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Abstract. In this paper, kernel principle component analysis (KPCA)
is employed to extract the features of multiple precipitation factors.
The extracted principle components are considered as the characteris-
tic vector of support vector machine (SVM) to build the SVM precipi-
tation forecast model. We calculate the SVM parameters using particle
swarm optimization (PSO) algorithm, and build the cooperative model
of KPCA and the SVM with PSO to predict the precipitation in Guangxi
province. The simulation results show that the prediction outcome,
resulting from the combination of KPCA and the SVM with PSO, is
consistent with the actual precipitation. Comparisons with other models
also demonstrate that our model has advantages in fitting and general-
izing in comparison other models.
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1 Introduction

The wide scope of drought, flood and other climatic disasters has been occur-
ring frequently in China. It causes serious impacts on life safety and economic
establishment. With the rapid development of economics, those disasters bring
more severe economic losses than before, which increases the demand of more
precise weather forecast. Accordingly, the prediction of drought and flood trends
becomes an important issue for the atmosphere scientists. Climate changes are
more and more remarkable, and precipitation becomes more important for pre-
dictions of drought and flood. Therefore, precipitation prediction has a guid-
ing significance for the exploitation and optimal utilization of regional water
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resource. It has been also an important factor for the warning and solution of
regional drought and flood [1].

During the past decades, many solutions and models have been proposed
to address the precipitation prediction. Authors of [2] adopted five different
methods to select appropriate values for SVM regression analysis. Authors of
[3] predicted precipitation by using SVM. Authors of [4] predicted the drought
and flood disasters of Zhejiang province in flood season using SVM regres-
sion. Yang et al. [5] adopted time sequence analysis and Monte Carlo for
precipitation prediction. They found out that time sequence analysis is suitable
to precise prediction and the Monte Carlo model can objectively demonstrate
the overall characteristics of precipitation distribution. Authors of [6] employed
the ARIMA time sequence model to predict monthly precipitation of Shandong
province. Zhou et al. [7] used BP neural network for the drought prediction of
Zhenzhou city. Tao et al. [8] adopted Markov chain model for the precipitation
prediction of Yinchuan area. Liu et al. [9] established the monthly precipitation
prediction model for the flood season of southwestern Henan by using the least
squares SVM.

All of the above methods have achieved desirable accuracy of precipitation
prediction for a longer time span, e.g., a month or several months. However,
it is still a challenge to predict a shorter time span, e.g., daily precipitation
prediction. In order to tackle this challenge, we proposed to combine the KPCA,
PSO and SVM to establish a precipitation prediction model of higher accuracy.
In particular, this model is able to achieve accurate daily precipitation prediction,
which has been verified by simulation in Guangxi province.

2 Extraction of Precipitation Impact Factors Using
KPCA

Scholkopf et al. extended PCA to non-linearity and proposed KPCA in 1999.
KPCA is an extracting method for nonlinear features. It is able to map the orig-
inal vector to a high-dimensional characteristic space through nonlinear kernel
function: F = {φ(x) : X ∈ Rn}. Then it carries out PCA algorithm on char-
acteristic space F . Compared to PCA, KPCA can not only extract nonlinear
features, but also has better recognition performance [10]. The nonlinear and
low-dimensional characters of KPCA allow a better dimension-reduction extrac-
tion from numerous meteorological physical factors, which is very helpful for the
feature dimension reduction of precipitation system.

The KPCA algorithm can be described as follows. Suppose there are n sam-
ples x1, x2, · · · , xn in the input space Rd, and the n samples form a data matrix
X, which maps the data samples from input space to high-dimensional charac-
teristic space F through nonlinear mapping function. Assume that mapping has
been centralized, that means the mean value of the mapping data is zero.

n∑

i=1

αiϕ(xi) = 0 (1)
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Then the covariance matrix C in characteristic space F is

CF =
1
n

n∑

j=1

ϕ(xj)ϕ(xj)T (2)

Carry out characteristic value decomposition for covariance matrix C accord-
ing to the following formula.

λV = CFV (3)

In the formula, the nonzero characteristic value λ’s corresponding charac-
teristic vector locates in the subspace generated from ϕ(x1), ϕ(x2), · · · , ϕ(xn),
thus, the following equation is tenable.

λ(ϕ(xk)V = (ϕ(xk)CFV ), k = 1, 2, · · · , n (4)

According to PCA theory, V can be described as the linear combination of
ϕ(xi), i = 1, 2, · · · , n.

