
Prefix Tree Based MapReduce Approach
for Mining Frequent Subgraphs

Supriya Movva, Saketh Prata(B), Sai Sampath, and R. G. Gayathri

Department of Computer Science and Engineering, Amrita School of Engineering,
Amritapuri, Amrita Vishwa Vidyapeetham, Coimbatore, India
supriya.movva.212@gmail.com, pratasaketh@gmail.com

Abstract. The frequent subgraphs are the subgraphs which appear in
a number, more than or equal to a user-defined threshold. Many algo-
rithms assume that the apriori based approach yields an efficient result
for finding frequent subgraphs, but in our research, we found out that
Apriori algorithm lacks scalability with the main memory. Frequent sub-
graph mining using Apriori algorithm with FS tree uses adjacency list
representation. FS tree is a prefix tree data structure. It implements the
algorithm in two phases. In the first phase, it uses the Apriori algorithm
to find frequent two edge subgraphs. In the second phase, it uses FS-tree
algorithm to search all the frequent subgraphs from frequent two edge
subgraphs. Scanning the dataset for every candidate is the drawback of
the Apriori algorithm, so the Apriori algorithm with FS-tree is used to
overcome the multiple scanning. This algorithm is also implemented in
an assumption that the data set fits well in memory. In this paper, we
propose parallel map-reduce based frequent subgraph mining technique
performed in a distributed environment on the Hadoop framework. The
experiments validate the efficiency of the algorithm for generating fre-
quent subgraphs in large graph datasets.

Keywords: Frequent subgraph mining · Subgraph ·
Support threshold · Hadoop framework · Map-reduce

1 Introduction

Data mining is a process of discovering patterns in large data sets. One of our
research interests is finding frequent itemsets that occur in large graph datasets.
With the increasing demand on the analysis of large amounts of complex data,
graph mining has become an active and essential theme in data mining. The
task of graph mining is extracting interesting patterns from graphs that describe
the underlying data and could be used further. Mining patterns in biochemical
structures [1,2], anomaly detection, chemoinformatics [3], network flow analysis
and social network analysis [4] are some of the applications of graph mining.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

N. Kumar and R. Venkatesha Prasad (Eds.): UBICNET 2019, LNICST 276, pp. 218–232, 2019.

https://doi.org/10.1007/978-3-030-20615-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-20615-4_17


Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 219

Frequent subgraph mining is an important research in graph mining to find
all the subgraphs that appear frequently in database according to given fre-
quency threshold. There are two different ways for finding frequent subgaphs.
(1) Transaction setting [5] (2) Single graph setting [6]. The number of transac-
tions containing the frequent pattern is said to be transaction setting and the
number of times the pattern appears in the whole graph is said to be single graph
setting. There are many proposed algorithms for finding frequent subgraphs, but
all these algorithms are on the assumption that the graph data fits well in mem-
ory. As the data size grows memory becomes a problem and computational time
rises drastically. Hence, an efficient way to compute large datasets is to process
them in parallel by distributing the data among several nodes and combining
the results. Distributed computing frameworks like Pregel, Hadoop are popular
of their kind.

Map Reduce programming model [7] has been the most successful for mining
frequent subgraphs on a distributed computing platform. Hadoop framework
uses a distributed file system that is particularly optimized to improve the IO
performance while handling Big data. The main reason behind using Hadoop
framework for mining frequent subgraphs is its computational performance and
efficiency. Another reason is, the higher level of abstraction that it provides,
which keeps many system levels hidden from the programmers and allow them
to concentrate more on problem specific computational logic.

Fig. 1. Frequent subgraph

Solving the task of Frequent Subgraph Mining (FSM) using Hadoop frame-
work is challenging. In this paper we use Improvised Apriori with frequent sub-
graph tree Algorithm in distributed computing framework to find the frequent
subgraphs. If the input graphs are partitioned over different data nodes, calculat-
ing the support count in the data nodes and then finding the frequent subgraphs



220 S. Movva et al.

does not yield an efficient result because of the data set partition. Here, we pro-
pose an algorithm that generates all the one-edge candidates and the occurrence
count from the given graph data set in the data nodes and then find the frequent
subgraphs using support count.

