
Source Encryption
Scheme in SDN Southbound

Yanlei Wang1, Shihui Zheng1(&), Lize Gu1, and Yongmei Cai2

1 School of Cyberspace Security,
Beijing University of Posts and Telecommunications, Beijing 100876, China

shihuizh@bupt.edu.cn
2 School of Computer Science and Engineering,

Xinjiang University of Finance and Economics, Urumqi 830000, China

Abstract. In light of the existence of the software defined networking
(SDN) southbound communication protocol OpenFlow, and manufacturers’
neglect of network security, in this paper, we propose a protection scheme for
encryption at the source of the communication data that is based on the Kerberos
authentication protocol. This scheme not only completes the identity authenti-
cation of and session key assignment for the communication parties on an
insecure channel but also employs an efficient AES symmetric encryption
algorithm to ensure that messages always exist in the form of ciphertext before
they reach the end point and thus obtain end-to-end security protection of
communication data. At the end of this paper, we present our experimental
results in the form of a forwarding agent. After that, the performance of the
Floodlight controller is tested using a CBench testing tool. Our results indicate
that the proposed source encryption scheme provides end-to-end encryption of
communication data. Although the communication latency increases by
approximately 12% when both transport layer security (TLS) and source-
encrypted are enabled, the source-encrypted part of the increase is only
approximately 4%.

Keywords: SDN � OpenFlow � Source encryption � Kerberos

1 Introduction

Software defined networking (SDN) divides the traditional network architecture into a
control plane and a data plane. OpenFlow [1] is the most popular standardized interface
between the two planes and has been widely used in academia and industry.
Although SDN presents many possibilities for network flexibility and programmability,
it also introduces network security threats.

The 1.0 version of the OpenFlow protocol [1] specification contains requirements
for TLS usage [2]. However, in subsequent versions of the OpenFlow protocol, [3]
“must” is replaced by “should” in their descriptions. Thus, it is difficult to ensure the
security of key data, such as flow tables, in southbound communication. In practical
applications, few TLS protections exist between controllers and switches. Most ven-
dors ignore southbound communication’s security issues and use TCP connections

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
S. Liu and G. Yang (Eds.): ADHIP 2018, LNICST 279, pp. 560–569, 2019.
https://doi.org/10.1007/978-3-030-19086-6_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_61&domain=pdf
https://doi.org/10.1007/978-3-030-19086-6_61

directly. Additionally, the certificate authentication management interface that is used
with TLS has not been perfected.

The following table shows the support of Southern OpenFlow TLS for each
OpenFlow device vendor [4] (Tables 1 and 2):

Using TCP connections directly ensures that all southbound communication data
will be exposed in plaintext on the communication link. This is feasible for secure
networks, in which data centers and other physical devices are difficult to access. The
number of deployments of the networks is increasing, and in these deployed systems,
Without TLS, there will be a serious security risk [5]. Because we cannot guarantee that
all communication devices in the communication path between the SDN controller and
the switch are secure and reliable, attackers can initiate man-in-the-middle attacks
through session hijacking, DNS spoofing, and port mirroring (Fig. 1). They can
eavesdrop, intercept, tamper with the communication data, e.g., pose as a controller to
send a FLOW_MOD message to the switch, tamper with the flow table in the switch to
control the flow of data in the switch, and even tamper with the entire network [6].
However, this kind of attack does not modify the normal transmission from the switch
to the controller and is subtle. In [7], this type of attack has been verified in practice as
feasible.

Table 1. OpenFlow switch TLS support table

OpenFlow switch TLS support

HP switch No
Brocade Controller port only
Dell No
NEC Partial
Indigo No
Pica8 Only new versions
Open WRT Yes
Open vSwitch Yes

Table 2. OpenFlow controller TLS support table

OpenFlow controller TLS support

Brocade Vyatta controller Yes
NOX controller No
POX No
Beacon No
Floodlight No
OpenMuL No
FlowVisor No
Big network controller No
Open vSwitch controller Yes

Source Encryption Scheme in SDN Southbound 561

The security of the OpenFlow southbound communication channel is not strong.
Samociuk et al. [4, 8] proposed using existing security protection schemes to protect
the southbound communication. These researchers also analyzed the use of TLS, IPsec,
and SSH. The transmission layer and the network layer ensure communication security,
but protection schemes focus only on channel security.

