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Abstract. To overcome the traditional disadvantages of single source points
detection methods in underdetermined blind source separation problem, this
paper proposes a novel algorithm to detect single source points for the linear
instantaneous mixed model. First, the algorithm utilizes a certain relationship
between the time-frequency coefficients and the complex conjugate factors of
the observation signal to realize single source points detection. Then, the
algorithm finds more time-frequency points that meets the requirements auto-
matically and cluster them by utilizing a clustering algorithm based on the
improved potential function. Finally, the estimation of the mixed matrix is
achieved by clustering the re-selected single source points. Simulation experi-
ments on linear mixture model demonstrates the efficiency and feasibility for
estimating the mixing matrix.

Keywords: Time-frequency domain � Mixing matrix estimation �
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1 Introduction

Blind source separation (BSS) aims at recovering N source signals from P observation
signals without any prior information. So far, research in this field has been widely
applied to mechanical equipment fault diagnosis [8], speech signals [7], communica-
tion systems [9, 15, 16], etc. Our research is based on the underdetermined case, i.e. the
number of source signals is greater than the number of observed signals N[Pð Þ.

At present, sparse component analysis (SCA) [12] is the most commonly used
method to solve the problem of Underdetermined Blind Source Separation (UBSS).
SCA usually adopts a two-step method that includes mixing matrix estimation and
source signal recovery. The accuracy of the former directly affects the result of the
latter, so research on the former is quite meaningful. In this paper, we aim at estimating
the mixing matrix. The BSS algorithm based on single source points detection usually
has high requirements on the sparsity of signals. In fact, signals have satisfactory
sparsity in the time-frequency (TF) domain than in the time domain. Short-time Fourier
transform (STFT) [11] is usually used to make signals get better sparsity.
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Only one source exists or plays a major role in TF domain are called single source
points. If the source signal is sparse in the TF domain, then the observed signal will
exhibit directional clustering property so that the mixed matrix can be estimated by
utilizing the corresponding clustering algorithm. The direction corresponds to one
column of the mixed matrix. In other words, the mixing matrix can be estimated if the
direction of the single source points is estimated. Many scholars researched different
approaches in this field. Some scholars [1, 3, 6, 14] made strategies to search for single
source regions and then each element in the mixing matrix is estimated from the region.
Some scholars [2–5, 10, 13] proposed various algorithm to realize the detection of
single source points and finally the mixing matrix is estimated. This paper proposes a
novel algorithm to estimate the mixing matrix based on single source points detection.
The algorithm gets satisfactory performance than other algorithms.

This paper is organized as follows. In Sect. 2, we introduce the basic linear
instantaneous mixed model and the basic theory of UBSS problem. Section 3 shows
the process of our algorithm. We then give the simulation experiment results in Sect. 4
and draw conclusion in Sect. 5.

2 Problem Formulation

The linear instantaneous mixed model of BSS problems in the noiseless case can be
expressed as

xðtÞ ¼ AsðtÞ ¼
XM
m¼1

amsmðtÞ ð1Þ

Where M[N, xðtÞ ¼ x1ðtÞ; x2ðtÞ; . . .; xNðtÞ½ �T is the observation signal vector,
A ¼ a1; a2; . . .; aM½ � 2 R

N�M is the mixed matrix, sðtÞ ¼ s1ðtÞ; s2ðtÞ; . . .; SMðtÞ½ �T is the
source signal vector, am is the mth column of the mixed matrix and sm tð Þ is the mth
source signal. If only the mth source signal presents at t, Eq. (1) can be simplified as

xðtÞ ¼ amsmðtÞ ð2Þ

Under the condition of neglecting the amplitude, estimating the direction of the
mixing signal vector also realizes the estimation of the first column vector of the mixed
matrix. If the observation signal is sufficiently sparse, then all similar direction vectors
can be obtained by clustering and the mixing matrix can be successfully estimated.

In the UBSS method, the necessary assumptions need to be satisfied. On one hand,
the mixed matrix should be full column rank, On the other hand, there should be some
single source points exists in the TF domain.
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3 The Proposed Algorithm

We usually adopt STFT before estimating the mixing matrix to make signal sparser, we
can obtain representations of the mixture signals

Xðt; f Þ ¼ ASðt; f Þ ð3Þ

Where Xðt; f Þ ¼ ½X1ðt; f Þ;X2ðt; f Þ; . . .;XNðt; f Þ�T and Sðt; f Þ ¼ ½S1ðt; f Þ; S2ðt; f Þ;
. . .; SMðt; f Þ�T are the STFT coefficients of observation signals and source signals,
respectively. The paper takes two observation signals and four source signals for
example, so Eq. (3) can be written as

X1ðt; f Þ
X2ðt; f Þ

� �
¼ a11 a12 . . . a1M

a21 a22 � � � a2M

� � S1ðt; f Þ
S2ðt; f Þ

..

.