The rest of the paper is framed as follows: Sect. 2 exchanges its views on
several works related to Frequent Subgraph Mining. Section 3 presents the pro-
posed approach, important concepts related to the algorithm. Section 4 presents
the implementation of the proposed algorithm and the experimental results.

2 Related Work

Extracting or finding frequent subgraphs in a single large graph or set of graphs
has been popular in recent times. If the graph dataset is extensive the time and
space complexity will be high. Many researchers have implemented many algo-
rithms to find frequent subgraphs in both single and multiple graph settings in an
efficient way. Single graph setting has one large graph, and multiple graph setting
comprises of a collection of graphs. These frequent itemsets are used for discov-
ering association rules, for extracting common patterns and for classification.
Developing algorithms for finding frequent subgraphs is computationally inten-
sive as subgraph isomerism play a vital role throughout the computation. There
are two types of approaches for finding frequent subgraphs. (1) Apriori-based
algorithms and (2) Pattern-based approach. In this section, we present different
Apriori and Pattern based algorithms with many advantages and drawbacks.

Apriori Graph-based Mining (AGM) is an algorithm to find frequent sub-
graphs [8]. It uses Apriori-based approach. This algorithm generates candidate
graphs, merges any two candidate graphs at an instant and finds whether the
obtained graph is frequent or not. Two graphs of size k are merged together to
form a resultant graph of size (k + 1). A level-wise search is used to find the
frequent subgraphs. The AGM algorithm is used to identify the set of graphs
which are connected and the set of graphs which are not connected. It efficiently
found all the frequent subgraphs, but the complexity was high.

FSG is another Apriori-based algorithm which uses edge based candidate
generation method [5]. Candidate subgraphs are generated by adding edge to
the previous subgraph. So, in every iteration, the generated candidate subgraph
size is exactly one greater than the previous frequent ones. Candidate pruning
is also done if the generated candidate does not satisfy minimum threshold. It is
very costly because it uses isomorphic testing and generates multiple candidates.

Edge-disjoint path join algorithm [9] abides Apriori-based approach which
uses edge disjoint paths as building blocks. The number of disjoint paths is the
measuring factor of this algorithm. It also efficiently finds frequent subgraphs,
but it is computation intensive.

Fast Frequent subgraph mining (FFSM) considers large dense graphs with
fewer labels for finding frequent itemsets. Data sets used here are chemical [10].
It uses the vertical level search strategy to reduce the number of candidate gen-
eration. Limitation for FFSM algorithm is that it is an NP-Complete problem.
Experimentation showed that FFSM outperformed gSpan.



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 221

Molecular Fragments Identification Technique [11,12] is a pattern based app-
roach algorithm used to find regular core structures which are found in all given
molecular structures and generates an embedding list. In this algorithm, in every
iteration, one more edge is added to the previous frequent subgraph which leads
to duplicate candidate generation.

Spanning Tree-based Maximal Graph Mining (SPIN) is a pattern based algo-
rithm. The main aim of this algorithm is to mine subgraphs that are not part of
any frequent subgraph [13]. It uses spanning tree approach to discover maximal
frequent subgraphs. Pruning technique used in the SPIN algorithm is bottom-up
pruning. It saves space by using these techniques.

Temporal pattern subgraph Mining (TSM) finds patterns having temporal
information [14]. It uses forward unnecessary checking scheme and backward
unnecessary checking scheme to find a frequent temporal graph. It does not
generate unnecessary candidates and scans the database once. It is an extension
of the DFS search strategy. It is an efficient algorithm for finding patterns which
have temporal information.

gSpan algorithm [16] generates a tree-like structure (DFS code tree) over
all possible patterns, in which every node represents a DFS code for a graph
pattern. The ith level of a code tree contains DFS of all the subgraphs of size
(i-1). Each subgraph is generated by adding one extra edge to subgraphs which
are present in the previous level of the tree. It preserves the transaction list for
discovered graph and pruning is done by deleting nodes which do not satisfy
minimal DFS code.