In the existing literature, some authors propose security frameworks for the overall
assessment and protection of SDN security [9, 10]. Some researchers study the pro-
tection of buffer overflow or the denial of service attacks by identifying malicious
traffic [11–13]. In some studies [6, 14], a more comprehensive analysis of the SDN
architecture and the existing or potential security threats are systematically presented.
All [4, 6, 8] authors mention the southbound communication security problem. In
addition, all authors discuss the protection of southbound communication security via a
channel protection method such as TLS, IPsec or SSH. We believe that the source
encryption scheme can completely identity authentication, distribute session keys via
insecure communication channel and provide end-to-end communication data security.

The rest of this paper is organized as follows: Sect. 1 introduces the overall
architecture of SDN and the OpenFlow southbound communication protocol; Sect. 2
introduces our proposed data source encryption scheme; Sect. 3 contains our program’s
security assessment and performance evaluation; and Sect. 4 summarizes our work.

2 Source Encryption Scheme in SDN Southbound

2.1 Scheme Profile and Symbol Definitions

SDN architecture is divided into three layers. From top to bottom, they are the
application layer, the control plane, and the data plane, as shown in Fig. 2 below. The
control plane is responsible for the control logic of the network and provides the calling
interface to the application layer. The data plane is responsible for data forwarding and
provides the control plane’s call interface. Southbound communication refers to the
process by which the control plane invokes the protocol interface provided by the data
plane to perform network control.

SDN Switch SDN Controller
Normal OpenFlow channel

A acker

Man-in-the-middle a acks

Fig. 1. Man-in-the-middle attacks

562 Y. Wang et al.

The most efficient way to source encrypt the communication data before it enters
the communication channel is to internally connect each switch or controller. However,
this process causes the system to be highly coupled. In addition, it is not possible for a
switch or a controller to be compatible with devices from many manufacturers at the
same time. This paper proposes using a data forwarding proxy to implement the source
encryption of communication data. As shown in Fig. 1, before the SDN controller and
the switch are connected, they are each connected to a local forwarding proxy to
perform the encryption and decryption operations on the original data. The abbrevia-
tions used to denote the encryption and decryption process are presented below:

MKx;y: The key to calculate the HMAC of a message between x and y
EKx;y: The symmetric encryption key between x and y
SM0: The original message from the switch (Plaintext)
SMe1: The source-encrypted message of SM0 (Ciphertext)
SMe2: The TLS encrypted message of SMe1 (Ciphertext)
RM0: The controller’s original message (Plaintext)
RMe1: The source encrypted message of RM0 (Ciphertext)
RMe2: The TLS encrypted message of RMe1 (Ciphertext).

We employ the Kerberos key distribution center (KDC) to perform identity
authentication and session key allocation. The abbreviations used to describe the
authentication process are presented below:

IDS, IDC: The number (unique) of the switch and controller
KS: The pre-shared key between KDC and the SDN switch
KC: The pre-shared key between KDC and the SDN controller
TS: The ticket encrypted by KDC using KS

TC: The ticket encrypted by KDC using KC

KS;C: The session key between SDN controller and switch.

Control Plane
SDN ControllerAgent

Agent SDN Switch

Applica on Layer
SDN Applica on

Data Plane

North-bound API

South-bound API

Fig. 2. SDN architecture diagram

Source Encryption Scheme in SDN Southbound 563

2.2 Source Encryption Scheme

A data flow diagram is shown in Fig. 3, in which the virtual devices in the virtual box
do not necessarily exist. A device can perform network address translation (NAT), be a
firewall, or be an attacker who initiates a man-in-the-middle attack.

