
A Comparative Study on Load Balancing
Algorithms in Software Defined Networking

Neha Joshi and Deepak Gupta(&)

Computer Science and Engineering, NIT Arunachal Pradesh, Yupia, India
nehajoshi4321@gmail.com, deepakjnu85@gmail.com

Abstract. Advent of big data, cloud computing and IOTs resulted into sig-
nificant increase in traffic on servers used in traditional networks as these net-
works are normally non-programmable, complex in management, highly
expensive in nature, and have tightly coupled control plane with data plane. To
overcome these traditional network-based issues a newly emerging technology
software defined networking (SDN) has been introduced which decouples the
data plane and control plane and makes the network fully programmable. SDN
controllers are programmable so an efficient load balancing algorithms must
ensure the effective management of resources as per client’s request. Based on
these parameters i.e. throughput, transaction rate, & response time the qualita-
tive comparison between the load balancing algorithms of SDN is done to
generate the best results.

Keywords: Software defined networking (SDN) � SDN controller �
Mininet emulator tool � Sniper tool � Siege tool � Open flow

1 Introduction

SDN is rapidly emerging technology in the networking field, by using SDN archi-
tecture we can easily manage different network applications and services. SDN sepa-
rates the network logic control plane and the forwarding element data plane (e.g.
Router, switch). As a result, the network management information and the network
logic are centralized together over the SDN controller (also known as control plane).
The lead role in SDN architecture is played by the SDN controller, which controls all
the functions of the network by the help of openflow protocol [1, 2].

With SDN, the network is fully programmable, more agile and scalable. It provides
the flexibility to switch into the cloud environment, virtualization, private network and
public network. Therefore, we can easily add or remove different routers, switches as
per the requirement and implements different network application by the help of
software based SDN controller in the system. The major applications of SDN are cloud
integration, network monitoring, distributed system control, security services,
automation, etc. However, in traditional network systems both planes i.e. data, and
control plane are securely coupled with each other. Therefore, every network appli-
cation needs an individual hardware and that hardware’s are very expensive, inflexible
and vendor-specific. The traditional load balancers are manufacturer based and they
set the specific algorithms on it, which we cannot change according to our feasibility.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
N. Kumar and R. Venkatesha Prasad (Eds.): UBICNET 2019, LNICST 276, pp. 142–150, 2019.
https://doi.org/10.1007/978-3-030-20615-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20615-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-20615-4_11

To solve these issues in conventional load balancing method, we develop the load
balancing algorithm and implement it over the control plane which convert the simple
Openflow device into an effective load balancer [3, 4].

The enhancement in network technology introduces so many challenges. One of the
major issues in network architecture is delay in providing the response to end users.
Usually delay occurs when the system device is overloaded and creates a bottleneck
situation in the system. To distribute the load among the different servers and to prevent
the bottleneck situation we require the load balancers. In existing network system load
balancer device uses various types of load balancing algorithms, so to distribute the
large amount of client traffic into several servers it takes too much time to process and
make the system inconsistent. One of the major applications of network is load bal-
ancer so that we implemented the load balancing application over the SDN controller
and then controller is act as a load balancer. Thus, an SDN load balancer distributes
traffic more easily in less amount of time and in efficient manner [5, 6].

To investigate the network load balancer performance of SDN, we compare dif-
ferent load balancing algorithms to evaluate the best performance among different
scheduled algorithms. We implemented load balancing application over the SDN
controller (i.e. POX Controller). To perform the task, POX controller is used which
supports the Python language and mininet emulator tool is used to create the network
topology, which provides the same virtual hardware setup as in realistic environment.

In this paper, we compare four different load balancing algorithms of SDN on the
basis of following parameters as: response time, transaction rate, and throughput. The
following four algorithms are as:

• Round-Robin Strategy [7, 8]
• Implementation of server load balancing algorithm [9]
• Flow statistics load balancing algorithm [10]
• Least time based weighted load balancing algorithm [11]

The main tasks performed in this experiment are:

• Tested the comparison on Mininet emulator tool [12, 13].
• Compared above mentioned algorithms by the help of various parameters namely

throughput, response time, and transaction rate.
• Tested the result by the help of Load Balancer Sniper and Siege Tool.

