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Abstract. Nowadays, in the complex electromagnetic environment, the
detection of foreign satellite, the electronic interferences and the sensing data
tampering in the process of consistent spectrum situation fusion and the elec-
tronic countermeasures reconnaissance and enforcement implemented by the
enemy electronic attacks all pose serious threats to the communication perfor-
mance of our electronic devices and communication systems. Therefore, how to
detect these electromagnetic spectrum threats effectively is very important. The
generative adversarial networks was applied in this paper, which is a method in
deep learning, and an unsupervised solution for the above-mentioned electro-
magnetic spectrum threat signal prediction problem was provided, which has
achieved good results. To carry out the detection experiments, three common
electromagnetic spectrum threat scenarios were simulated. The prediction per-
formance of the model is evaluated based on the prediction accuracy of the
model. The experimental results have shown that the generative adversarial
networks model used in this paper has a good predictive effect on the electro-
magnetic spectrum threat signals of a certain intensity.
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1 Data Set

1.1 Measured Data Set

The data set used in this experiment is the FM broadcast signal collected by the USRP
(Universal software radio peripheral) device. The specific collection process and
parameter setting interface are shown in Fig. 1.

The collected data has a center frequency of 100 MHz, a bandwidth of 2.56 MHz,
and a sampling rate of 2.56 Msps. In the collection frequency range, there are a
plurality of FM broadcast frequency points. 100,000 samples were collected as training
data set and 4000 samples were used as test data set, where each sample was acquired
through 10,240 sampling points. Since this article uses an unsupervised learning
method, the samples in the training set do not need to be labeled and are considered
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normal samples [1]. For the 4000 samples in the test set, half of them were subjected to
artificial interference processing [2], and the samples regarded as abnormal were
marked as “1”’; the other half were not interfered, and were regarded as normal samples,
and marked as “0” [3]. The parameter description of the data set is shown in Table 1.
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Fig. 1. Schematic diagram of data acquisition

Table 1. Dataset parameter description

Parameter Discrimination
Acquisition frequency band FM band
Center frequency 100 MHz
Bandwidth 2.56 MHz
Sampling frequency 2.56 Msps
The number of sampling points 10240

The number of samples in the training set | 100000

The number of samples in the test set 4000

1.2 Data Preprocessing

In order to facilitate the subsequent effective analysis of the data, this paper uses the
Welch estimation [4] method to preprocess the original data. It is a method of power
spectral density estimation. The basic idea is to window the signal through the selection
window. The power spectrum is segmented and then averaged. In this experiment, the
window function selects the Hamming window, which divides the signal into 8 seg-
ments. The length of the overlap between each segment is half of the length of the
truncated signal. The selected number of points is 512, which is the original dimension.
The signal of 10240 was reduced to 512 dimensions after being estimated by Welch.

2 Generative Adversarial Networks

The Generative Adversarial Networks (GAN) [5] is a generative neural networks model
based on the differentiable generator networks proposed by Goodfellow et al. in 2014.
The GAN consists of a generator networks and a discriminator networks.
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The task of the generator (G) is to capture the distribution of the sample data x, and
use the input noise vector to simulate the training data to generate samples. The sample
generated by G in this article is called a fake sample. The a priori variable of the input
noise is represented by p.(z). The mapping of data space is represented by G(z; Gg),
where G is a differentiable function represented by a multilayer perceptron with
parameter 0,. The discriminator (D) is a two-classifier whose task is to correctly
distinguish the true samples from the training set and the fake samples as possible. The
multi-layer perceptron D(x;0,) is defined to output a single scalar, where D(x) rep-
resents the probability that input x is from a real sample, and we train D to maximize
the probability of correctly classifying samples. We train G to minimize the
log(1 — D(G(z))) at the same. In short, the training process of D and G can be
described as the following formula, which is a minimax game with function V(G, D):

min max V(D, G) = Ex« py,,(n [l0g DY) + E; . llog(1 = D(G(2)] (1)

Therefore, the model will converge according to the following formula,

g" = arg min max v(g,d) (2)
g

When the model is converged, the real sample and the fake sample generated by the
generator are indistinguishable, and the discriminator outputs % everywhere. At this
time, the discriminator has reached its best discriminating ability, and it can be used to
predict the threatening of electromagnetic signals.