SMðt; f Þ

2
6664

3
7775 ð4Þ

Assuming that there only source s1 occurs at one TF point ðtp; fpÞ, we can obtain the
following two formulas

X1ðtp; fpÞ ¼ a11S1ðtp; fpÞ ¼ a11½ReðS1ðtp; fpÞÞþ j ImðS1ðtp; fpÞÞ� ð5Þ

X2ðtp; fpÞ ¼ a21S1ðtp; fpÞ ¼ a21½ReðS1ðtp; fpÞÞþ j ImðS1ðtp; fpÞÞ� ð6Þ

Based on Eqs. (5) and (6), we have

X�
1ðtp; fpÞ ¼ a11fRe½S1ðtp; fpÞ� � j Im½S1ðtp; fpÞ�g ð7Þ

X�
2ðtp; fpÞ ¼ a21fRe½S1ðtp; fpÞ� � j Im½S1ðtp; fpÞ�g ð8Þ

where X�
1ðtp; fpÞ and X�

2ðtp; fpÞ are complex conjugates of X1ðtp; fpÞ and X2ðtp; fpÞ,
respectively. Based on Eqs. (5)–(8), we have

X1 tp; fp
� �

X�
2 tp; fp
� �

X2 tp; fp
� �

X�
1 tp; fp
� �

¼ a11a21 Re S1 tp; fp
� �� �þ j Im S1 tp; fp

� �� �� �
Re S1 tp; fp

� �� �� j Im S1 tp; fp
� �� �� �

a11a21 Re S1 tp; fp
� �� �þ j Im S1 tp; fp

� �� �� �
Re S1 tp; fp

� �� �� j Im S1 tp; fp
� �� �� �

¼ 1

ð9Þ

If two signals s1 and s2 are assumed to exist at some TF point ðtq; fqÞ, If we simplify
S1ðtq; fqÞ and S2ðtq; fqÞ as S1 and S2, X1ðtq; fqÞ and X2ðtq; fqÞ can be simplified as X1

and X2

X1 ¼ ½a11ReðS1Þþ a12ReðS2Þ� þ j½a11ImðS1Þþ a12ImðS2Þ� ð10Þ

X2 ¼ ½a21ReðS1Þþ a22ReðS2Þ� þ j½a21ImðS1Þþ a22ImðS2Þ� ð11Þ
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Similarly, X�
1ðtp; fpÞ and X�

2ðtp; fpÞ can be defined as

X�
1 ¼ ½a11ReðS1Þþ a12ReðS2Þ� � j½a11ImðS1Þþ a12ImðS2Þ� ð12Þ

X�
2 ¼ ½a21ReðS1Þþ a22ReðS2Þ� � j½a21ImðS1Þþ a22ImðS2Þ� ð13Þ

Based on Eqs. (10)–(13), we can obtain

X1X
�
2 ¼ a11Re S1ð Þþ a12Re S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �

þ a11Im S1ð Þþ a12Im S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ �
þ j a11Im S1ð Þþ a12Im S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �
� j a11Re S1ð Þþ a12Re S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ �

ð14Þ

X2X
�
1 ¼ a11Re S1ð Þþ a12Re S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �

þ a11Im S1ð Þþ a12Im S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ �
� j a11Im S1ð Þþ a12Im S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �
þ j a11Re S1ð Þþ a12Re S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ �

ð15Þ

The following two variables are assumed

T1 ¼ a11Re S1ð Þþ a12Re S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �
þ a11Im S1ð Þþ a12Im S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ � ð16Þ

T2 ¼ a11Re S1ð Þþ a12Re S2ð Þ½ � a21Re S1ð Þþ a22Re S2ð Þ½ �
� a11Im S1ð Þþ a12Im S2ð Þ½ � a21Im S1ð Þþ a22Im S2ð Þ½ � ð17Þ

Equations (14) and (15) can be simplified as

X1X
�
2 ¼ T1 þ jT2 ð18Þ

X2X
�
1 ¼ T1 � jT2 ð19Þ

Then, we can obtain

X1X�
2

X2X�
1
¼ T1 þ jT2

T1 � jT2
¼ T2

1 � T2
2

T2
1 þ T2

2
þ j

2T1T2
T2
1 þ T2

2
ð20Þ

If we want the Eq. (20) is equal to Eq. (9), we can get anyone of the following two
conditions through setting T2 as 0.

a11
a21

¼ a12
a22

ð21Þ

ReðS1Þ
ReðS2Þ ¼

ImðS1Þ
ImðS2Þ ð22Þ
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Given the assumption that the mixing matrix should be full column rank, we don’t
consider Eq. (21). Therefore, only when Eq. (22) is satisfied can Eq. (20) achieve the
same consequence in Eq. (9). However, the probability of this situation is very low.
Therefore, we set the following standard to detect single source points.

