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Abstract. The research on channel estimation technology is a core technology
for mmWave massive MIMO in 5G wireless communications. This paper
proposed a greedy iterative phase retrieval algorithm for channel estimation
from received signal strength (RSS) feedback which is common in wireless
communication systems and is used to compensate for temporal channels. We
consider a Modified Gauss-Newton (MGN) algorithm to approximate the square
term of the system model as a linear problem at each iteration and it is embedded
in the 2-opt framework for iteration to get the optimal estimation. Our algorithm
does not need to modify the system, but only need RSS feedback for channel
estimation. The simulation results show that the algorithm performs better than
the traditional conventional algorithm.
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Phase retrieval

1 Introduction

As one of the core technology for 5G wireless communications, millimeter-wave
Massive MIMO can effectively improve spectrum efficiency, energy efficiency and
stability of the system [1]. Due to the use of a large number of base station transmit
antennas to achieve highly selective spatial multiplexing in massive MIMO, it is
partially important to obtain accurate channel state information (CSI) [1]. Therefore,
the research on channel estimation technology is a core technology for massive MIMO,
and many achievements have been achieved.

Several novel channel estimation schemes based on phase retrieval have recently
been proposed for mm-Wave massive MIMO [2–4]. [2] proposed a new phase-less
pilot scheme, phase-less pilot is needed at the receiver needs, which means only the
magnitudes on the received pilot tones is used for channel estimation, and the phase of
the pilot can be used to carry additional user data or to compensate for other signal
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characteristics. Based on the concept of time-varying beamforming, phase modulation
and phase retrieval, [3] proposed a novel channel estimation and tracking framework
based on Received Signal Strength (RSS)/Channel Quality Indicator (CQI) feedback,
and proposed a generalized maximum likelihood estimator (GMLE) to estimate and
track the downlink channel based on the auto-regressive channel evolution model.
Wang et al. proposed in [4, 5] a multiuser magnitude-only (MO-)MIMO, and classified
channel estimation and multi-user detection problems into quantized phase retrieval
and solves the quantified PR problem in the framework of generalized approximate
message delivery.

In order to improve the accuracy of signal estimation, this paper proposes a channel
estimation scheme based on greedy iterative phase retrieval. Inspired by the novel
channel estimation and tracking framework based on RSS/CQI feedback in [3], we
know that MIMO channels can be estimated from RSS/CQI alone, using (pseudo)
random transmit beamforming vectors, and channel coefficients recovered based on
random measurements of phase retrieval. The proposed algorithm in this paper is under
this feedback-based channel estimation framework, establishes the relevant channel
system model, and obtains the optimal channel coefficients via the improved Gaussian
Newton method. The simulation results show that the proposed channel estimation
based on greedy iterative phase retrieval algorithm can obtain better performance than
traditional estimation schemes.

The rest of this paper is organized as follows. We discuss the core ideas of phase
retrieval and the problem of massive MIMO with downlink channel estimation in
Sect. 2. Section 3 describes the proposed algorithm in details. Simulation results are
presented in Sect. 4, and conclusions are drawn in Sect. 5.

2 Phase Retrieval and Massive MIMO

In this section, we firstly reviewed the core ideas of phase retrieval [6–9], which will
help us to understand the proposed algorithm on channel estimation. Then, we con-
sidered a typical mm-Wave massive MIMO system with the downlink channel esti-
mation problem.

2.1 Sparse Phase Retrieval

The recovery of a signal from the magnitude measurements of its Fourier transform is
known as phase retrieval, which is motivated by applications like channel estimation
[2], noncoherent optical communication [10] and underwater acoustic communication
[11]. Due to the loss of Fourier phase information, this problem always be treated as an
ill-posed problem. Therefore, the uniqueness of the signal and the minimization of the
least-squares error in recovering the signal cannot be guaranteed.
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In the phase retrieval problem, we are interested in estimating a signal x 2 R
N from

the magnitude-squared of an M point DFT of this signal. i.e.

yl ¼
Xn

m¼1
xme

�2pj m�1ð Þ l�1ð Þ
M

���
���
2
; l ¼ 1; � � � ;M ð1Þ

Here x is sparse is k-sparse with k nonzero padding as the signal to be evaluated.
This formulation is equivalent to the matrix-vector multiplication y ¼ Fxj j2, where
F 2 C

M�N is the first N columns of the M-point DFT matrix with elements

/ ¼ e�
2pj m�1ð Þ l�1ð Þ

M .
To recover the signal x which contains s nonzero elements at most. From the

measurements yi, we consider a minimizing the sum of squared errors cost as

min
x

XN

i¼1
Fixj j2�yi

� �2
s:t: xk k0 � s ð2Þ

And this problem will be combined with downlink channel estimation and solved in the
following content.