According to the generative adversarial networks model built in this paper, the
actual training process diagram is shown as Fig. 2.
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Fig. 2. The training process diagram of generative adversarial networks

In Fig. 2, the generator consists of a four-layer neural networks with 64, 128, 256,
and 512 nodes. The generator takes the noise vector as input, the 512-dimensional vector
is generated by simulating the real sample according to the layer-by-layer mapping, and
that is the fake sample. The true and fake samples are mixed together as the discrimi-
nator input. The discriminator in this paper consists of four layers of neural networks,
each with 256, 128, 128 and 1 node. The final layer outputs the discrimination result of
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the input sample, and the discriminator will update the networks weight according to this
and share the updated weights with the generator. The generator generates a fake sample
again based on the updated weights, and mixes it with the true sample, inputs the
discriminator, and then the foregoing process will be repeated. The above process will
be repeated until the preset number of trainings is reached. At this time, the discriminator
has reached a great discriminating ability and can be used to predict the unknown input.
The predicting process is shown in Fig. 3.
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Fig. 3. Schematic diagram of generative adversarial networks prediction

When using the trained model to predict the output of test data, the test data set
which contains 2000 normal samples and 2000 abnormal samples is input into the
discriminator networks, and the discriminator predicts and outputs the confusion
matrix. In this paper, the prediction accuracy is calculated based on the confusion
matrix to evaluate the classification performance of the model.

3 Experiment Implement

In this section three common electromagnetic spectrum threats will be simulated:
abnormal channel environment threats, band illegal occupancy threats, and broadband
signal interference threats. The experiment was designed to use the above-mentioned
generative adversarial networks model to carry out the electromagnetic spectrum threat
prediction experiment, and we will evaluate the prediction performance of the model
according to the experimental results.

3.1 Abnormal Channel Environment Threat Prediction

Threat Situation and Its Data Set. In the wireless communication system, there are
situations such as channel environment changes, noise enhancement, etc. [6], and the
abnormality caused to the communication by these is called the channel environment
abnormal threat [7]. In order to simulate this threat, we superimposes a certain intensity
of Gaussian white noise, and the threat intensity is reflected by the signal-to-noise ratio.
At the same time, in order to study the prediction performance of the proposed method
for different intensity threat signals, Gaussian noise with signal-to-noise ratio of 0 dB—
7 dB is added in steps of 1 dB, and threat prediction experiments are carried out.
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Figure 4 shows the power spectral density of a data sample before and after the
noise is added. Figure 4(a) shows the sample signal without the addition of Gaussian
white noise, and Fig. 4(b) and (c) are the power spectral density estimates of the sample
signal with the signal-to-noise ratio of 0 dB and 7 dB Gaussian noise, respectively.
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Fig. 4. Power spectral density estimation of sample signals under different channel environ-
mental anomalies

As can be seen from Fig. 4, when Gaussian white noise is added, part of the original
signal is submerged by noise, and the lower the signal-to-noise ratio, the higher the
noise, the more parts of the signal are flooded.

Prediction Results. During the training process, the model automatically performs
feature learning on the data samples in the training data set to minimize the error of
generative adversarial networks, and a threat prediction model based on GAN can be
obtained. Then, we use the test data set to test the model and evaluate its prediction
performance based on the classification result on the entire test data set [8].

Figure 5 shows part of the predicted confusion matrix for a trained generative
adversarial networks model for data samples in test data sets with different intensities of
Gaussian white noise.
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Fig. 5. The predictive confusion matrix output by the generative adversarial networks of
abnormal channel environment threat of different intensity.
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In order to describe the prediction performance of the model on different intensity
threat signals more intuitively, we calculate the prediction accuracy of the model under

each SNR based on the confusion matrix obtained by the experiment, as shown in
Table 2.

Table 2. The predictive accuracy of the generative adversarial networks on anomaly channel
environment threat of different intensity

Signal to noise ratio | True positive | True negative | Prediction accuracy
0 dB 1720 2000 93.00%
1 dB 1718 1998 92.90%
2 dB 1707 1987 92.35%
3dB 1688 1968 91.40%
4 dB 1661 1941 90.05%
5dB 1623 1903 88.15%
6 dB 1576 1856 85.80%
7 dB 1520 1800 83.00%

As can be seen in Table 2, for signals with a signal-to-noise ratio of 1-4 dB
Gaussian noise, the prediction accuracy of the model can reach more than 90%. As the
intensity of the anomaly channel environment threat is weakened, the average pre-
diction accuracy of the model decreases, but for the anomaly signal with a signal-to-
noise ratio of 7 dB, the prediction accuracy can still be higher than 80%.

3.2 Band lllegal Occupation Threat Prediction

Threat Situation and Its Data Set. During communication, if the band is occupied by
an unknown narrowband signal, the signal received can be anomaly, which can be a
threat to the communication [9]. This situation is called a band illegal occupation
threat. In order to simulate this threat situation, we artificially superimposed an FM
interference signal with a signal-to-interference ratio of 8—15 dB in a step of 1 dB at
100 MHz which is an idle frequency of the signal. The power spectral density map
before and after noise addition of a data sample is shown as Fig. 6.
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Fig. 6. The power spectral density estimation of the sample signal under the band illegal
occupation threat of different intensity
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As shown in Fig. 6, compared with the normal signal, the signal added the FM
interference signal has a spike at the frequency of 100 MHz, that is, the interference
signal. The lower the signal-to-interference ratio, that is, the greater the interference
intensity, the more the spike high.

