonous activation function. In: Fifth International Conference
on Natural Computation, ICNC 2009, vol. 1, pp. 414–417, August 2009

23. Li, F., Tang, F., Shen, Y.: Feature mining for machine learning based compilation
optimization. In: 2014 Eighth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), pp. 207–214, July 2014

24. Gschwandtner, P., Knobloch, M., Mohr, B., Pleiter, D., Fahringer, T.: Modeling
CPU energy consumption of HPC applications on the IBM POWER7. In: 2014
22nd Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP), pp. 536–543, February 2014

25. Falk, H., Schmitz, N., Schmoll, F.: WCET-aware register allocation based on
integer-linear programming. In: 2011 23rd Euromicro Conference on Real-Time
Systems (ECRTS), pp. 13–22, July 2011

26. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model
guided loop-nest auto-vectorization. In: 18th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2009, pp. 327–337, September
2009

27. Pouchet, L., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in the
polyhedral model: Part i, one-dimensional time. In: International Symposium on
Code Generation and Optimization, CGO 2007, pp. 144–156, March 2007

28. Lokuciejewski, P., Cordes, D., Falk, H., Marwedel, P.: A fast and precise static loop
analysis based on abstract interpretation, program slicing and polytope models.
In: International Symposium on Code Generation and Optimization, CGO 2009,
pp. 136–146, March 2009



A Taxonomy of Methods and Models Used in Program Transformation 249

29. Pouchet, L., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayappan,
P.: Combined iterative and model-driven optimization in an automatic paralleliza-
tion framework. In: 2010 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pp. 1–11, November 2010

30. Xue, Y., Zhao, C.: Automated phase-ordering of loop optimizations based on poly-
hedron model. In: 10th IEEE International Conference on High Performance Com-
puting and Communications, HPCC 2008, pp. 672–677, September 2008

31. Desai, N.P.: A novel technique for orchestration of compiler optimization functions
using branch and bound strategy. In: IEEE International Advance Computing
Conference, IACC 2009, pp. 467–472, March 2009

32. Lu, P., Che, Y., Wang, Z.: An effective iterative compilation search algorithm for
high performance computing applications. In: 10th IEEE International Conference
on High Performance Computing and Communications, HPCC 2008, pp. 368–373,
September 2008

33. Mart́ı, R., Reinelt, G.: The Linear Ordering Problem: Exact and Heuristic Methods
in Combinatorial Optimization, 1st edn. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-16729-4

https://doi.org/10.1007/978-3-642-16729-4
https://doi.org/10.1007/978-3-642-16729-4

	A Taxonomy of Methods and Models Used in Program Transformation and Parallelization
	1 Introduction
	2 Taxonomy of Methods Used in Program Transformation
	2.1 Instruction Count Reduction
	2.2 Locality Improvement
	2.3 Memory Latency Reduction
	2.4 Parallalization Enablement
	2.5 Transformation Enablement

	3 Taxonomy of Methods Used in Program Parallelization
	3.1 Simplicity and Ease of Use
	3.2 Performance
	3.3 Granularity
	3.4 Program Structure or Module
	3.5 Scalability
	3.6 Novelty
	3.7 Orchestration and Management

	4 Taxonomy of Models Used in Transformation and Parallelization
	4.1 Tree Based Models
	4.2 Graph Based Models
	4.3 Machine Learning Based Models
	4.4 Models Based on Algebra
	4.5 Models Based on Statistics
	4.6 Models Based on Enumeration
	4.7 Models Based on Heuristics

	5 A Graphical Taxonomy of Methods and Models Used in Transformation and Parallelization
	5.1 A Graphical Taxonomy of Methods Used in Transformation
	5.2 A Graphical Taxonomy of Methods Used in Parallelization
	5.3 A Graphical Taxonomy of Models Used in Transformation and Parallelization

	6 Conclusion
	References