SDN switch to SDN controller message encryption and decryption process:

Step 1: The forwarding agent on the switch encrypts the original data from the
application layer SM0 and then calculates the HMAC cipher’s authentication code
text and adds it to the cipher text SMe1. The calculation is as follows:

SMe1 ¼ E EKs;c; SM0
� �jjHMAC MKs;c;E EKs;c; SM0

� �� � ð1Þ

Step 2: SMe1 is encrypted at the transport layer via TLS, and then the ciphertext
SMe2 is sent to the intermediate device:

SMe2 ¼ E EKs;md; SMe1
� � ð2Þ

Step 3: After the intermediate device receives the ciphertext SMe2 and uses the TLS
key EKs;md , which is negotiated by the switch to decrypt it into SMe1, the receiver
encrypts SMe1 with its TLS key EKc;md , which is negotiated with the SDN controller
into SM�

e2, and sends it to the SDN control device. The calculations are as follows:

SDN
Switch Mid Device SDN

Controller

Source
Encrypt

TLS
Encrypt

TLS
Decrypt

TLS
Encrypt

TLS
Decrypt

Source
Decrypt

Source
Encrypt

TLS
Encrypt

TLS
Decrypt

TLS
Encrypt

TLS
Decrypt

Source
Decrypt

0SM

0SM

1SMe
2SMe

1SMe

1SMe

RM0

RM0

RM 1e
2RMe

RM 1e

RM 1e

*
2RMe

*
2SMe

Fig. 3. Source encrypted data flow diagram

564 Y. Wang et al.

SMe1 ¼ D EKs;md; SMe2
� � ð3Þ

SM�
e2 ¼ E EKs;md; SMe1

� � ð4Þ

Step 4: After receiving the ciphertext SM�
e2, the forwarding agent decrypts it into

SMe1 using its TLS key. If the message SMe1 is verified successfully with the
HMAC message authentication code, then it is decrypted into the plain text SM0

using the source encryption key. If the authentication fails, the message is dis-
carded. The calculations are in Eqs. 5 and 6:

SMe1 ¼ D EKc;md; SM
�
e2

� � ð5Þ

SM0 ¼ D EKs;c; SMe1
� � ð6Þ

Encryption and decryption process of Controller to switch message are similar to the
above.

2.3 Authentication and Key Distribution

Before each communication between the SDN controller and the switch, the com-
municating parties must first perform authentication and key distribution to use the
assigned key for encrypted communications. The specific authentication distribution
process is shown in Fig. 4:

Step 1: The SDN switch sends a unique number of its own switch and a unique
number of the SDN controller to the KDC.
Step 2: After the KDC receives the request, the KDC randomly generates a session
key ðKS;CÞ, and then generates two tickets TS and TC to send to the switch. The
calculation is as follows:

SDN Switch SDN Controller

KDC

Fig. 4. Authentication process diagram

Source Encryption Scheme in SDN Southbound 565

TS ¼ E KS; KS;C; IDC
� �� � ð7Þ

TC ¼ E KC; KS;C; IDS
� �� � ð8Þ

Step 3: After receiving the two tickets, the SDN switch decrypts TS with key KS to
obtain the session key KS;C and then uses the session key to generate the authen-
tication factor A with the current time stamp TS and the checksum of data ChS. A is
sent to the SDN controller together with TC. The authentication factor calculation is
as follows:

A ¼ E KS;C; TS;ChSð Þ� � ð9Þ

Step 4: After receiving the ticket TC and the authentication factor A, the SDN
controller obtains the session key KS;C by decrypting TC with KC, and then
decrypting A with KS;C to obtain the timestamp TS and checksum of data ChS. If the
timestamp is within five minutes of the current time and if the timestamp is
appearing for the first time, then the checksum of data is checked.
Step 5: If certifications pass, then the SDN controller encrypts the timestamp-
received TS with the session key KS;C and sends it to the switch for the completion
of mutual authentication.