All these algorithms are in assumption that data set fits well in memory, but if
data set size is huge, all these algorithms do not give an efficient result, and even
though if it can find all the frequent subgraphs, it takes a lot of time and space
to find frequent item sets. Hence, some of the researchers implemented a few
algorithms in a parallel or distributed environment to find frequent subgraphs
in multiple systems in parallel, which give efficient output and reduce both time
and space complexities.

There exist some algorithms on adaptive parallel mining for CMP Archi-
tectures [18]. Map-Reduce programming model has been used to mine frequent
patterns where the transactions in input database are simpler combinatorial
objectives such as set or sequence [19,20,22–24]. These algorithms do not imple-
ment any method to avoid duplicate candidates generated. Another problem for
the iterative approach of Map-Reduce is that it requires many iterations to get
the final output.

Frequent subgraph mining using Apriori algorithm with FS tree uses adja-
cency list representation. It implements the algorithm in two phases. In the
first phase, it uses the Apriori algorithm to find frequent two edge subgraphs.
In second phase it uses FS-tree algorithm to find all the frequent subgraphs
from frequent two edge subgraphs. Scanning the dataset for every candidate is
the drawback of the Apriori algorithm, so the Apriori algorithm with FS-tree is
used to overcome the multiple scanning. This algorithm is also implemented in an
assumption that the data set fits well in memory. In this paper, we implemented



222 S. Movva et al.

the same Apriori algorithm with FS-tree in a distributed environment using the
Map-Reduce programming model in a distributed environment to reduce execu-
tion time and enhance efficiency.

3 Proposed Work

When a large number of graphs are given as input to the Apriori algorithm,
it can lead to inefficient computation of the desired solution. So, dividing the
graphs into several non-empty sets with a limited number of graphs in each
set and computing them in distributed environment improves time efficiency. In
this paper, we propose a two-phase approach to generate all the subgraphs that
frequently occur in the graph data set containing a large number of graphs. The
proposed method starts with the Data pre-processing, Candidate Generation,
Support Counting followed by the phases where these concepts are used.

Let D = {G1, G2 ..., Gn} be a graph data set where each Gi represents an
undirected graph. Let the data set be divided into three sets say, D1, D2, D3

such that D1 = {G1, G2 ..., Gi}, D2 = {Gi+1, G2 ..., Gk}, D3 = {Gk+1, G2 ...,
Gn} where i, j, k are any arbitrary values representing the graphs in the data
set.

3.1 Data Pre-processing

The graph data set is pre-processed and stored in the form of an adjacency
list. Let D = {G1, G2 ..., Gn} be a graph data set where each Gi represents
an undirected graph. Now, each Gi is of the form (V, E) where V is a set of
Vertices and E is the set of edges in the graph. Each graph is represented as an
adjacency list. The idea of computing the frequent subgraphs is based on the
iterative approach of the Apriori algorithm computes the Frequent subgraphs in
two steps. One is Candidate Generation, and the other is Support Counting.

3.2 Candidate Generation

A subgraph in a graph is said to be a candidate. To find all frequent subgraphs
in a given graph data set, we need to generate all the subgraphs and check
whether each one is a frequent subgraph or not. Thus candidate generation is an
important step in Frequent Subgraph mining. The candidates are generated as
k-edge subgraphs starting from k= 0 which are the vertices. The candidates are
thus generated by adding one edge to the previous frequent subgraph. Thus to
form a candidate with k + 1 edges, we combine two k-edge subgraphs. The two
k -edge subgraphs are thus selected such that they have the same k − 1 size sub-
graph. This common subgraph is often referred to as Core of the subgraph. The
frequency of each subgraph is also calculated. Algorithm 1 shows the stepwise
implementation of Candidate Generation function.



