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Abstract. Surveillance and conference videos have become increasingly
important in our daily life, which brings a huge amount of video data.
Existing coding standards were originally designed for generic video
contents. The backgrounds are generally static in the surveillance and
conference videos. The background coding errors will propagate to the
subsequent frames in coding the videos. In this paper, a background error
propagation (BEP) model based Rate Distortion Optimization (RDO)
scheme in HEVC is proposed for the surveillance and conference videos.
Firstly, the global RDO scheme is proposed to efficiently exploit the back-
ground error propagation. Secondly, a BEP model is studied to express
the linear relationship between the distortion of the first frame and that
of its subsequent frames. Based on the BEP model, enhanced frames are
proposed to be coded with a small quantization parameter (QP) offset
so as to improve the global performance. Thirdly, a bi-exponential decay
model is proposed to investigate the variation of the error propagation
ratio as the frame order increased. Based on the decay model, a periodical
optimization scheme is presented by deploying the enhanced frames peri-
odically. Experimental results show that the proposed algorithm achieves
11.15% bit-rate reductions on average under the low delay condition.
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1 Introduction

Recently, video surveillance and conference systems are becoming more and more
prevalent in our daily life. As it was reported by IDC [2], surveillance videos will
grow to 5,800 exabytes by 2020. In the face of the explosive growth of surveil-
lance videos, how to effectively compress the videos has become a significant big
challenge.

The state-of-the-art video coding standards, such as H.264/AVC [5] and High
Efficiency Video Coding (HEVC) [3,4] are widely used to compress the surveil-
lance and conference videos. In these methods, coding tools including intra pre-
diction, motion estimation (ME), transformation, and quantization are employed
to remove the redundancy. Rate-distortion optimization (RDO) technology is
adopted to select the optimal coding modes and parameters. However, these
methods were originally designed for generic video contents. Different from the
generic videos, the surveillance videos generally acquired with static cameras.
In these videos, the backgrounds are static and the motion patterns are gener-
ally simple. The coding errors in the background regions may propagate to the
subsequent frames. This characteristic was not fully studied in the traditional
coding methods.

Many efforts have been made to investigate more efficient methods for coding
the surveillance and conference videos. by modeling background frames [6–9].
In [8], the HEVC hierarchical prediction is optimized with background mod-
eling for surveillance and conference video coding. The background picture is
generated and encoded as the long-term reference frame. In [7], a background
modeling based adaptive prediction is proposed for surveillance video coding.
The long-term redundancy is reduced by predicting on generated background
frames. Adaptive prediction methods are employed for different coding blocks.
The background generation is performed on basis of the frames, and the gener-
ated background is updated for each group of pictures (GOP). In [9] a selective
background difference coding method is proposed on basis of macro-block (MB)
level. Two ways are selected to code the macro-blocks. One is coding the origi-
nal MB, and the other is directly coding the difference between the MB and the
corresponding background. A block-based background modeling method is pro-
posed for surveillance video coding [6]. In this scheme, background generation
and updating is conducted based on coding units (CUs) but not frames and is
performed for every frame but not a whole GOP. However, in these methods, only
one generated picture cannot model the periodical backgrounds efficiently. The
generated background may get worse as the frame distance increases. Further-
more, the block-based background modeling methods may aggravate the block
artifacts between the foreground regions and background regions.

In the recent works, background modeling based schemes are proposed to
exploit the frame dependency. However, the background error propagation char-
acteristic is not fully studied. In this paper, a background error propagation
(BEP) model based global RDO scheme is proposed for surveillance and confer-
ence video coding. The BEP model is presented to describe the linear relationship
between the distortion of the frames. In this model, a concept of propagation
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ratio is proposed to describe how is the distortion of one frame influenced by
its previous frames. Based on the BEP model, enhanced frames are presented
to be coded with a small quantization parameter (QP) offset. Furthermore, a
bi-exponential decay model is proposed to express the variation of the propaga-
tion ratio as the frame order increased. Based on the decay model, the periodical
optimization scheme is presented by periodically coding enhanced frames. Exper-
iments are tested on surveillance and conference videos. Experimental results
show the efficiency of the proposed method.

The rest of the paper is organized as follows. An overview of HEVC RDO
technology is presented in Sect. 2. The proposed BEP model based global RDO
method is given in Sect. 3. Experiments are provided in Sect. 4 to validate the
efficiency of the proposed method. Finally, we draw some concluding remarks in
Sect. 5.