V =
n∑

i=1

αiϕ(xi) (5)

Substitute (2) and (5) into (4) to get the following formula.

λ

n∑

i=1

αi(ϕ(xk) · ϕ(xi)) =
1
n

n∑

i=1

αi(ϕ(xk) ·
n∑

j=1

ϕ(xj))(ϕ(xj).ϕ(xi))

k = 1, 2, · · · , n (6)

Define matrix k(xi, xj)n×n as

k(xi, xj) = (ϕ(xi) · ϕ(xj)) (7)

Then formula (6) can be describes as

nλα = kα (8)

In the above formula, α = (α1, α2, · · · , αn)T . Suppose Vk is No. K character-
istic vector of V . Carry out normalization progressing on it, namely VkVk = 1,
then the mapping data ϕ(x) of arbitrary vector X in original input space has
the projection on characteristic vector Vk shown as follow.

(V k · ϕ(x)) =
n∑

i=1

αk
i (ϕ(xi) · ϕ(x) (9)

That is the requested principle component. In practice, the sample data does
not always satisfy that the mean value of mapping data is zero. If so, the value
K in formula (8) is

K = K − IK − KI − IKI (10)

In the above equation, I is n × n unit matrix of which the parameter is 1
n .

Under this circumstance the No. k dimension’s nonlinear principle component is

tk = V F · ϕ(x) =
n∑

i=1

αk
i (ϕ(xi) · ϕ(x)) = αk

i

n∑

i=1

αk
i K(xi, x) (11)
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3 Principle of SVM Regression

SVM is an intelligent learning algorithm proposed by Vapnik based on the struc-
ture risk minimization theory in statistics. Utilizing kernel function, the SVM
regression maps the nonlinear regression problem of low-dimensional space to
high-dimensional characteristic space. The sample is linearly separable in high-
dimensional space, so after nonlinear transformation, the linear regression prob-
lem is resolved. The principle of SVM regression algorithm is described as follows.

Suppose the training sample set is {(xi, yi), i = 1, 2, · · · , n}, xi ∈ Rm, yi ∈ R.
Xi is the input vector with m dimensions. yi is the output value. R is all real
numbers’ set space. n is the number of samples. The nonlinear mapping ϕ(x) will
map the sample space from original space Rm to high-dimensional characteristic
space Rh. So the optimal linear decision function can be established in the high-
dimensional space.

f(x) = ω · φ(x) + b (12)

In the above function, ω is a weight vector, ω ∈ Rh, and b is offset. Here the
non-sensitive loss function ε is introduced and the structure risk minimization
theory is considered. Then the regression problem is converted into the following
optimization problem.

min[
1
2

‖ ω ‖2 +C

n∑

i=1

(ξi + ξ∗
i )]

s.t.

⎧
⎨

⎩

yi − ωφ(xi) − b ≤ ε + ξi
−yi + ωφ(xi) + b ≤ ε + ξ∗

i , i = 1, 2, · · · , l
ξi ≥ 0, ξ∗

i ≥ 0
(13)

In the above formula, c is penalty factor. The bigger value of c means greater
penalty on the samples whose training error is bigger than ε. ξi and ξ∗

i repre-
sent relaxation factors. ε defines the error bound of regression function, and the
smaller value of ε means smaller error of regression function. According to Mer-
cer condition, there exist mapping function φ and kernel function K(., .) which
enable K(x(k), x(l) = φ(xk)Tφ(xl). By bringing in the Lagrangian Multiplier,
the problem’s dual optimization can be formulated as follows.

max[
1
2

l∑

i,j=1

(ai − a∗
i )(aj − a∗

j )K(xi, xj) −
l∑

i=1

(ai + a∗
i )ε +

l∑

i=1

(ai − a∗
i )yi]

s.t.

⎧
⎨

⎩

∑l
i=1(ai − a∗

i ) = 0, i = 1, 2, · · · , l
0 ≤ ai ≤ c
0 ≤ a∗

i ≤ c

(14)

Use quadratic programming to solve formula (14), and get parameters ai,a∗
i .