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 223

Algorithm 1. Candidate Generation
Input : Fk+1, set of k+1 edge frequent subgraphs
Output: Ck+2, set of k+2 edge candidate subgraphs along with their count
//s1 and s2 are subgraphs such that s1 ∈ Fk+1ands2 ∈ Fk+1
//Ci is the list of candidate subgraphs of i-edge length and corresponding count
//s1 ∪ s2 defines an operation where a k+2 edge subgraph is formed using k+1 edge subgraphs
//If k<0, s1 and s2 are vertices and have no common edges, then s1 ∪ s2 is a valid combination
iff s1∪s2 ∈ g

1. for all (s1, s2) ∈ Fk+1
2. if (s1 ∪s2 ∈ Ck+2)
3. Ck+2(s1 ∪s2) Ck+2(s1 ∪ s2) + 1
4. else
5. Ck+2 Ck+2 ∪ (s1, s2)
6. Ck+2(s1 ∪s2) 1
7. end for
8. return Ck+2

The candidate generation can be illustrated using an example. Let the value
of k be one. To form a two-edge candidate, Let A-B-C be a two edge subgraph
with B as the root. This two edge subgraph can be formed from two one-edge
subgraphs A-B and B-C. These subgraphs have a k−1 size subgraph, i.e. a vertex
B in common. Thus, to form a k+1 edge candidate, two K-edge candidates are to
be combined with a k−1 edge as the core. Figure 2 shows the detailed explanation
of candidate generation for the above-stated example.

Fig. 2. Example of candidate generation

3.3 Support Counting

Support of a graph is the parameter used to determine whether a graph is a
frequent subgraph or not. The total number of times a subgraph is appearing in
the graph dataset is termed as the frequency of that graph. Support of a given
graph is defined as the frequency of each graph divided by the total number of
graphs in the graph data set. To check if a graph is frequent or not, the parameter



224 S. Movva et al.

defined by the user to compare is the threshold support. If the calculated support
is greater than or equal to the user-defined threshold support, that graph can
be called as a Frequent subgraph. These frequent subgraphs are used to find the
subgraphs with more edges added to them.

Mapper

Algorithm 2. Mapper
Input : G: a graph dataset, σ : minimum support.
Output: Set of one-edge graphs with their frequency, adjacency list.
//Ci: Candidate subgraph set of i length edges
//cg(Fi): Candidate generation function using i-edge frequent subgraphs
//adjacency list(g): Create adjacency list for graph g
//Reducer(a,b): Send parameters a , b to reducer
1. C1 NULL
2. adj list NULL
3. while g ε G do
4. F0 set of vertices in g
5. C1 C1 ∪ cg(F0)
6. adj list adj list ∪ adjacency list(g)
7. end while
8. Reducer(adj list, C1)

The Mapper operates on the block of data given to it and finds the one edge
subgraphs along with their repeating count using a level-by-level expansion of
the Apriori algorithm. For each sub-graph in a set, the Mapper calculates its
frequency. The calculation of the support at this stage will not give the desired
solution because the support of a graph calculated at one node may not be
greater than or equal to the threshold support but as a whole when the support
of sub-graph combined from all the nodes may be greater than or equal to the
threshold support.

The set of vertices is formed from the graph. Each vertex is taken, combined
with another vertex so as to form a one edge subgraph. Now the presence of this
edge can be checked from the adjacency list. Consider an edge A-B. We can check
if A-B is an edge by traversing through the list in the Adjacency list whose first
element is A. In this way, the one-edge candidates are formed. The frequency of
each one-edge is calculated which forms a (key, value) pair where the one-edge
candidate is the key, and the frequency of the candidate is the value. Since several
blocks of data are being processed at the same time; we achieve computational
efficiency. This (key, value) is the output of the Mapper and is given as the input
to the Reducer. Algorithm 2 shows the step-wise implementation of Mapper.