3 Analysis and Test

In this section, we demonstrate that the proposed solution is both secure and efficient.
We implement the solution in the form of a forwarding agent. For SDN controllers and
switches, the source encryption by the forwarding agent is transparent. Controllers and
switches are not involved in the encryption and decryption process of communication
data, making the protection scheme more flexible and able to adapt to a variety of
controllers and switches. Enabling TLS protection for the connection between the
security agents at both ends also becomes easier.

3.1 Security Analysis

The source encryption scheme provides message encryption at the transport application
layers and provides an identity mutual authentication mechanism. The following is a
detailed analysis of the message forwarding process.

As shown in Fig. 3, the messages SM0 and RM0, which are sent by the switch or
controller, are encrypted before the TLS encryption occurs. During the communication
between the switch and the controller, the messages are in the form of ciphertext. Even
if an attack on an intermediate device occurs, the intermediate device can only obtain
the ciphertexts.

566 Y. Wang et al.

SMe1 and RMe1 are encrypted at the source. Because only the switch and the
controller hold the encryption key EKs;c, the intermediate device cannot decrypt the
plaintext. Moreover, if the intermediate third-party tampers with the communication
message, because the authentication of the message authentication code cannot be
performed after the message is received at the receiving end, the receiving end can
perceive the security problem on the link.

TLS encrypts data by providing confidentiality protection at the transport layer and
providing point-to-point security protection. The source encryption scheme encrypts
the message data before the application layer encapsulates the data. The entire com-
munication process is in ciphertext and provides effective end-to-end encryption
protection.

During the process of identity authentication and key distribution, if the switch adds
a timestamp to the authentication factor that is sent to the controller, the controller must
compare the timestamp with the current time and check to see whether it has ever
appeared. In this way, the attacker cannot use the replay authentication factor to
impersonate the switch for access. The controller also needs to encrypt the time stamp
separately and send it back to the switch to complete the mutual authentication.

3.2 Efficiency Test

After adding source encryption protection, we used two desktop computers to test the
delays in source encryption, bandwidth throughput, and data packet transmission. The
two devices and their parameters are shown in Table 3:

CBench is a tool used to test the performance of OpenFlow controllers. To measure
controller performance, CBench can simulate switches to connect controllers, send
PACKET-IN messages, and count the number of FLOW-MOD messages to which the
controller responds.

To understand the influence of the source encryption scheme on communication
latency, we used the CBench test tool to test the performance of the Floodlight con-
troller. We turned on the performance of the controller after the forwarding agent was
used as a benchmark, and we separately tested the case of enabling TLS and the source
encryption. In the case of both TLS and the enabled source encryption, the controller
performance data was compared and analyzed. In each case, we used CBench to

Table 3. Test hardware and software environment

Option SDN switch SDN controller

NIC 1000 Mb/s 1000 Mb/s
CPU Intel i5-4590 Intel i5-4590
Memory 8 GB 8 GB
Kernel version Linux 4.13.0-38 Linux 4.13.0-38
Operating system Ubuntu 16.04 Ubuntu 16.04
Software and version Open vSwitch 2.7.4 Floodlight 1.2

Source Encryption Scheme in SDN Southbound 567

simulate different numbers of switches, and we requested the controller at the same
time. Each test was repeated 10 times and averaged, as shown in Fig. 5 below:

In Fig. 5, the horizontal axis indicates the number of switches simulated by
CBench, and the vertical axis indicates the number of response messages per second by
the controller. When the number of switches is small, the source encryption and the
TLS control are separately enabled. The impact of the performance of the device is
similar, but when the number of switches is greater than 32, the impact of TLS on the
performance of the controller is greater than the source encryption. In general, enabling
TLS or source encryption will slightly reduce the performance of the controller.
However, if the host resources are sufficient, the controller performance still increases
linearly with the number of switches. This does not bring an obvious performance
bottleneck to the controller.