2 Overview of Rate Distortion Optimization

RDO technology is widely used in the block-based hybrid coding standards, such
as H.264/AVC and HEVC. In these standards, there are various coding modes
and parameters which can be employed to code the blocks. RDO is employed
to select the optimal coding modes and parameters. The fundamental problem
of RDO is to minimize the coding distortion with a bit consumption constraint.
The constraint problem can be converted into an unconstrained problem by
introducing a Lagrangian multiplier. It can be expressed by

min J = D + λ · R, (1)

where the symbols R and D denote the coding bits and the corresponding coding
distortion. The parameter λ denotes the Lagrangian multiplier. There is a trade-
off between the distortion and coding bits. A proper Lagrangian multiplier will
lead to an optimal balance. The default λ is obtained from the input QP value,
which is expressed by,

λ = fac · (qp − 12)
3

, (2)

where fac is the QP factor, qp is the input QP value.

3 Proposed Method

3.1 Global Rate Distortion Optimization

In the traditional coding scheme, RDO technology is independently employed to
code each CU. However, in practical applications, when we try to code a video
sequence, the main goal is to code all the frames with the optimal rate-distortion
balance. There is a strong frame dependency in the consecutive frames, especially
for the surveillance and conference videos. Thus, a global optimization scheme
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is more applicable for coding all the consecutive frames than the independent
scheme. The global RDO scheme is given by,

min J =
k∑

f=1

Df + λ ·
k∑

f=1

Rf . (3)

where k is the coded frame number. The symbols Df and Rf denote the dis-
tortion and the corresponding coding bits of the fth (f = 1, 2, . . . , k) frame,
respectively. In contrast with the traditional RDO technology, the global opti-
mization scheme considers all the consecutive frames but not only one CU.

3.2 Background Error Propagation Model

Generally, because of the prediction coding scheme in existing coding standards,
coding errors may propagate from the previous frame to the subsequent frames.
The frame dependency is not being well used in the existing optimization.

In surveillance videos, the backgrounds are static and the motion patterns are
generally simple. Let’s consider k co-located CUs in the temporal consecutive
frames. On one hand, the original co-located background pixels in temporal
consecutive CUs are reasonable to be considered as the same. This is expressed
by, P1,j = P2,j = P3,j = . . . = Pk,j , where j = 1, 2, . . . , N2 denote the pixel
locations in CUs with size N × N . On the other hand, since CUs in background
regions are generally encoded with the skip mode, the reconstructed pixels are
considered to be approximately equal with each other, denoted as P d

1,j ≈ P d
2,j ≈

P d
3,j ≈ . . . ≈ P d

k,j . Therefore, for i = 1, 2, . . . , k, the relationship between the CU
distortion can be written as

SSDi =
N2∑

j=1

(Pi,j − P d
i,j)

2

≈
N2∑

j=1

(P1,j − P d
1,j)

2

≈ SSD1,

(4)

where SSDi denotes the sum of squared differences for CU i. That is, in the
background regions, the distortion of consecutive CUs is approximately equal
with that of the first frame.

Based on the background error propagation characteristic as in (4), it can
be concluded that the distortion of subsequent frames is significantly influenced
by that of the first frame. Experiments are conducted to study the relationship
between the distortion of the first frame and that of the subsequent frames. In
the experiments, the coding structure is IPPP. Except for the first inter frame, all
the inter frames are coded with a fixed QP value set as 35. The first inter frame is
coded with QP value varies from 23 to 33 with an interval 2. As shown in Fig. 1,
the X-axis represents the distortion of first inter frame, and the y-axis represents
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Fig. 1. The relationship between the distortion of the first frame and that of its sub-
sequent frames. With the sequences: (a) Vidyo4, (b) BasketballDrill.

the distortion of the subsequent frame (such as frame 5, 10, 15, 20, 25, and 30). It
can be observed that the distortion of the subsequent frames is highly influenced
by that of the first frame, and there is a strong linear relationship between the
distortion. It is reasonable to assume a linear model as

Df = rf · D1 + bf , (5)

where bf is a bias term, rf is a parameter which represents the error propagation
ratio. The linear model is named as background error propagation model. The
error propagation ratio in the model describes how is the distortion of one frame
influenced by its previous frames.

