
A Fine-Grained Detection
Mechanism for SDN Rule Collision

Qiu Xiaochen1, Zheng Shihui1(&), Gu Lize1, and Cai Yongmei2

1 College of Cyberspace Security,
Beijing University of Posts and Telecommunication, Beijing, China

shihuizh@bupt.edu.cn
2 College of Computer Science and Engineering,

Xinjiang University of Finance and Economics, Urumqi, China

Abstract. The rules issued by third-party applications may have direct viola-
tions or indirect violations with existing security flow rules in the SDN
(software-defined network), thereby leading to the failure of security rules.
Currently, existing methods cannot detect the rule collision in a comprehensive
and fine-grained manner. This paper proposes a deep detection mechanism for
rule collision that can detect grammatical errors in the flow rules themselves,
and can also detect direct and indirect rule collisions between third-party and
security applications based on the set intersection method. In addition, our
mechanism can effectively and automatically resolve the rule collision. Finally,
we implement the detection mechanism in the RYU controller, and use Mininet
to evaluate the function and performance. The results show that the mechanism
proposed in this paper can accurately detect the static, dynamic and dependency
collisions of flow rules, and ensure that the decline of throughput of the
northbound interface of the SDN network is controlled at 20%.

Keywords: Software-defined network � OpenFlow � Flow table �
Collision detection and resolution

1 Introduction

The software-defined network (SDN) [1] is a new type of network architecture pro-
posed by Clean State research group of Stanford University, which brings a tremendous
change to the traditional network. The essential features of SDN are the separation of
control and data plane and an open network programmable ability. In 2008, the
research team led by Professor Nick McKeown of Stanford University proposed the
concept of OpenFlow. The OpenFlow protocol [2] is currently the mainstream
southbound communication protocol of SDN. It defines the communication standard
between SDN controllers and OpenFlow switches.

With the development of SDN technology, the security issues of SDNs have
become increasingly clear. Our research primarily focuses on the security threat to the
SDN’s application layer, which is called the flow rule collision [3, 4]. The openness
and programmability of SDNs allow a large number of third-party applications,
including security applications, run on the network concurrently. Because the logic and

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
S. Liu and G. Yang (Eds.): ADHIP 2018, LNICST 279, pp. 549–559, 2019.
https://doi.org/10.1007/978-3-030-19086-6_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_60&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_60&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_60&domain=pdf
https://doi.org/10.1007/978-3-030-19086-6_60

functions of these applications are different, they will issue different flow rules
according to their needs, and there will inevitably be rule collision.

For the abovementioned threat of rule collision, the Porras [6] research group from
the United States designed a security-enhanced kernel for the SDN operating system in
the Nox controller [7], which is called FortNox, and proposed a policy collision
detection method based on the alias sets algorithm. The source IP address and desti-
nation IP address in the flow entry are put into two sets, and the addresses before and
after the modification in the Set-Field flow entry are also added to the above two sets.
Finally, the source address and destination address sets are compared with firewall rules
in the SDN to discover the policy collision. FLOVER [8] is a new detection system that
can detect whether a flow policy deployed in an OpenFlow network violates the
security policies. This system can detect invalid and invisible routes due to errors, but it
does not consider firewall policies. Reference [5] proposed a method based on “First-
order” logic to detect rule collision, and deployed an “inference engine” to detect rule
collision before issuing the flow rules. Wang Juan et al. proposed a real-time dynamic
policy collision detection solution based on FlowPath [9], which detected direct and
indirect collision using the real-time state of the SDN. Reference [10] proposed to use
ADRS (anomaly detecting and resolving for SDN) to solve the anomalies in the
policies and rules, used the interval tree model to quickly scan the flow table, and
established a shared model to allocate network priorities. Through these two models,
they proposed an automated algorithm to detect and resolve collisions. The Khurshid
team [11] proposed a new type of inspection tool named Veriflow. The tool is located
between the controller and the network equipment, and creates a Tire tree by coding to
simulate the forwarding of the new rules after they are added, thus realizing network
detection.