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 225

Reducer

Algorithm 3. Reducer
Input : adj list, C1, σ
Output: Set of frequent two-edge subgraphs.
//Ci: Candidate subgraph set of i length edges
//cg(Fi): Candidate generation function using i-edge frequent subgraphs
//δ(Ci) :Count of the graph Ci
//σ : Minimum support threshold
//F.add(Ci): Add element Ci to set F
1. F NULL
2. F1 NULL
3. F2 NULL
4. for all candidate Ci ε C1 do
5. Support(Ci) = (C1)/T
6. if Support(Ci) ≥ σ then
7. F1.add(Ci)
8. end if
9. end for
10. F F ∪ F1
11. C2 cg(F1)
12. for all candidate Ci ε C2 do
13. Support(Ci) = (Ci)/T
14. if Support(Ci) ≥ σ then
15. F2.add(Ci)
16. end if
17. end for
18. F F ∪ F2
19. FS-Tree()

The (key, value) pairs received from Mapper nodes are combined in the
reducer. It aggregates the frequency of a sub-graph using the key which is the
one-edge candidate. Thus the support of each one-edge candidate is calculated.
The support calculated is then compared with the threshold support. The can-
didates whose support is greater than or equal to the threshold are made into a
set and are said to be frequent one-edge subgraphs.

Two-edge subgraphs can be formed by combining the frequent one-edge sub-
graphs with zero-edge subgraph as the core. The two-edge candidates are gen-
erated by checking their presence in the adjacency list. The set of frequent two-
edge subgraphs is formed by choosing the candidates whose support is greater
than equal to the threshold support. This set is given to a tree data structure
named as FS-TREE which is built to determine the further frequent subgraphs.
Algorithm 3 shows the step-wise implementation of Reducer.

The main disadvantage of the Apriori algorithm is its memory usage. A large
number of candidates are generated, and it becomes costly to store and scan
them. Hence a tree data structure is used to store the frequent subgraphs. The
tree data structure uses the concept of a prefix-tree. The prefix tree is a tree
data structure where the children of a node share the common prefix with that



226 S. Movva et al.

node, and the root node is associated with null. The main aim of this tree is
to save some amount of memory to store the candidates. Traversal through the
tree extracts the frequent subgraphs.

Algorithm 4. FS-TREE
Input : Frequent two-edge subgraphs.
Output: FS-Tree with all frequent subgraphs.
//F: Set of frequent two-edge subgraphs and one-edge subgraph
//insert(S,T):If T has a child C and S is the one edge expansion of C, then insert S as the child of
C.

1. root NULL
2. for all Ci ε F2
3. insert(Ci,root)
4. end for

The input to the data structure is the set of frequent two-edge subgraphs.
The root node is created. The frequent two-edge subgraphs are added to the
root as children. Thus, the first level of the tree contains all the frequent two-
edge subgraphs along with their frequencies. To add a subgraph of more number
of edges, those are added as children to the nodes which have the same prefix
and then the frequency is incremented. Once, the tree is constructed, each level
contains all the frequent subgraphs having the same number of edges along with
their support value. On traversing to the higher levels, we can find the frequent
subgraphs of a higher number of edges. Thus all the frequent subgraphs can be
found. Algorithm 4 shows the step-wise implementation of FS Tree.

The above algorithm can be well represented using an example. Consider the
frequent subgraph stated in the Fig. 1. There A-B-C is a frequent subgraph. Let
us assume A-B-D is a frequent subgraph. The FSG A-B-D can be obtained by
expanding the FSG A-B-C at B, i.e., the edge B-D can be added to A-B-C. This
reduces the necessity of two different nodes, and those can be represented using
a single node as shown in Fig. 3.

Fig. 3. Implementation of FS-TREE



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 227

4 Experimental Validation and Verification

The algorithm is implemented in Python. The operating system is Ubuntu 16.04.
The Hadoop version used is 3.0.0. The experiments were performed on a CPU
which possesses a 3.1 GHz quad-core Intel processor with 4 GB memory and 1 TB
of storage.