X1ðt; f ÞX�
2ðt; f Þ

X2ðt; f ÞX�
1ðt; f Þ

¼ 1 ð23Þ

In practical applications, this condition is very demanding and difficult to achieve,
so the relaxation condition is

Re
X1ðt; f ÞX�

2ðt; f Þ
X2ðt; f ÞX�

1ðt; f Þ
� 	

� 1










\e1 ð24Þ

where e1 is a positive number that is close to 0.
After selecting the corresponding single source point, there are still some time-

frequency points with low energy, which seriously affects the later estimation result.
We set the following rule to remove low energy points to get better performance

ReðXðt; f ÞÞk k
max ReðXðt; f ÞÞk kð Þ\e3 ð25Þ

where e3 is a number close to 1.
We cluster these selected points and get corresponding clustering centers through

utilizing clustering algorithm. The number of the selected points is K and they are
denoted as ðYk; ZkÞ ¼ ðk ¼ 1; 2; . . .;KÞ. Now we define the potential function as
follows

JðbkÞ ¼
XT
i¼1

fexp½b cosðhbkbiÞ�gc ð26Þ

where bk and bi are single source points, and they are parameters that adjust the degree
of attenuation of this function at non-extreme points. The potential function values at
different points can be calculated by the above formula, and then a three-dimensional
diagram about bk1, bk2 and JðbkÞ is obtained. In this three-dimensional diagram, there
are some significant peaks appearing, and the number of peaks is equal to the number
of source signals. Assume that the amplitude of each point in the three-dimensional
diagram is PðkÞðk ¼ 1; 2; . . .;KÞ. In order to eliminate the interference term, we set the
following smoothing function to

P̂ðkÞ ¼ PðkÞ=maxðPðkÞÞ ð27Þ

pk ¼ P̂ðk � hÞþ 2P̂ðk � hþ 1Þþ . . .þ 2h�1P̂ðk � 1Þþ 2hP̂ðkÞ�
þ 2h�1P̂ðkþ 1Þþ . . .þ 2P̂ðkþ h� 1Þþ P̂ðkþ hÞ�= 3 � 2h � 2

� � ð28Þ
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where h is an integer that is >1, and pk is the new peak amplitude. We set the following
rule to get the correct peak position.

pk�1\pk and pkþ 1\pk
pk�2\pk and pkþ 2\pk

�
ð29Þ

Through this method, the subinterval position bk corresponding to the peak and the
initial clustering centers ðAm;BmÞ ¼ ðm ¼ 1; 2; . . .;MÞ can be obtained. Single source
points close to the initial cluster center can be re-selected through following rules

AmYk þBmZkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þB2

m

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
k þ Z2

k

p [ e4 ð30Þ

where e4 is a threshold between 0 and 1. The mixed matrix can be estimated through
these re-selected single source points.

4 Simulation Results and Analysis

We consider four speech signals in [10] to test the practicality of the proposed algo-
rithm. The sampling number is 160000, STFT size is 1024, Overlapping is 512,
Weighting function is Hanning Window. e1 ¼ 0:999, e3 ¼ 0:02, e4 ¼ 0:997. The
mixed matrix A is defined as

A ¼ 0:763 0:658 0:328 0:442
0:313 0:360 0:766 0:540

� �

We consider the scatter plot of two time-domain observation signals under noiseless
conditions. We reduce the number of points to reduce the amount of calculation. First,
the descending order of the real parts at different frequency points after the time-
frequency conversion of the first observation signal is performed in descending order.
According to the order of the first observation signals, the order of the second obser-
vation signals is adjusted, and the time-frequency observation signals at the frequency
points with large variances are selected. In this chapter, the corresponding observation
signals at the first 50 points are selected before the single source point is detected. The
scatter plot of two observation signals before detecting is shown in Fig. 1.

Figure 1 present obvious linear clustering characteristics, but some stray points
affect this property. The existence of spurious points makes direct clustering will
produce large estimation errors. At the same time, it can be found that a large number
of scatter points are accumulated near the origin. However, the amplitudes of these
scatter points are small, and the directions of the straight lines in the scatter plot are far
less effective than the scatters far from the origin. We eliminate these points for better
performance. The scatter plot of the two observation signals in the TF domain after
detecting the single source point and removing the low energy point is shown in Fig. 2.

Figure 2 shows that the linear clustering characteristics of the two observation
signals are more obvious. Finally, the mixing matrix is estimated.
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Â ¼ 0:7628 0:6568 0:3272 0:4407
0:3087 0:3611 0:7649 0:5405

� �

We take the normalized mean square error (NMSE) to measure the performance of
algorithms. It can be written as

NMSE ¼ 10 log

P
i;j
ð~ai;j � ai;jÞ2
P
i;j
a2i;j

2
64

3
75ðdB) ð31Þ

Fig. 1. The scatter plot of two observed signals in TF domain.

Fig. 2. The scatter plot of the two observation signals in the TF domain after detecting the single
source point and removing the low energy point.
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Where aij is the ði; jÞth element of A and âij is the ði; jÞth element of Â. This
parameter gets a lower value when the estimated mixed matrix is more similar to the
real mixed matrix.

The result of the different algorithms are shown in Table 1.

From Table 1, we can find that our algorithm has lower NMSE, which means a
better performance.

5 Conclusion

A novel algorithm is proposed to solve the problem of mixed matrix estimation in
UBSS under linear instantaneous mixed model. First, a new method is proposed for
detecting single source points. Then, the algorithm clusters them by utilizing a method
based on the improved potential function. Finally, the mixing matrix is obtained. The
detection algorithm is feasible and efficient, which lays the foundation for post-
processing.
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