The aforementioned solutions are not comprehensive in terms of rule collision
detection. Fortnox’s solution based on the alias sets algorithm can only detect simple
dynamic collision and intercept them, and only the source and destination IP address of
the OpenFlow field are considered in the dependency collision detection. Therefore,
this paper will propose a more complete and fine-grained rule collision detection
mechanism with automated collision solution. The new mechanism can fully detect the
grammatical errors existing in the flow rules themselves, thereby preventing excessive
invalid rules that are causing redundancy in the flow table. In addition, it can also detect
the fine-grained direct and indirect violations between the rules from third-party
application and security application.

2 OpenFlow Rule Collision Representation

2.1 OpenFlow Protocol

The OpenFlow protocol indicates that each OpenFlow switch can have multiple flow
tables, each table may contain multiple flow entries, which describe how to match and
process data packets arriving at the switch. The flow entry consists of three main parts:
“match fields”, “counters” and “actions”. The “match field” is used to define the
information of the packets that needs to be matched. The “counter” field is used to

550 Q. Xiaochen et al.

count the number of packets processed in this flow entry. The “actions” represent the
actions to be performed on data packets that match this flow entry, including “forward”,
“discard”, “modify” and other operations.

Next we formalize the flow table in an OpenFlow switch, all the flow rules F(j) in
the j-th OpenFlow switch in SDN network data plane are formalized as:

FðjÞ ¼ F1;F2;F3. . .Fn ð1Þ

Each flow rule Fi consists of the matching domain Ci, the priority Pi and the action
field Ai, n is the number of flow rules, it may be defined as follows:

Fi ¼ Ci;Pi;Aið1� i� nÞ ð2Þ

Ci ¼ f1; f2; f3. . .fnð Þ ð3Þ

In the matching domain Ci, f1, f2, f3 … fn respectively represent the header field of
OpenFlow protocol. OpenFlow1.0 protocol contains 12 header fields: in_port, dl_src,
dl_dst, dl_type, dl_vlan, dl_vlan_pcp, nw_src, nw_dst, nw_proto, nw_tos, tp_src,
tp_dst. In the new version of OpenFlow protocol, the number of match fields is also
increasing.

2.2 Classification of Flow Rule Collision

Reference [5] defines two types of flow rule collisions: static and dynamic collisions.
A static collision refers to an internal collision in the rules themselves which have the
wrong parameters or error syntax. A dynamic collision refers to a collision among flow
entries, in a flow table where two or more flow entries match with one data packet at
the same time.

In addition to the two types of rule collisions mentioned above, we call the flow
rule whose “actions” field contains the content of rewriting the data packets the Set-
Field rule. An attacker can issue malicious Set-Field rules that could rewrite the packet
header that arrives at the switches, and the dependency relationship between the Set-
Field rules may cause the security rules to be invalid. This collision is called a
dependency collision.

As shown in the SDN topology in Fig. 1, the network contains three switches, one
controller, and four hosts. The security rule in the SDN controller network is that:
Host A (10.0.1.12) to C (10.0.13.12) cannot communicate. If an attacker issues the
following three Set-Field rules:

1. S1:Match(Src:10.0.1.12/24,Dst:10.0.2.12/24) Action (SET_NW_SRC:10.0.4.12/24
AND Forward)

2. S2:Match(Src:10.0.4.12/24,Dst:10.0.2.12/24) Action (SET_NW_DST:10.0.3.12/24
AND Forward)

3. S3:Match(Src:10.0.4.12/24,Dst:10.0.3.12/24) Action (Forward).

The packet sent by host A (Src: 10.0.1.12 Dst: 10.0.2.12) will be rewritten by the
Set-Field rules existing in switch S1 and S2. Finally it will arrive at host C through

A Fine-Grained Detection Mechanism for SDN Rule Collision 551

switches S1, S2, and S3 due to the modification of the packet, which is a violation of
the security rule that host A cannot communicate with host C. This type of collision is
due to the dependency of the flow rules and it is extremely harmful.