This paper consists of five sections. Section 2 represents the background and
related work of the load balancing and related algorithm using SDN and also displays
the SDN architecture consisting of all the layer i.e. application layer, control layer, and
infrastructure layer. Section 3 describes the load balancer architecture related to our
topology used in the simulation process. Section 4 consists all experimental result,
network setup, load testing tool, and emulator tool description. Overall this section
shows the graphical representation of all the result. Section 5 represents the conclusion
and future work of the paper.

A Comparative Study on Load Balancing Algorithms 143

2 Background and Related Work

The enhancement in network technology leads to increase in network traffic. Therefore,
it is hard to handle the large amount of requests by the single server. The main aim of
load balancer is to disburse the load among various servers and help us to increase the
network performance by efficient use of all available resources in the network systems.

Silva et al. [6] explained that SDN load balancers are real, flexible, agile, and cost-
effective over the conventional load balancers. They evaluated the performance of SDN
load balancers with different scheduled algorithms. Kaur et al. [8] executed the Round
Robin strategy. The demerit of this paper is that it does not include the load of the
server & time delay. This method supposed that all the servers present in that particular
network system have equal number of request and every link possess same speed.
However, in real world the scenario is quite different. Practically all the link has
different bandwidth and speed. Kaur et al. [11] implemented the least time based load
Balancing strategy. In that case, the load balancer sends the client request to that server
which has least time delay instead of any other servers having more delay. Koerner
et al. [14] discussed one or more load balancing concepts in which one of the load
balancer is taken care of balancing web servers whereas another load balancer is
needed for balancing e-mail servers.

2.1 SDN Architecture

The SDN Architecture as shown in Fig. 1 consists mainly three components:

• Application Layer: It is the topmost layer of the SDN architecture. The SDN
application layer consists of many network applications which create an abstract
view from the internal network and to build the communication with SDN con-
troller the API (Application Program Interface) used by the programmer is called
Northbound API.

• Control Layer: It is also known as the control plane of the SDN architecture. All
the routing decisions, management of the network is done by control layer. It is also
called as the network operating system (NOS) that control all the operations of the
SDN. To communicate with various network devices like routers, switches, etc. the
SDN controller uses southbound API. The load balancer application is run on top of
the SDN controller and the load balancing algorithms is installed on load balancer
application.

• Infrastructure Layer: The bottom layer of SDN architecture also known as data
layer. This layer helps to forward the packets by some set of rules given by the SDN
controller. The infrastructure layer is the connection of various physical devices or
virtual devices such as routers, switches, etc. The SDN controller defines and
installs rules on the flow tables of Openflow switches.

The decoupled data plane and control plane are communicated by the help of
Openflow protocol. This protocol helps us to exchange the information between these
two planes. A secure channel is used to carry the information from the Openflow switch
and the control plane by the help of Openflow protocol [2].

144 N. Joshi and D. Gupta

This architecture of SDN supports all the legacy network applications and provides
the more enhanced features of the network system such as scalability, feasibility,
adaptability, flexibility etc. So, this is only being happened due to its programmable
nature. As we all know SDN controller is programmable so now it is easy to implement
any kind of application over it and make the network more agile and programmer
dependent [15].

3 Load Balancing Architecture

It consists the SDN controller, which is fully programmable and behaves like a Load
Balancer after installing the load balancing algorithms over it and represents number of
servers where load is distributed according to the load balancing algorithms as shown
in Fig. 2.

The load balancer application consists an algorithm by which it takes the decision
to select one server from the pool of servers and distributed the load simultaneously as
per client’s request [4]. In this architecture of load balancing first client sent the request
to the server which is controlled by the SDN controller (act as a load balancer) then
load balancer sent their request to the one server according to their scheduled algo-
rithm. Server processes the client requests and gives the response back to the client. In
this scenario, the controller communicates with openflow switch via openflow protocol
using southbound API. In our experiment, we use four types of load balancing
algorithms, which are described below:

Round-Robin Strategy: This algorithm is defined as the requests are sent to each
server available in the queue one by one in a circular manner. When any packet is
arriving, the next chosen server is available on the queue of all present servers in the

Fig. 1. SDN architecture

A Comparative Study on Load Balancing Algorithms 145

network system. So, that all the servers in the list is in the same order and handles the
equal number of load, excluding the load present on each server [8].

Server Load Balancing: This algorithm is explained as the load is served to that
server where the server has the lowest CPU load value and the server, which has the
minimum load value, is chosen. The server determines their current load value by the
help of mpstat command [9].