2.2 System Model of Massive MIMO

In this paper, inspired by the novel channel estimation and tracking framework based
on RSS/CQI feedback in [3], MIMO channels can be estimated from RSS/CQI alone,
using (pseudo) random transmit beamforming vectors, and channel coefficients
recovered based on random measurements of phase retrieval. Therefor we consider a
downlink channel estimation problem of the typical mmWave massive MIMO system,
and the system model can be given by

r ¼ wHhxþ n ð3Þ

where r 2 C
N is the received signal in the receiver, w 2 C

N is the beamforming vectors
which can help transmitter send signal to the receiver, h 2 C

N is a complex valued
vector at the transmitter using a special type of limited feedback information, and n�

0;r2ð Þ is the additive white Gaussian noise. What we want to do in this paper is to
estimate the channel coefficient h based on Received Signal Strength (RSS)/Channel
Quality Indicator (CQI) feedback. And due to the characteristics of massive MIMO
itself, we think its channels are sparse, i.e. hk k0 � s.

At the receiver, RSS is sent to the transmitter through the channel in the form of
digital or analog feedback, and the form of RSS is rij j2. Then we need to estimate the
channel coefficient h from the given feedback signal magnitude information rij j2.
Therefore, defining yi ¼ rij j2, the model of the system model is given by

min
h

f hð Þ �
XN

i¼1
yi � rij j2

� �2
¼

XN

i¼1
yi � wHh

�� ��2
� �2

s:t: hk k0 � s ð4Þ
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which is a phase retrieval problem. In this paper, the transmitter picks the beamforming
vectors w to send signal to the receiver, and we consider w to be rows of a DFT matrix

W as the M-point DFT matrix F with elements / ¼ e�
2pj m�1ð Þ l�1ð Þ

M .

3 Greedy Iterative Phase Retrieval Based Downlink Channel
Estimation

For the quadratic problem (4) we proposed a greedy iterative phase retrieval algorithm,
which actually is a Gauss-Newton method with sparse prior information. In this sec-
tion, we show how to optimally solve (4) in polynomial time. We embed a new Gauss-
Newton method in the 2-opt algorithm framework to get the optimal estimation.

3.1 Support Information Using Auto-correlation

Before introducing the algorithm, we begin by presenting the above quadratic problem

(4) in terms of the auto-correlation function. The mth entry of wHhj j2 is

wHh
�� ��2 ¼

XN�1

n¼0
/nmhn

XN�1

v¼0
/�vmh�v

¼
XN�1

k¼1�N
/km

Xmin N�1þ k;N�1ð Þ
n¼max k;0ð Þ hnh

�
n�k

¼
XN�1

k¼1�N
/kmgk

ð5Þ

where

gk ¼
Xmin N�1þ k;N�1ð Þ

n¼max k;0ð Þ hnh�n�k; k ¼ 1� N; � � � ;�1; 0; 1; � � � ;N � 1: ð6Þ

denote the k-lag autocorrelation of h. We usually think that in the massive MIMO
environment, the channel is usually sparse. Therefore, the support of h is sparse,
namely, there is no support cancelations occurring in gk . Then, we can divide the
support of h into two sets S1 and S2.

Denote the set of known indices in the support by S1. Due to the relationship of the
freedom degree and shift-invariance of h, we can think that the index of the first and
last non-zero elements of the autocorrelation sequence gk is within S1. Next, denote the
set of unknown indices in the off-support by S2, and the indices in S2 are satisfied
gk�1 6¼ 0. Note that when the measurements are noisy, there are nonzero elements in
the autocorrelation, which means there only the first element exist in S1 and other
elements are all in S2.