3 Comprehensive Rule Collision Detection Mechanism

3.1 Solution Outline

As shown in Fig. 2, our comprehensive detection and solution mechanism for rule
collisions is mainly implemented at the SDN control plane. When the supernatant
applications issue the flow rules by the northbound interface, first they will be checked
by the identity authentication and authorization mechanism of the controller. Then, the
collision detection mechanism can intercept the rules to be issued and real-time detect
whether there are static collisions in rules themselves and/or dynamic collisions with
the existing security rules. Once there is a collision, it will proceed with the automatic
collision solution. In addition, the global Set-Field type rules in the switches are offline
compared with all existing security rules in the SDN to detect dependency collisions,
which is performed using the improved alias-set algorithm.

SDN ControllerSDN Controller

S1
Set-Field Rule1

S1
Set-Field Rule1

S2
Set-Field Rule2

S2
Set-Field Rule2

S3S3

A
10.0.1.12/24

A
10.0.1.12/24

D
10.0.4.12/24

D
10.0.4.12/24 C

10.0.3.12/24
C

10.0.3.12/24

B
10.0.2.12/24

B
10.0.2.12/24

Firewall rules
Src:10.0.1.x/24 --

>Dst:10.0.3.x/24 Deny

Fig. 1. Dependency collision that causes failure of firewall rules

Fig. 2. The overall structure of the detection mechanism

552 Q. Xiaochen et al.

3.2 Collision Detection Algorithm

First, the detection mechanism for static collisions proposed in this paper mainly
detects whether there are some errors in the rule to be issued from the following
aspects: the dl_src and dl_dst are the same, the nw_src and nw_dst are the same, and
whether the value range of the header fields are legal. After the detection of the static
collision, incorrect flow rules will be effectively filtered to prevent them from being
sent to the OpenFlow switches.

The detection of dynamic collisions primarily focuses between the flow rules from
third-party applications and those from applications with higher priority. To establish a
feasible model of collision detection, we first need to determine the relationship
between the two flow rules, including equal, inclusive, intersectant and irrelevant.
According to the definition of the openflow flow rule in the previous chapter, the
matching domain of the rule Fi can be represented as Ci; f ik represents the k-th header
field in Ci, the Fj, Cj and f jk is alike. The relationship between flow rules Fi and Fj is
defined as follows:

1. Equal: For the two match domain Ci and Cj in two flow rules,
8k : f ik ¼ f jk 1� k� nð Þ, the value of the header field are correspondingly equal with
each other.

2. Inclusive: For Ci and Cj, 8k : f ik � f jk 1� k� nð Þ, and 9k : f ik 6¼ f jk , then the i-th flow
rule becomes a child of the j-th flow rule. We call the rule Fi includes Fj or Fj is
included in Fi, if the flow rule Fi has a higher priority than Fj, then the Fj will
become a repetitive and unmeaning flow rule which won’t work as long as the Fi

exists.
3. Intersectant: For Ci and Cj, 9k : f ik \ f jk 6¼ £, and 9m; n : f im ⊊ f jm, f

j
n ⊊ f in the two

rules will be matched only when the specific packet arrives.
4. Irrelevant: for Ci and Cj, 9k : f ik \ f jk ¼ £, the two flow rules are irrelevant and do

not interact.

The detection of a dynamic collision mainly aims at the situation when the rela-
tionship between two flow rules is equal, inclusive or intersectant. The detection
algorithm will judge whether there is a dynamic collision according to the relationship
between the two matching domains of the rules and the size of the priority. The
collision detection and solution mainly include the following situations:

5. If C1 and C2 are equal or C1 contains C2, it represents the dynamic collision and
reject to issue the rule F2

6. If C2 contains C1, then compare priority P1 and P2. If P1 < P2, then adjust P2 =
P1 − 1 so that the priority of the third-party flow rule is less than the security rule,
then it will be issued normally

7. If C2 intersects C1, compare P1 and P2. If P1 < P2, set P2 = P1 − 1, then it will be
issued normally

8. If C2 and C1 are irrelevant, then it will be issued normally.

A Fine-Grained Detection Mechanism for SDN Rule Collision 553

In terms of the detection of dependency collisions, we only need to compare the
existing firewall rules and all Set-Field rules that could rewrite the data packet. The
firewall rules in the SDN are generally expressed as follows:

<dl_src><dl_dst><dl_type><nw_src><nw_dst><nw_type><tp_src><tp_dst><acti-
ons>.