3.3 BEP-Based Rate Distortion Optimization

Based on the background error propagation model, the global RDO shown in
(3) can be rewritten as

min(D1 ·
k∑

f=1

rf +
k∑

f=1

bf + λR1 + λ ·
k∑

i=2

Ri). (6)

It can be observed that, since the subsequent frames are significantly influenced
by the first frame, improving the coding performance of the first frame will
make the overall coding performance to be enhanced. Thus, we try to improve
the coding performance of the first frame. On the other hand, the bit-rate of each
frame is nearly independent. That is to say, the optimal coding performance of
the total k frames can be obtained by setting the following derivative to 0. It is
expressed by,

∂(D1 · ∑k
f=1 rf + λR1)
∂R1

= 0. (7)
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Thus, the lambda multiplier can be solved as,

λ1 = −∂D1

∂R1
=

λ
∑k

f=1 rf
, (8)

where λ1 denotes the lambda multiplier of the first frame.
From (2), we can have

qp = 3log2(
λ

fac
) + 12. (9)

Combine with (8), the adjusted QP value of the first frame can be calculated by
λ1 as

qp′ = qp − 3log2(
k∑

f=1

rf ). (10)

For convenience, we use s to denote the summation of error ratios, i.e., s =∑k
f=1 rf . The coding performance of the first frame can be improved by coding

it with a small QP offset, which is given by

ΔQ = round(−3log2(s)), (11)

where ΔQ denotes the QP offset. The frame which is coded with the small QP
offset is named as the enhanced frame.

3.4 Bi-exponential Decay Model

Since the QP offset depends on the summation of error ratios s, experiments
are conducted to investigate the propagation ratio of the BEP model. In the
experiments, two sets of tests are performed on the first 60 frames. The first set
is named as the anchor set, in which the coding structure is the Low-Delay P
setting, and the quantization parameter (QP) is set to 32. In order to investigate
the error propagation characteristic, another set of tests is performed by setting
QP value as 1 for encoding the first inter frame (approximately lossless coding).
It should be noticed that the QP values for encoding the other frames are not
changed. This set of tests is named as the improved set.

The distortion is measured in terms of mean square errors (MSE). For the
anchor set, the distortion of frame f is denoted as Df . For the improved set,
the distortion of frame f is denoted as D̃f . By comparing the anchor with the
improved set, the error increment of each frame f can be calculated as ΔDf =
Df − D̃f . The error propagation ratio between frame f and the first inter frame
can be measured as

rf = ΔDf/ΔD1. (12)

Figure 2 shows the error propagation ratio of the P-frames. The x-axis repre-
sents the frame order number. The y-axis represents the error propagation ratio
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of each frame. It indicates that there is a strong biexponential decay relation-
ship between the error increment and the frame order number, which can be
expressed by

rf = η1 · η2
f + η3 · η4

f . (13)

The symbols η1, η2, η3, and η4 are the model parameters. The decay model shows
that the error propagation ratio decreases as the frame order number increases.
Equation (4) shows that the background pixels have a strong error propagation
characteristic. However, even in surveillance videos, not all the pixels are in
background regions. Foreground regions with motion objects are common in the
videos. Thus, the decay model is reasonable because as the frame order number
increases, fewer pixels have the error propagation property.

In addition, we evaluate the fitting goodness of biexponential decay model.
As shown in Fig. 2, the average R-square value (denoted as R2) is 0.976. That
is, the biexponential decay model has high accuracy in modeling the downtrend
of the error increments.

Fig. 2. The bi-exponential decay model. With the sequences: (a) Vidyo4, (b) Basket-
ballDrill.

3.5 Implementation

As it is indicated in the decay model, the propagation ratio decreases as the
frame order number increases. That is to say, the influence of the first frame
on far-distance frames is small. It is necessary to set a new enhanced frame
for the far-distance frames. Therefore, the enhanced frames are necessary to be
deployed periodically. The interval between two enhanced frames is defined as
an optimization period.

Figure 3 shows the proposed periodical RDO scheme. In this figure, the yellow
bar denotes an I frame, and the other bars are P frames. The numbers in the
gray box are the QP offsets. The red bars denote the enhanced frames coded
with a QP offset as ΔQ. There is an optimization between two enhanced frames.

As shown in Fig. 2, all the propagation ratios become small and converge at
frame 60. Thus, every 60 frames is coded as an optimization period, i.e., k = 60.
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Table 1. Summation of the error propagation ratios when the optimization period is
set to 60.

Sequences s

Vidyo4 17.45

Vidyo3 16.01

Traffic 17.71

BasketballDrill 18.63

Average 17.45

That is, the first frame of each optimization period is coding the QP offset ΔQ.
Table 1 shows the sum of error propagation ratios when the optimization period
is set to 60. It indicates that the average value of s is 17.45, and most of the
values are close to the average. By employing the average s in (11), we obtain
the QP offset as −12, i.e., ΔQ = −12.