Prediction Results. Similarly, we use the test data set to test the model and evaluate
its prediction performance according to the classification result. Figure 7 shows part of
the predicted confusion matrix for the trained data generative adversarial networks
model for data samples in test data sets with different intensities of chirped interference
signals.
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Fig. 7. Prediction confusion matrix output by generative adversarial networks for band illegal
occupation threats of different intensity.

We calculate the prediction accuracy of model based on the confusion matrix
obtained by experiment, as shown in Table 3.

Table 3. The prediction accuracy of the generative adversarial networks of the band illegal
occupation threat of different intensity

Signal to interference ratio | True positive | True negative | Prediction accuracy
8 dB 1645 1925 89.25%
9 dB 1626 1906 88.30%
10 dB 1601 1881 87.05%
11 dB 1582 1862 86.10%
12 dB 1557 1837 84.85%
13 dB 1529 1809 83.45%
14 dB 1497 1777 81.85%
15 dB 1469 1749 80.45%

As can be seen from Table 3, the prediction accuracy of the model can reach more
than 85% for signals with 811 dB signal to interference ratio. As the intensity of the
threat weakens, the prediction accuracy of the model has decreased, however, for
8 dB-15 dB abnormal signals, there is still a prediction accuracy higher than 80%.
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3.3 Wideband Signal Interference Threat Prediction

Threat Situation and Its Data Set. In a wireless communication system, the signal
transmitted by the authorized transmitter sometimes can encounters an interference
caused by an unknown wideband signal [3]. At this time, the signal of the authorized
transmitter is often aliased by the wideband signal, causing the signal received to be
anomaly or even to be severely distorted after demodulation [10]. We call that threats
to the communication broadband signal interference threat.

In order to simulate this threat, a wideband DSQPSK signal with a signal-to-
interference ratio of 9 dB—16 dB is artificially superimposed on the signal in 1 dB
steps [11]. Since the wideband DSQPSK is wideband, it can affect all frequency
components in a certain frequency band in the sample signal [12]. Figure 8 shows the
power spectral density of a data sample before and after noise addition.
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Fig. 8. Estimation of power spectral density of sample signals under different bandwidth
broadband signal interference threats

As can be seen from Fig. 8, when the broadband DSQPSK interference signal is
added, the spectrum of the signal in the original signal with a frequency of around
100 MHz is superimposed with the interference signal [13]. The lower the signal-to-
interference ratio, that is, the greater the interference signal strength, the signal is, the
greater the partial power spectral density of the superposition.

Prediction Results. The model is tested by the test data set added the DSQPSK
interference signal, and part of the obtained confusion matrix is shown in Fig. 9.

In order to describe the prediction effect of the model on different intensity threat
signals more intuitively, we calculate the prediction accuracy of model based on the
confusion matrix obtained by experiment, as shown in Table 4.

It can be seen from Table 4 that the model used in this paper can correctly predict
the broadband signal interference threat of 9 dB—11 dB, and can achieve the prediction
accuracy of 92% or more. As the threat intensity of wideband signal interference
decreases, the average prediction accuracy of the model decreases, but the prediction
accuracy of more than 80% can still be obtained for the abnormal signal of 9 dB—
16 dB.
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Fig. 9. Prediction confusion matrix output by the generative adversarial networks for broadband
signal interference threats of different intensity.

Table 4. The prediction accuracy of the generative adversarial networks of the band broadband
signal interference threats of different intensity

Signal to interference ratio | True positive | True negative | Prediction accuracy
9 dB 1720 2000 93.00%
10 dB 1720 2000 93.00%
11 dB 1720 2000 93.00%
12 dB 1717 1997 92.85%
13 dB 1690 1970 91.50%
14 dB 1635 1915 88.75%
15 dB 1572 1852 85.60%
16 dB 1488 1768 81.40%

4 Conclusion

In this paper, through the analysis of electromagnetic signals in the background of
complex electromagnetic environment, an unsupervised deep learning method, gen-
erative adversarial networks, is used to implement experiment to predict the threats
caused by the anomalies and interference signals. This unsupervised learning method
can automatically learn the features of data through neural networks, eliminating the
cumbersome task of tagging large amounts of data. The experiment uses the FM signal
collected by USRP equipment, and simulates three common electromagnetic spectrum
threats. The results show that the electromagnetic spectrum threat prediction system
designed by generative adversarial networks can solve the prediction problem of threat
samples in the electromagnetic environment. It provides a new idea for solving the
electromagnetic spectrum threat prediction problem in complex electromagnetic
environment.
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