The difference from the FortNox detection solution is that we will consider all
header fields in the firewall rules to perform dependency collision detection in a fine-
grained manner, thereby making the detection results more accurate and preventing
false alarms. When using the set-intersection algorithm to detect dependency collisions,
it is necessary to aggregate the flow rules into the format as the following:

SRC ! DST actions ð4Þ

SRC ¼ fSRCFigði 2 N; l� i� nÞ ð5Þ

DST ¼ fDSTFig i 2 N; 1� i� nð Þ ð6Þ

SRCFi ¼ ðCdl src;Cdl type;Cnw src;Cnw type;Cto srcÞ ð7Þ

DSTFi ¼ Cdl dst;Cnw dst;Ctp dst
� � ð8Þ

The SRC is called the source set, and the DST is called the destination set. Each
element SRCFi in the source set includes the following head fields of OpenFlow:
dl_src, dl_type, nw_src, nw_type and tp_src field. Each element DSTFi in the desti-
nation set DST includes the following head fields: dl_dst, nw_dst and tp_dst field. The
actions in the firewall rules include “Allow”, “Deny” and “Packetin”.

When we use the set-intersection algorithm to detect the dependency collision
among the flow rules, it first needs to covert the all firewall rules whose action are
“Deny” to aggregate their representation in the format of Ssrc1 ! Sdst1 actions1, and
the all Set-Field flow rules are aggregated into Ssrc2 ! Sdst2 actions2. The values
before and after the modification operation in the Set-Field rules are respectively added
to the source set Ssrc2 and the destination set Sdst2. Next a pairwise comparison is made
between the firewall rules set and the Set-Field rules set to detect the dependency
collision. We judge the to the principles as the following:

9. If Ssrc1 \ Ssrc2 ¼ £ or Sdst1 \ Sdst2 ¼ £, it represents that there is no dependency
collision

10. If Ssrc1 \ Ssrc2 6¼ £ and Sdst1 \ Sdst2 6¼ £, actions1 = actions2, it represents that
there is no dependency collision

11. If Ssrc1 \ Ssrc2 6¼ £ and Sdst1 \ Sdst2 6¼ £, actions1 6¼ actions2, it represents that
there is a dependency collision, and then automatic collision resolution is required
to delete the Set-Field rules that have dependency relationships.

554 Q. Xiaochen et al.

The algorithm of detecting dependency collision based on set-intersection method
is described as follows:

Algorithm1. The detection of dependency collision
input:
S_Set means an aggregate representation of firewall rules;
F_Set means an aggregate representation of Set-Field rules
output: the result of detecting dependency collision
FOR(i=1,2,3,….,m) DO
Ssrc1=S_Set[i].Src; Sdst1= S_Set[i].Dst;
actions1=S_Set[i].Actions
FOR (j=1,2,3,….,n) DO
 Ssrc2=F_Set[j].Src; Sdst2= F_Set[j].Dst;
 actions2=F_Set[j].Actions
 IF(Ssrc1∩Ssrc2= Ø || Sdst1∩Sdst2=Ø)
 continue;
 ELSE
 IF (Ssrc1∩Ssrc2 ≠ Ø) srcResult=true;
 IF (Sdst1∩Sdst2 ≠ Ø) dstResult=true;
 IF (srcResult && dstResult) break;
 IF (srcResult && dstResult)
 IF (actions1= actions2) return No
 ELSE return YES
 ELSE return No

4 Implementation and Evaluation

Based on an open source RYU controller, we implement the synchronization module of
flow rules, the real-time detection module of rule collision and the offline detection
module. We once again compile the source code with new functions of the RYU, and it
becomes a security controller with a rule collision detection mechanism. This is done to
evaluate the effects of the detection module and performance. We deploy and start the
RYU controller in a server with the Ubuntu 15.04 LTS Operating System and 4 GB
RAM. Moreover, in another server with the same configuration, we use Mininet to
build the simulation environment of the SDN topology, which as shown in Fig. 3. It
contains one RYU controller, three SDN switches (s1, s2, and s3) and six hosts (h1, h2,
h3, h4, h5, and h6).