All the values are experimented thrice, and the average values are taken.
Following are the results of our experiments, implemented in a Hadoop cluster
having four nodes. One node serves as the master node, and the remaining three
nodes are the data nodes also known as slave nodes [22].

A set of synthetic graphs is generated to evaluate the performance of the
proposed approach. The number of graphs in the data set range from 20 to
5000. Each graph contains 10–14 vertices. Each graph contains 25–30 edges.

Table 1. Number of FSG with varying threshold

Number of
graphs in data
set

Number of FSG
with threshold 0.1

Number of FSG
with threshold 0.2

Number of FSG
with threshold 0.3

20 417 184 85

50 463 161 75

100 417 141 71

500 344 137 64

2000 312 138 60

Initially, a data set containing 20 graphs is taken. Each graph has at most 13
vertices and 29 edges. The threshold value was set to 0.1. A total of 417 frequent
subgraphs including both the one edge and two edge subgraphs are obtained.
When the threshold value is increased to 0.2, only 184 frequent subgraphs are
obtained in total.

Further, the number of graphs in the data set is increased. A data set with
100 graphs is taken. When the algorithm is implemented with the minimum
threshold of 0.1, 417 frequent subgraphs are obtained in total. Upon increasing
the threshold value to 0.2, the number of frequent subgraphs decreased to 141.
The reason can be illustrated using an example below.

Consider a subgraph Gi. Assume, it is occurring in 15 graphs in the dataset.
Let the total number of graphs in the dataset be 100. Hence the support of graph
Gi is 0.15. If the minimum support threshold is 0.1, subgraph Gi has supported
greater than 0.1 and hence can be stated as a Frequent subgraph. But if the
minimum support threshold value is 0.2, the subgraph Gi has support less than
0.2 and hence cannot be called as a frequent subgraph. Thus, with increasing
the threshold, many subgraphs may not have their support greater than or equal
to the updated minimum support threshold. Thus, with an increasing threshold



228 S. Movva et al.

Table 2. Experimental results with threshold 0.1

No of graphs in
dataset

Apriori
(seconds)

Apriori with
FS-Tree (seconds)

Apriori with FS-Tree
using Hadoop (seconds)

20 10.98321 7.6301 0.194902

50 14.5764 11.9728 0.273901

100 28.9214 19.9214 0.236587

500 178.3206 142.5293 0.925664

2000 2016.65045 2011.093 4.157381

value, the number of frequent subgraphs decrease (Table 1). The term frequent
subgraph is denoted as FSG.

As the number of graphs increases in the data set, the time of execution
increases in the traditional algorithm because of multiple scanning. But, the
proposed algorithm takes comparatively very less time which can be concluded
from the results in the table below.

Table 2 shows the results for the synthetic graph data set when the threshold
value is set to 0.1. The time of execution for 20 graphs in traditional Apriori
algorithm is 10.98321 s. When the number of graphs increased to 50, the time
of execution in traditional Apriori algorithm is 14.5764 s. The same is the case
when the data is tested using Apriori algorithm using FS-TREE and also the
Apriori algorithm using FS-TREE implemented in Hadoop.

Table 3. Experimental results with threshold 0.2

No of graphs in
dataset

Apriori
(seconds)

Apriori with FS-Tree
(seconds)

Apriori with
FS-Tree using
Hadoop (seconds)

20 5.67543 3.3156 0.148771

50 10.1214 9.3213 0.216901

100 21.2494 15.1247 0.161685

500 91.6564 77.53 0.778358

2000 1865.51075 1561.328 3.242671

The time of execution shows a similar pattern for increasing threshold values.
When the threshold value is increased to 0.2, the time execution increased with
the increase in the number of input graphs (Table 3). The results for the time of
execution with threshold 0.3 are briefed in (Table 4).