An Optimization Period

0 ∆ 2   3   1   3   2   3  1   3   2   3   1 1 ∆ 2   3  1   3   2   3   1

……

Fig. 3. The background error propagation model based global RDO scheme. The yellow
bar denotes the I frame, and the other bars are P frames. The numbers in the gray box
are the QP offsets. The red bars denote the enhanced frames coding with a QP offset
as ΔQ. (Color figure online)

4 Experimental Results

The experiments were performed on a PC with an Intel (R) 3.60 GHz processor,
16 Gb RAM. The performance of the proposed method is evaluated in terms of
the change of the Bjontegaard Delta bit-rate (BD-BR) and Bjontegaard Delta
Peak Signal to Noise Ratio (BD-PSNR) [1]. The proposed method is integrated
on the HEVC reference software, HM16.01. The performance gain is obtained
by comparing the proposed method with the reference software.

1 https://hevc.hhi.fraunhofer.de/svn/svnHEVCSoftware/tags/HM-16.0/

https://hevc.hhi.fraunhofer.de/svn/svnHEVCSoftware/tags/HM-16.0/
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Table 2. R-D performance improvements of the proposed method compared with the
hevc default scheme.

Sequences BD-BR (%) BD-PNSR (dB)

Y U V YUV Y U V YUV

Vidyo1 −8.90 −31.21 −32.55 −9.74 0.25 0.51 0.69 0.26

Vidyo3 −7.53 −38.51 −47.54 −9.88 0.19 0.67 1.33 0.25

Vidyo4 −12.01 −34.22 −32.74 −12.89 0.30 0.73 0.76 0.32

Traffic −0.48 −15.22 −23.53 −1.34 0.01 0.27 0.45 0.03

BasketballDrill −10.33 −9.74 −9.19 −15.33 0.43 0.41 0.50 0.59

Johnny −9.07 −34.83 −31.69 −10.70 0.16 0.69 0.64 0.19

KristenAndSara −11.28 −32.69 −32.83 −13.05 0.31 0.79 0.77 0.35

FourPeople −13.70 −32.97 −31.71 −14.87 0.44 0.90 0.88 0.47

Average −9.20 −28.31 −29.89 −11.15 0.26 0.64 0.76 0.31

In the experiment, 8 sequences captured with static cameras were tested since
the proposed method is aiming at static background videos. The experiment
setting is the low delay (“encoder lowdelay P main”). In order to cover different
ranges of qualities and bit-rates, the proposed method is tested with a groups of
QP values including 22, 27, 32, and 37.

Table 2 shows the R-D performance of the proposed method tested on the
common setting (on the first group). It can be observed that the proposed can
significantly improve the coding performance. The average BD-BR reductions
over the anchor are 9.20%, 28.31%, and 29.89% on Y, U, and V components,
respectively. The corresponding BD-PSNR increments are 0.26 dB, 0.64 dB, and
0.76 dB on Y, U and V components, respectively. The weighted BD-BR reduc-
tion (denoted as YUV BD-BR) and BD-PSNR increment (denoted as YUV BD-
PSNR) of all components are 11.15% and 0.31 dB, respectively. It indicates that
the proposed algorithm significantly outperforms the default HEVC method.
Furthermore, especially for the sequences with a large proportion of static back-
ground (such as FourPeople, KristenAndSara, and Johnny), the performance
gain is larger than that of the sequence with a small proportion of static back-
ground (such as Traffic). It indicates that the proposed method is better suited
to the static background.

5 Conclusion

In this paper, a BEP model based global RDO method in HEVC is proposed
for surveillance and conference videos. The proposed method is different from
the default RDO scheme, in which each CU is optimized independently. Since
the backgrounds are generally static in the surveillance and conference videos,
the R-D performance of the long-term frames is optimized globally in the pro-
posed method, in which the background error propagation can be efficiently
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exploited. Two models are presented to study the characteristics of background
error propagation. The first one is the linear BEP model, which describes the
linear relationship between the distortion of the first frame and that of subse-
quent frames. Based on the BEP model, enhanced frames coded with a small
QP offset is deployed to improve the global performance. The second one is the
bi-exponential decay model, which expresses the variation of the error propaga-
tion ratio as the frame order increased. Based on the decay model, a periodi-
cal optimization scheme is presented, i.e., the enhanced frames are periodically
deployed. Experimental results show that the proposed algorithm achieves an
average 11.15% bit-rate reduction on YUV components (YUV BD-BR) for the
low delay setting.
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