Figure 6 shows the performance loss of the Floodlight controller when the number
of switches ranges from 28 to 64. The controller performance loss when the source
encryption alone is enabled is approximately 4%, which is much less than the per-
formance loss when the TLS alone is enabled. Therefore, the source encryption pro-
tection scheme proposed in this paper is superior to TLS encryption. When both
protection schemes are enabled, the overall performance loss remains below 12%.

Fig. 5. Controller response performance

Fig. 6. Loss of controller performance

568 Y. Wang et al.

4 Conclusion and Future Work

In this paper, we propose a comprehensive and effective source encryption commu-
nication scheme, which not only completes the identity authentication and distribution
of session keys for both parties of the communication but also provides end-to-end
security protection for the communication data. The scheme possesses a high operating
efficiency. In addition to studying security protection schemes for communication data
on the link, we would like to pursue research into targeted protection schemes for key
data in SDN controllers and switches, forming a complete protection system.

Acknowledgement. This work was supported by the National Science Foundation of China
(Grant No. 61502048) and the National Science and Technology Major Project (Grant
No. 2017YFB0803001).

References

1. Mckeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

2. Consortium, O.F.S.: OpenFlow Switch Specification Version 1.0.0 (2009)
3. OpenFlow switch specifications version 1.4.0. Open Networking Foundation (2013)
4. Benton, K., Camp, L.J., Small, C.: OpenFlow vulnerability assessment. In:

ACM SIGCOMM Workshop on Hot Topics in Software Defined NETWORKING,
pp. 151–152. ACM (2013)

5. Kobayashi, M., Seetharaman, S., Parulkar, G., et al.: Maturing of OpenFlow and software-
defined networking through deployments. Comput. Netw. Int. J. Comput. Telecommun.
Netw. 61(3), 151–175 (2014)

6. Shu, Z., Wan, J., Li, D., et al.: Security in software-defined networking: threats and
countermeasures. Mob. Netw. Appl. 21(5), 1–13 (2016)

7. Yoon, C., Lee, S., Kang, H., et al.: Flow wars: systemizing the attack surface and defenses in
software-defined networks. IEEE/ACM Trans. Netw. 25(6), 3514–3530 (2017)

8. Samociuk, D.: Secure Communication Between OpenFlow Switches and Controllers (2015)
9. Lee, S., Yoon, C., Lee, C., et al.: DELTA: a security assessment framework for software-

defined networks. In: Network and Distributed System Security Symposium (2017)
10. Pandya, B., Parmar, S., Saquib, Z., et al.: Framework for securing SDN southbound

communication. In: 2017 International Conference on Innovations in Information, Embed-
ded and Communication Systems (ICIIECS), pp. 1–5. IEEE (2017)

11. Ambrosin, M., Conti, M., Gaspari, F.D., et al.: LineSwitch: tackling control plane saturation
attacks in software-defined networking. IEEE/ACM Trans. Netw. 25(2), 1206–1219 (2017)

12. Atli, A.V., Uluderya, M.S., Tatlicioglu, S., et al.: Protecting SDN controller with per-flow
buffering inside OpenFlow switches. In: Black Sea Conference on Communications and
NETWORKING. IEEE (2018)

13. Deng, S., Gao, X., Lu, Z., et al.: Packet injection attack and its defense in software-defined
networks. IEEE Trans. Inf. Forensics Secur. 13(3), 695–705 (2017)

14. Rawat, D.B., Reddy, S.R.: Software defined networking architecture, security and energy
efficiency: a survey. IEEE Commun. Surv. Tutorials 19(1), 325–346 (2017)

Source Encryption Scheme in SDN Southbound 569

	Source Encryption Scheme in SDN Southbound
	Abstract
	1 Introduction
	2 Source Encryption Scheme in SDN Southbound
	2.1 Scheme Profile and Symbol Definitions
	2.2 Source Encryption Scheme
	2.3 Authentication and Key Distribution

	3 Analysis and Test
	3.1 Security Analysis
	3.2 Efficiency Test

	4 Conclusion and Future Work
	Acknowledgement
	References