Flow Statistics Load Balancing: It is defined as the server, which has minimum
number of flow connection, is selected for processing the next request. After every 5 s
the Openflow switch receives the flow-statistics request message from the load bal-
ancer. The total no. of requests that were sends to each server is counted by the load
balancer. Then after the server with least active connection handles the next upcoming
packet for processing which is send by the load balancer [10].

Least Time Based Weighted Load Balancing: It depends on the time delay of the
server. Server with less delay can deal with the more no. of requests. At first, we
assigned various delay on every link between the Openflow switch and the servers.
Secondly, we assigned unique weight to the server based on delay on each server. Then
we set more weight to that server which has least delay and that server is connected to
Openflow switch [11].

4 Result and Discussion

There are various tools available by which we can test and compare our SDN load
balancer application. We used the mininet emulator tool which helps us to create the
network topology containing the number of hosts, forwarding element switches and the
controllers [12, 13]. In our framework we implement the python based POX controller
as load balancer and one device act as an Openflow switch (forwarding element) and

Fig. 2. Load balancing architecture of software defined networking.

146 N. Joshi and D. Gupta

other systems act as a host and remaining systems works as a server where load is
distributed by the help of load balancer [16]. We also use load balancer Sniper testing
tool on host computer to generate the readings of different parameters to find the least
active connection in the server, mpstat and netstat command is used.

For experimental estimation, we compare the above mentioned load balancing
algorithm with each other by the help of the attributes like throughput, response time,
and transaction rate.

Mathematically the throughput can be calculated as the number of bits processed in
per unit time. It is denoted as:

throughput ¼ #bits
second

Response time is defined as the total processing time for all the users and is divided by
the number of users. Response time usually gives the total time taken by the request
response process. It is the amount of time to process the request by the servers when it is
received the request by the client. We calculate the response time by the given formulae:

response time ¼ total processing time
total number of users

Transaction rate can be calculated as the number of http request-response pair is
processed in per unit time. It is usually an amount of information or request-response
pair is exchanged from the server in a given amount of time. So, the maximum
transaction rate shows the faster and better response. It can be denoted as:

transaction rate ¼ # http request response pair
second

We simply send the different number of requests as per clients to the load balancer tool
(i.e. siege tool and sniper tool) according to the scheduled algorithms and it displayed
the output readings of different attributes. Based on these above mathematical equa-
tions the parameters like throughput, response time and transaction rate gave their
value. By running this whole setup by the help of mininet emulator tool we get the
results and on the basis of those output readings graph is plotted.

The graphical representation of all the parameter results is shown as below:
Figure 3 represents the throughput result. Horizontal axis represents the concurrent

users and vertical axis represents the throughput (mb/sec). On behalf of this parameter,
server load balancing shows the better result than any other given algorithms.
Throughput means the number of requests in bits is processed in a given amount of time.

Figure 4 presents the response time result. Horizontal axis denotes the no. of users
and vertical axis shows the response time in sec. Based on this parameter, flow-
statistics algorithm has the least response time among all other given algorithms. By the
way, both server load balancing and flow statistics load balancing algorithms shows the
similar kinds of results. However, flow statistics based application gives the better
response time.

A Comparative Study on Load Balancing Algorithms 147

Figure 5 shows the transaction rate of the server. In that case server load balancing
is compared to the round-robin strategy and it gives better results than round-robin
method. Server load balancing algorithm has the higher transaction rate that means it
processes the request faster than the round-robin algorithm. The X-axis of the graph
shows the total number of users sends the requests and the Y-axis represents the
transaction rate of the server.

Fig. 3. The throughput comparison of three algorithms i.e. round-robin, flow statistics, server
load algorithm.

Fig. 4. The response time result of three algorithms as round-robin, flow statistics, server load

148 N. Joshi and D. Gupta

5 Conclusion and Future Work

SDN load balancer deals with lots of issues of conventional load balancer in an efficient
and cost-effective way. By the help of above experiment and comparison, the result is
that among these four types of algorithms “Implementation of server load balancing” is
the best load balancing algorithm in software defined networking with respect to these
parameters as throughput, transaction rate, and response time.

However, the flow statistics based algorithms shows the better response time in
comparison to the server load balancing algorithms. The main challenge of this
experiment is that it is not tested in the real time hardware system, it is based on the
mininet emulator tool, which provides the real time simulation of the experiment but
not in the actual hardware.

To get the better results we can use RYU controller instead of using POX controller
and can use more than one controllers in place of using single controller. So, that if any
failure is occurring in the single controller we can easily recover it by using another
controller [17].