The time of execution for a given graph, at a given threshold is compared for
the Apriori algorithm, improvised Apriori algorithm using FS-Tree in (Fig. 4).
The time taken for a traditional Apriori algorithm is an exponential curve,
whereas, the time taken by improvising the Apriori algorithm using FS-Tree



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 229

Table 4. Experimental results with threshold 0.3

No of graphs in
dataset

Apriori
(seconds)

Apriori with
FS-Tree (seconds)

Apriori with
FS-Tree using
Hadoop (seconds)

20 3.9860 1.6757 0.138207

50 7.30981 3.4252 0.184441

100 10.0919 7.54593 0.104866

500 72.4203 69.00373 0.473741

2000 1341.1567 1032.199 1.726677

Fig. 4. Execution time vs support threshold

is a linear curve. When the same algorithm is implemented in a distributed envi-
ronment using Hadoop, the slope of the curve is almost zero. This implies that
the time of execution reduced drastically when the algorithm is implemented in
Hadoop.

The primary use of FS-Tree is to reduce the space complexity. The tree data
structure is built to reduce the number of two-edge candidates. The two-edge
candidates sharing common edges can be grouped as discussed in the earlier
sections.



230 S. Movva et al.

Fig. 5. Graphs with threshold 0.1

Fig. 6. Graphs with threshold 0.2

The above graph (Fig. 5) shows the number of Two-edge FSG compared with
the number of nodes in the FS-Tree for a given threshold of 0.1. Consider, the
graph data set with 100 graphs. The number of two-edge FSG with threshold of
0.1 is 285, and the number of nodes used to represent the two-edge FSGs using
FS-Tree is 197.

With an increasing threshold, the number of two-edge FSG vs the number
of nodes showed a similar pattern (Fig. 6). Consider, the threshold 0.2 for the
same data set with 100 graphs. The number of two-edge FSG obtained are 39,
and the number of nodes used to represent using FS-Tree is 17. In (Fig. 7), the
experimental results for the number of two-edge FSG vs the number of nodes in
FS-Tree for threshold 0.3 are shown.

Thus, from the above experimental results, we can state that the space com-
plexity can be reduced using FS-Tree.



Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs 231

Fig. 7. Graphs with threshold 0.3

5 Conclusion

In this paper, we implemented frequent subgraph mining using FS-tree in a
distributed environment using the Hadoop framework. From the experiments,
we can conclude that with an increasing number of graphs in the data set, the
proposed algorithm takes less time of execution than the traditional Apriori
algorithm because the multiple data scans are eliminated. In the traditional
algorithm, a large number of candidates are generated. With the FS-Tree app-
roach, once the two-edge candidates are formed, each subgraph is added to the
tree as a node. The subgraphs with higher number of edges can be formed using
the FS-Tree. Hence the proposed approach generates comparatively less number
of candidates than that of the traditional Apriori algorithm. This algorithm can
be extended to other distributed frameworks like SPARK or STORM

References

1. Barabási, A., Oltvai, Z.: Network biology: understanding the cell’s functional orga-
nization. Nat. Rev. Genet. 5, 101–113 (2004)

2. Lacroix, V., Fernandes, C., Sagot, M.-F.: Motif search in graphs: pplication to
metabolic networks. Trans. Comput. Biol. Bioinform. 3, 360–368 (2006)

3. Borgelt, C., Berhold, M.R.: Mining molecular fragments: finding relevant substruc-
tures of molecules. In: Proceedings of International Conference on Data Mining
2002 (2002)

4. Handcock, M., Raftery, A., Tantrum, J.: Model-based clustering for social net-
works. J. R. Stat. Soc. Ser. (Stat. Soc.) 170(2), 301–354 (2007)

5. Kuramochi,M., Karypis, G.: Frequent subgraph discovery. In: ICDM01. FSM
(2001)

6. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. J. Artif. Intell. Res. 1, 231–255 (1994). 3rd ed

7. Praveena, A., Anitha, B., Rohini, R.: An efficient parallel iterative mapreduce
based frequent subgraph mining algorithm. Middle-East J. Sci. Res. 24 (Tech.
Algorithms Emerg. Technol.), 524–531 (2016)