3.2 An Efficient GNM Algorithm

To estimate the channel, we should solve the problem (4) optimally, which is a nonlinear
least squares problem. Here we invoke a Modified Gauss-Newton (MGN) algorithm
[12, 13] to approximate the square term in (4) as a linear problem at each iteration.
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In order to avoid the latter algorithm being trapped into a local optimal solution when
invoking the GN algorithm, we reward a weight parameter ki for f hð Þ, and the simu-
lation results show that it effectively reduces the possibility of getting into a local
optimal solution. The weight ki will randomly be 1 or 1.5. Finally we can write (4) as

min
h

f hð Þ �
XN

i¼1
yi � wHh

�� ��2
� �2

¼
XN

i¼1
p2i hð Þ ð7Þ

At each iteration, we expand and approximate the first order Taylor of pi hð Þ around
hk as

pi 	 pi hkð Þþrpi hkð ÞT h� hkð Þ ð8Þ

which is a linear least squares problem. Via GN method we can get the solution of the
problem (7)

hkþ 1 ¼ hk � J hkð ÞTJ hkð Þ� ��1
J hkð ÞThk ð9Þ

where the element of the Jacobian matrix J hkð Þ is Jij ¼ @pi=@hj, the direction vector
dk ¼ hk � hkþ 1, and the choice of stepsize tk is a backtracking procedure, i.e.

f hk � tkdkð Þ\f hkð Þ � tkþ 1rf hkð ÞTdk ð10Þ

where tk ¼ 1
2

� �n
; n is a nonnegative minimum integer.

Algorithm 1.  MGN algorithm 
Input: Combining matrix W, and measurement  at the receiver, the given indices 

set S, the maximum number of iterations L, the stopping threshold  and the initial step-
size .

Output: The optimal estimate of sparse channel h of (4) 

1.  Generate an initial vector  with the given support S.
2. for do
3. .
4.  The direction of Gaussian Newton is ,and the stepsize 

which should satisfy  .
5.  Advance , if , then stop the iteration, otherwise 

go to step 3. 
6.  end for

3.3 2-opt Method of the Support Information

2-opt is a local search algorithm, which change two elements at each iteration [14]. In
this paper, we use it as the external framework of our algorithm. First, we have an
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initial random support set S of the channel coefficient h, and S satisfy the support
constraints S1 
 S
 S2. Then, the two indices i in S1 and j in S2 are exchanged at each
iteration. The index i in S1 is correspond to the current iterate value min

k
hkj j, and the

index j in S2 is correspond to max
k

rf hkð Þ. After the exchange is completed, the MGN

algorithm will be invoked for a new round of iterations. After the optimal value is
output, it will be exchanged until the optimal solution is obtained.

Algorithm 2. 2-opt algorithm 
Input: Combining matrix W, the measurement   at the receiver, the stopping 

threshold  and the maximum number of index exchanging T.
Output: The optimal estimate of sparse channel h

1.  Generate a random index set , then 
2. for do
3. , , make an exchange between them to generate a new 

index set 
4.
5.  If , then advanced k, otherwise continue to exchange up to T. Stop 

if , and the output is .
6.  end for

4 Simulation Results

In this section, we study the performance of the proposed phase restoration based
massive MIMO channel estimation through simulation results. Here we are given some
system parameters, the number of maximum indices in index set S is n ¼ 64 and the
number of the sampling measurement yi is N ¼ 128. In order to recover the channel
estimation h, we use s ¼ 10�10 and T ¼ 10000.

Figure 1 shows the recovery probability under different channel sparse level. We
observed that almost 100% successful recovery with SNR = 1001 which is treated as
noiseless. And the recovery probability under SNR\30 is also very high before the
sparse level k\10. The result presents that we can recover the channel estimation
h accurately in the sparse channel.

Figure 2 compares the normalized mean square error (NMSE) performance against
the signal-to-noise (SNR). Here we compare the proposed algorithm with the other two
commonly used algorithms: OMP-based [15] algorithm and SD-based [16] algorithm.
It is clear that in the vast majority of cases, the proposed algorithm performs much
better than the other two algorithms, especially when SNR < 10 or SNR > 15, and the
larger the SNR, the better the performance of the channel estimation based on greedy
iterative phase retrieval algorithm.
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5 Conclusions

In this paper, we have proposed a greedy iterative phase retrieval algorithm, which is a
fast algorithm for estimating the channel estimation from the RSS feedback information
at the receiver. Since the RSS feedback does not contain any phase information, we can
use the phase retrieval method to perform channel estimation. Our core algorithm is a
Gaussian Newton algorithm and it is embedded in the 2-opt framework for iteration.
Simulations show that the algorithm performs well in recovering channel coefficients
and is more robust to noise.

Acknowledgment. This work was supported by the Natural Science Foundation of Fuyang
Normal University (2015KJ007) and the Horizontal project of Fuyang Normal University
(XDHX201741).

Fig. 1. Recovery probability under different sparse level of proposed algorithm

Fig. 2. NMSE performance comparison of different channel estimation schemes against SNR
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