Acknowledgment. We thank Mr. Sunit Kumar Nandi of NIT Arunachal Pradesh for helping us
to understand the RYU controller functionalities and to learn the mininet emulator tool concepts.

References

1. Kreutz, D., Ramos, F.M.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

2. Xia, W., Wen, Y., Foh, C.H., Niyato, D., Xie, H.: A survey on software-defined networking.
IEEE Commun. Surv. Tutorials 17(1), 27–51 (2015)

Fig. 5. The transaction rate of server load and round-robin algorithm.

A Comparative Study on Load Balancing Algorithms 149

3. Kim, H., Feamster, N.: Improving network management with software defined networking.
IEEE Commun. Mag. 51(2), 114–119 (2013)

4. Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Load balancing
mechanisms in the software defined networks: a systematic and comprehensive review of
the literature. IEEE Access 6, 14159–14178 (2018)

5. Qilin, M., Weikang, S.: A load balancing method based on SDN. In: 2015 Seventh
International Conference on Measuring Technology and Mechatronics Automation
(ICMTMA). IEEE (2015)

6. Silva, W.J.A., Dias, K.L., Sadok, D.F.H.: A performance evaluation of software defined
networking load balancers implementations. In: 2017 International Conference on Informa-
tion Networking (ICOIN). IEEE (2017)

7. Deep, G., Hong, J.: Round robin load balancer using software defined networking (SDN).
Capstone Team Res. Proj. 5, 1–9 (2016)

8. Kaur, S., Kumar, K., Singh, J., Ghumman, N.S.: Round-robin based load balancing in
software defined networking. In: 2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), pp. 2136–2139. IEEE (2015)

9. Kaur, S., Singh, J.: Implementation of server load balancing in software defined networking.
In: Satapathy, S.C., Mandal, J.K., Udgata, S.K., Bhateja, V. (eds.) Information Systems
Design and Intelligent Applications. AISC, vol. 434, pp. 147–157. Springer, New Delhi
(2016). https://doi.org/10.1007/978-81-322-2752-6_14

10. Kaur, K., Kaur, S., Gupta, V.: Flow statistics based load balancing in OpenFlow. In: 2016
International Conference on Advances in Computing, Communications and Informatics
(ICACCI). IEEE (2016)

11. Kaur, K., Kaur, S., Gupta, V.: Least time based weighted load balancing using software
defined networking. In: Singh, M., Gupta, P.K., Tyagi, V., Sharma, A., Ören, T., Grosky, W.
(eds.) ICACDS 2016. CCIS, vol. 721, pp. 309–314. Springer, Singapore (2017). https://doi.
org/10.1007/978-981-10-5427-3_33

12. Mininet: “Mininet - An Instant Virtual Network on your Laptop (orother PC)” (2016). http://
mininet.org/

13. De Oliveira, R.L.S., Schweitzer, C.M., Shinoda, A.A., Prete, L.R.: Using mininet for
emulation and prototyping software-defined networks. In: 2014 IEEE Colombian Confer-
ence on Communications and Computing (COLCOM), pp. 1–6. IEEE (2014)

14. Koerner, M., Kao, O.: Multiple service load-balancing with OpenFlow. In: 2012 IEEE 13th
International Conference on High Performance Switching and Routing (HPSR). IEEE (2012)

15. Salman, O., Elhajj, I.H., Kayssi, A., Chehab, A.: SDN controllers: a comparative study. In:
2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6. IEEE (2016)

16. Kaur, S., Singh, J., Ghumman, N.S.: Network programmability using POX controller. In:
ICCCS International Conference on Communication, Computing & Systems, vol. 138. IEEE
(2014)

17. De Oliveira, B.T., Gabriel, L.B., Margi, C.B.: TinySDN: enabling multiple controllers for
software-defined wireless sensor networks. IEEE Latin Am. Trans. 13(11), 3690–3696
(2015)

150 N. Joshi and D. Gupta

http://dx.doi.org/10.1007/978-81-322-2752-6_14
http://dx.doi.org/10.1007/978-981-10-5427-3_33
http://dx.doi.org/10.1007/978-981-10-5427-3_33
http://mininet.org/
http://mininet.org/

	A Comparative Study on Load Balancing Algorithms in Software Defined Networking
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 SDN Architecture

	3 Load Balancing Architecture
	4 Result and Discussion
	5 Conclusion and Future Work
	Acknowledgment
	References