Then figure out b with KKT condition, thus get the estimating expression of
SVM regression equation as follow.

f(x) =
l∑

i=1

(ai − a∗
i )K(xi, x) + b (15)
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In the equation,the sample (xi, yi) is support vector with the (ai − a∗
i ) being

nonzero sample. Common kernel functions mainly include linear kernel function,
polynomial kernel function and radial basis function. The radial basis function
is adopted in this paper.

K(xi, x) = exp
{

− ‖ xi − x ‖2
2σ2

}
(16)

where σ is the width of the radial basis kernel function.

4 Establishment of Precipitation Prediction Model

4.1 Data Progressing and Extraction of Precipitation Prediction
Factor

The data adopted to do prediction is referred from the documents of [11,12].
The numerical weather prediction products are 48-h forecast fields, including:
(1) T213 figures from China Meteorological Administration, 17 conventional
meteorological elements and physical elements field of its index bed (100–120◦E,
15–30◦N, 1◦×1◦, totally 336 lattice points). (2) Japanese refined net precipitation
forecast field (100–120◦E, 15–30◦N, 1.25◦×1.25◦, totally 221 lattice points). A
general investigation is carried out on the numerical forecast product field and
forecast object field from 2003 to May of 2007 in Guangxi province. Prediction
factor selection area is the lattice area with significance level remarkably higher
than 0.75. In the area, the minimum mean value of 2 adjacent lattice points are
candidate factors. The factors whose significance level reach or surpass 0.99 are
prediction factors. The amount of candidate precipitation factors of May in area
1, area 2 and area 3 are 26, 19 and 30, respectively. In this paper, the prediction
was taken from the data ranging from 2003 to May, 2008 in the area 1.

In the coupling, non-linearity and information redundancy existing among
prediction factors will disturb the model’s prediction strategy, and the prediction
model does not lead to an ideal estimating result. In this paper, utilizing KPCA,
dimension reduction is carried out for the 26 precipitation factors which are
selected through cluster investigation. Then we select 8 main integrative factors
as final precipitation prediction factors. Take the 8 main factors as the input
variables for SVM net, and establish the daily precipitation prediction model,
which continuously predicts the precipitation of area 1 from 2003 to May, 2008.
Meanwhile, we select 6 main factors as the input variables for SVM net, and
establish the monthly precipitation prediction model for the time period from
2001 to 2006.

4.2 Normalization Progressing of Data

The dimensions and orders of magnitude of extracted prediction factors are
different form one another, so they are not suitable for PCA. Thus, normal-
ization progressing is in demand for them. The normalization progressing on
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every dimension of extracted prediction factors can be carried out by using the
following method.

S′ =
S − Smin

Smax − Smin
(17)

In the above formula, S′ is the prediction factor value after the normalization
progressing. S is the prediction factor value before the normalization progressing.
Smin is the minimum value of prediction factor values. Smax is the maximum
value of the prediction factor values. By using this way, the relative maximum
response value, absolute maximum response value, mean value and the curve’s
data fitting parameter of every prediction factor are all in the range of [0, 1],
which is in favor of later data progressing.

4.3 SVM Parameter Optimization Based on PSO

Because the kernel parameter and error penalty parameter may have a great
impact on the prediction performance of SVM, optimization for the two param-
eters is of great importance. The PSO is a global optimization methods based on
swarm intelligence. It is excellent in global optimization and particularly suit-
able for the selection and optimization of model parameters. Therefore, in this
paper the PSO is adopted to optimize SVM parameter and to figure out the
optimal kernel parameter and the error penalty factor. We select the minimum
mean square error (MSE) as fitness function.

MSE =
1
n

n∑

i=1

(y′
i − yi)2 (18)

In the above formula, n is the number of prediction samples. yi and y′
i are the

measured value and the predicted value of No.i prediction sample, respectively.
During the progress of particle optimizing, every particle stands for a poten-

tial optimal solution for the extreme value optimization problem. The essential
characteristics of particle are described by three indexes, including location,
speed and fitness value. The speed decides the direction and distance of par-
ticle’s movement. The fitness value is calculated through fitness function and
it decides whether the particle is good or bad. In every circulation, the parti-
cle updates according to individual optimum and global optimum. The specific
steps of PSO optimizing SVM parameter can be found in [13–15].