232 S. Movva et al.

8. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-
quent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow,
J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45372-5 2

9. Vanetik, N., et al.: Computing frequent graph patterns from semi structured data.
In: Proceedings 2002 IEEE International Conference on Data Mining, ICDM-2002
(2002)

10. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence
of isomorphism. UNC computer science Technique report TR03-021 (2003). FFSM

11. Nguyen, S.N., Orlowska, M.E., Li, X.: Graph mining based on a data partitioning.
In: Nineteenth Australasian Database Conference (ADC 2008) (2008)

12. Bhuvaneswari, M., Rohini, R., Preetha, B.: A survey on privacy preserving public
auditing for secure data storage. Int. J. Eng. Res. Technol. (2013)

13. Huan, J., Wang, W., Prins, J., Yang, J.: Spin: mining maximal frequent subgraphs
from graph databases. In: Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 581–586 (2004)

14. Hsieh, H.-P., Li, C.-T.: Mining temporal subgraph patterns in heterogeneous infor-
mation networks. In: IEEE International Conference on Social Computing/IEEE
International Conference on Privacy, Security, Risk and Trust (2010)

15. Thomas, S., Nair, J.J.: Improvised Apriori with frequent subgraph tree for extract-
ing frequent subgraphs. J. Intell. Fuzzy Syst. 32(4), 3209–3219 (2017)

16. Yan, X., Han, J.: gSpan: graph based sustructure pattern mining. In: Proceedings
of 2nd IEEE International Conference on Data Mining, ICDM 2002 (2002)

17. Thomas, S., Nair, J.J.: A survey on extracting frequent subgraphs. In: Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI-2016) (2016)

18. Jeong, B.S., Choi, H.J., Hossain, M.A., Rashid, M.M., Karim, M.R.: A MapReduce
framework for mining maximal contiguous frequent patterns in large DNA sequence
datasets. IETE Tech. Rev. 29, 162–168 (2012)

19. Hill, S., Srichandan, B., Sunderraman, R.: An iterative mapreduce approach to
frequent subgraph mining in biological datasets. In: Proceedings of the ACM Con-
ference on Bioinformatics, Computational Biology and Biomedicine (2012)

20. Wu, B., Bai, Y.L.: An efficient distributed subgraph mining algorithm in extreme
large graphs. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds.) AICI 2010, Part I.
LNCS (LNAI), vol. 6319, pp. 107–115. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-16530-6 14

21. Gayathri, S., Radhika, N.: Greedy hop algorithm for detecting shortest path in
vehicular networks. Int. J. Control. Theory Appl. 9, 1125–1133 (2016)

22. Liu, Y., Jiang, X., Chen, H., Ma, J., Zhang, X.: MapReduce-based pattern finding
algorithm applied in motif detection for prescription compatibility network. In:
Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009. LNCS, vol. 5737, pp. 341–
355. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03644-6 27

23. Di Fatta, G., Berthold, M.: Dynamic load balancing for the distributed mining of
molecular structures. IEEE Trans. Parallel Distrib. Syst. 17, 773–785 (2006)

24. Lin, J., Dyer, C.: Data-intensive text processing with MapReduce (2010)
25. Gayathri, R., Nair, J.J.: ex-FTCD: a novel mapreduce model for distributed multi

source shortest path problem. J. Intell. Fuzzy Syst. 34(3), 16431652 (2018)

https://doi.org/10.1007/3-540-45372-5_2
https://doi.org/10.1007/978-3-642-16530-6_14
https://doi.org/10.1007/978-3-642-16530-6_14
https://doi.org/10.1007/978-3-642-03644-6_27

	Prefix Tree Based MapReduce Approach for Mining Frequent Subgraphs
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 Data Pre-processing
	3.2 Candidate Generation
	3.3 Support Counting

	4 Experimental Validation and Verification
	5 Conclusion
	References