A Fine-Grained Detection Mechanism for SDN Rule Collision 555

4.1 Function Testing

To test the correctness of the detection mechanism, first, we issue the security flow rule
{(*,*,*,’0x0800’,’10.0.0.1,’10.0.0.101’,’tcp’,*,*) priority:1000 actions: Deny]} to s1
and {(*,*,*,’0x0800’,’192.168.1.22,’192.168.3.22’,’tcp’,*,’8080’) priority:2000
actions: Deny} to s2.

After the security rules are issued successfully, we begin to issue some rules from
the third-party application, which as shown in Table 1. The rules to be issued have
static collisions themselves or dynamic and dependency collisions with the security
rules in SDN. In our experiments, we need to record the results of the rule collision
detection and the collision resolution, which verifies whether the functioning of our
detection algorithm is correct. Table 2 shows the detection results and collision

Fig. 3. The simulation environment of SDN network topology

Table 1. The rules to be issued

Number Rule

1 S1:(*,*,*,’0x0800’,’10.0.0.1,’10.0.0.100’,*,*,*) priority:100 actions:Output:12
2 S1: (*,*,*,’0x0800’,’10.0.0.1,’10.0.0.101’,tcp,*,*) priority:2000 actions:

Output:12
3 S1: (*,*,*,’0x0800’,’10.0.0.1,’10.0.0.101’,tcp,8,*) priority:2000 actions:Output:1
4 S1: (*,*,*,’0x0800’,’10.0.0.1,’10.0.0.101’,*,*,*) priority:2000 actions:Output:4
5 S1: (*,*,*,’0x0800’,’10.0.0.1,’10.0.0.101’,*,8,*) priority:1000 actions:Output:4
6 S2:(*,*,*,’0x0800’,’192.168.1.22,’192.168.2.22’,*,*,*) priority:100 actions:

OUTPUT:2;
SET_NW_SRC:192.168.4.22

7 S2:(*,*,*,’0x0800’,’192.168.4.22,’192.168.2.22’,*,*,*) priority:100 actions:
OUTPUT:2;
SET_NW_DST:192.168.3.22

8 S3:(*,*,*,’0x0800’,’192.168.8.22,’192.168.8.22’,*,*,*) priority:100 actions:
OUTPUT:2

556 Q. Xiaochen et al.

solution, the collision detection algorithm can correctly and effectively detect the static
collisions, dynamic collisions and dependency collisions in flow rules. Furthermore,
rule collision situations can automatically be resolved by the detection system.

4.2 Performance Testing

We start 10 threads in Jmeter and continu-
ously request the northbound interface of
RYU using HTTP protocol. Within 60 s,
when the numbers of security flow rules in the
SDN network are 50, 100, 200, 500, 1000,
2000 and 5000, we record the changes of the
throughput capacity and the average response
times of the northbound interface. The test
results of the throughput are shown in Fig. 4.
It can be observed that after adding the
function of real-time detection to the RYU
controller, the throughput is relatively stable,
although it is reduced by approximately 20%
compared to the original RYU. The average
response time is shown in Fig. 5. After add-
ing the collision detection mechanism, the
average response time is extended. However,
the collision detection mechanism is taken
into account to ensure the overall security of
the SDN. Under the premise of security, the
decrease of the throughput and request
response time is within the acceptable range.

In addition, the main factor leading to the
decrease of the throughput of the northbound
interface is the real-time collision detection

Table 2. The result of collision detection

Number Check result Collision resolution

1 No conflict Normally be issued
2 Equal with s1-1,the actions is diff. Refused to issue
3 Included by s1-1,the actions is diff. Refused to issue
4 Included by s1-1,the actions is diff. Adjust the priority = 999 and

normally be issued
5 Intersects with s1-1, the actions is diff. Refused to issue
6 No conflict Normally be issued
7 Depends with the sixth rule, has a

conflict with s2-1
Delete the dependency conflict flow
rules

8 Static conflict Refused to issue

Fig. 4. The result of the throughput

Fig. 5. The result of the average response
time

A Fine-Grained Detection Mechanism for SDN Rule Collision 557

before the flow rules are deployed to the
OpenFlow switches. Under the conditions of
different numbers of existing security rules
in the SDN, we record the real-time detec-
tion times. The results are shown in Fig. 6.
When the number of existing security rules
is from 100 to 1200, the actual real-time
detection time almost linearly increases.
However, in an actual SDN network, the
number of security rules in a single Open-
Flow switch does not exceed 1000. There-
fore, within the controllable range of flow table entries, the delay is within an
acceptable range.