4.4 Establishment of Model

There are roughly four steps for the establishment of precipitation model. Step
1, use clustering analysis to handle the regional prediction and the prediction
factors are extracted from fields general investigation. Step 2, extract the nonlin-
ear characteristic factors from precipitation system by KPCA. Step 3, optimize
the kernel parameter σ and error penalty factor c through PSO. Step 4, take the
calculated optimization parameter value as SVM’s optimal learning parameter
to predict the samples. The establishment of model is shown in Fig. 1.
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Fig. 1. Establishing progress of SVM precipitation model.

5 Analysis on Application Examples

5.1 Simulation of Precipitation in Guilin, Guangxi on a Daily Basis

Take the area 1 as an example. The data was collected through 148 days from
2003 to May of 2007 in Guilin, Guangxi are used as model training sample. The
31-day data of the May of 2008 works as testing sample. Figure 2 is a working
sketch of the fitness of testing samples’ data by improved RBF net model, KPCA-
SVM model and KPCA-PSO-SVM model, respectively. As depicted in the figure,
the testing result of KPCA-PSO-SVM model is generally in consistent with
actual data, which indicates that among the three models, KPCA-PSO-SVM
model has the best predicting performance, minimum total deviation and highest
accuracy.

In order to analyze the predicting results more comprehensively, the fol-
lowing four evaluation indexes are introduced in this paper: mean absolute
error (MAE1), maximum absolute error (MAE2), frequency of errors, which
are greater than 25 mm (F1), and frequency of errors, which are smaller than
5 mm (F2). The error comparison between predicting results of the three models
and T213 numerical prediction is listed in Table 1.

As demonstrated in Table 1, both MAE1 and MAE2 of KPCA-PSO-SVM
model are smaller than those of the other four models, which proofs the high
accuracy of KPCA-PSO-SVM model. Suppose that predictions with the errors
being smaller than 5 mm are the reference value, and those with error being
greater than 25 mm are unreliable prediction. Then we can find that the dura-
tion of the reference value using KPCA-PSO-SVM model and RBF net model is
17 days, which is longer than that of the other two models. However, the unre-
liable frequencies of KPCA-PSO-SVM model and RBF net model are 1 and 2,
respectively, which means that KPCA-PSO-SVM model has better prediction
performance.
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Fig. 2. Daily prediction rendering of area 1 during the 31 days in May.

Table 1. Analysis on comparison between the three prediction models and T213
numerical prediction.

Error statistics RBF KPCA-SVM T213 KPCA-PSO-SVM

MAE1 32.7 29.8 36.1 28.7

MAE2 6.90 7055 7.92 6.81

F1 2 2 5 1

F2 17 13 15 17

5.2 Simulation of Precipitation in Guilin, Guangxi on a Monthly
Basis

To verify the model’s generalizing and stabilizing ability, the KPCA-PSO-SVM
model proposed in this paper is applied in the monthly precipitation prediction
of Guilin, Guangxi. It will be compared to the prediction of KPCA-SVM model
and the improved RBF neural net model. Monthly precipitation data from 2001
to 2016 in Guilin, Guangxi is used in the simulation, including simulating data
of the 156 months from 2001 to 2013 and testing data of the 36 months from
2014 to 2016.

Figure 3 lists the comparison between the monthly precipitation prediction
results of the three models and the actual data, namely improved RBF net model,
KPCA-SVM model and KPCA-PSO-SVM model. The simulating result shows
that the testing simulation’s data trends of these models are almost identical
to the actual data tend. Among the three models, the KPCA-PSO-SVM model
has the smallest deviation and better consistency, and it can be regarded an
important reference for the protection against flood and drought.
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Fig. 3. The forecasting effect of three models between 2014–2016.

6 Conclusions

The accuracy of precipitation prediction is an important research topic for dis-
aster reduction and prevention. With rapid development of economy and sci-
ence technology, the requirement for high climatic prediction accuracy becomes
increasingly higher. However, the combined influence of general atmospheric cir-
culation and local circulation changes brings great difficulties in prediction. In
this paper, based on the data from China Meteorological Administration and
the Japanese refined net prediction, we adopted KPCA to extract the precipita-
tion weather factors to optimize the SVM parameter through PSO to establish
the daily precipitation prediction model in Guangxi. Meanwhile, it is applicable
to the monthly precipitation prediction of Guilin, Guangxi. Simulation results
show that in both aspects of maximum prediction error and mean prediction
error, KPCA-PSO-SVM prediction achieves higher accuracy and shows better
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generalizing ability than other methods. It demonstrates desirable stability and
can work as a good reference for practical precipitation prediction.
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