5 Conclusion

For the security problems of rule collision in the application layer of the SDN network,
we propose a comprehensive and fine-grained detection mechanism for rule collisions
and implement it in the RYU controller. We evaluate the function and performance of
the mechanism in a simulated SDN environment. The results show that it can correctly
and efficiently detect various rule collisions and automatically resolve the collisions,
which enhances the security of the SDN, and its performance is within the acceptable
range. However, this paper does not consider the real-time network status when
detecting dependency collisions. Therefore, there will be a delay in dependency col-
lision resolution. In the future, our research will focus on this aspect and improve the
detection mechanism of the flow rules.

Acknowledgments. This work was supported by the National Science Foundation of China
(Grant No. 61502048) and the National Science and Technology Major Project (Grant
No. 2017YFB0803001).

References

1. Michel, O., Keller, E.: SDN in wide-area networks: a survey. In: Fourth International
Conference on Software Defined Systems, pp. 37–42. IEEE (2017)

2. Mckeown, N., Anderson, T., Balakrishnan, H., et al.: OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

3. Rawat, D.B., Reddy, S.R.: Software defined networking architecture, security and energy
efficiency: a survey. IEEE Commun. Surv. Tutorials 19(1), 325–346 (2017)

4. Li, W., Meng, W., Kwok, L.F.: A survey on OpenFlow-based software defined networks:
security challenges and countermeasures. J. Netw. Comput. Appl. 68, 126–139 (2016)

5. Batista, B.L.A., Campos, G.A.L.D., Fernandez, M.P.: Flow-based conflict detection in
OpenFlow networks using first-order logic. In: Computers & Communication. IEEE
Computer Society, pp. 1–6 (2014)

Fig. 6. The time of the real-time detection

558 Q. Xiaochen et al.

6. Porras, P., Shin, S., Yegneswaran, V., et al.: A security enforcement kernel for OpenFlow
networks, pp. 121–126 (2012)

7. Gude, N., Koponen, T., Pettit, J., et al.: NOX: towards an operating system for networks.
ACM SIGCOMM Comput. Commun. Rev. 38(3), 105–110 (2008)

8. Son, S., Shin, S., Yegneswaran, V., et al.: Model checking invariant security properties in
OpenFlow. In: IEEE International Conference on Communications, pp. 1974–1979. IEEE
(2013)

9. Wang, J., Wang, J., Jiao, H.Y., et al.: A method of Open-Flow-based real-time conflict
detection and resolution for SDN access control policies. Chin. J. Comput. 38(4), 872–883
(2015)

10. Wang, P., Huang, L., Xu, H., et al.: Rule anomalies detecting and resolving for software
defined networks. In: Global Communications Conference, pp. 1–6. IEEE (2016)

11. Khurshid, A., Zhou, W., Caesar, M., et al.: VeriFlow: verifying network-wide invariants in
real time. In: The Workshop on Hot Topics in Software Defined Networks, pp. 49–54. ACM
(2012)

A Fine-Grained Detection Mechanism for SDN Rule Collision 559

	A Fine-Grained Detection Mechanism for SDN Rule Collision
	Abstract
	1 Introduction
	2 OpenFlow Rule Collision Representation
	2.1 OpenFlow Protocol
	2.2 Classification of Flow Rule Collision

	3 Comprehensive Rule Collision Detection Mechanism
	3.1 Solution Outline
	3.2 Collision Detection Algorithm

	4 Implementation and Evaluation
	4.1 Function Testing
	4.2 Performance Testing

	5 Conclusion
	Acknowledgments
	References

