
Parallel Implementation and Optimization
of a Hybrid Data Assimilation Algorithm

Jingmeifang Li and Weifei Wu(&)

College of Computer Science and Technology,
Harbin Engineering University, Harbin 150001, China

{lijingmei,wuweifei}@hrbeu.edu.cn

Abstract. Data assimilation plays a very important role in numerical weather
forecasting, and data assimilation algorithms are the core of data assimilation.
The objective function of common data assimilation algorithms currently has a
large amount of calculation, which takes more time to solve, thereby causing the
time cost of the assimilation process to affect the timeliness of the numerical
weather forecast. Aiming at an excellent hybrid data assimilation algorithm-
dimension reduction projection four-dimensional variational algorithm that has
appeared in recent years, the paper uses the MPI parallel programming model
for parallel implementation and optimization of the algorithm, and effectively
solves the problem of large computational complexity of the objective function.
This effectively not only reduces the solution time of the algorithm’s objective
function, but also ensures the effect of assimilation. Experiments show that the
speedup of the paralleled and optimized algorithm is about 17, 26, and 32 on 32,
64, and 128 processors, and the average speedup is about 26.

Keywords: Parallel � MPI � Data assimilation � Optimization

1 Introduction

Numerical weather forecasting is one of the important applications of high performance
computing. It is a technique that solves a set of partial differential equations that
describe the physical evolution of the atmosphere under the initial conditions that meet
the conditions, so as to achieve a forecast for weather phenomena in the future [1]. As a
forecasting problem, the quality of the initial value largely determines the accuracy of
the numerical weather prediction. In numerical weather forecast, data assimilation
technology is a technology that provides initial values for numerical weather predic-
tion. It integrates observation information from various sources into the initial values of
numerical weather prediction models. Based on strict mathematical theory, an optimal
solution of the model is found between the model solution and the actual observation.
This optimal solution can be used as the initial value of the numerical weather fore-
casting model which can be continuously recycled so that the result of the model
solution continuously converges to the actual atmospheric state value.

The data assimilation algorithm is the core of data assimilation technology is. The
objective function of the algorithm is usually a high-dimensional linear equation and
calculation of the linear equations will be very large, so the solution of the objective

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
S. Liu and G. Yang (Eds.): ADHIP 2018, LNICST 279, pp. 306–314, 2019.
https://doi.org/10.1007/978-3-030-19086-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19086-6_34&domain=pdf
https://doi.org/10.1007/978-3-030-19086-6_34

function requires high-performance computer and parallel computing technology. The
common data assimilation algorithms include variational algorithms (3Dvar and
4DVar), set Kalman filter algorithm (EnKF), and hybrid ensemble variational data
assimilation algorithms based on the them [2, 3]. The hybrid ensemble variational data
assimilation algorithm has advantages of variational algorithm and EnKF. Nowadays,
many hybrid assimilation methods have emerged. The hybrid idea has become the
trend of the data assimilation method. The research work of the world’s top forecast
centers is ongoing in this area. Among them, Dimension-Reduced Projection 4DVar
(DRP4DVar) is an excellent hybrid assimilation algorithm. Compared with the com-
monly used algorithms, the DRP4DVar has the advantages of easy parallel imple-
mentation and small storage space. Therefore, the efficient implementation of the
algorithm has gradually been concerned by researchers.

In this paper, through the analysis of DRP4DVar, the algorithm is paralleled and
optimized by using MPI on the parallel computing platform, and an efficient imple-
mentation method of the object function standard solution of DRP4DVar algorithm is
obtained. The structure of this paper is as follows: The 2 Section analyzes the serial
implementation of DRP4DVar algorithm in detail, and then carries out parallel and
optimization. The experiments are designed and the experimental results are analyzed
in 3 Section. The 4 Section summaries the all work of the paper.

2 Analysis, Parallel Implementation and Optimization
of DRP4DVar

2.1 Analysis and Implementation of DRP4DVar

Dimension-Reduced Projection 4Dvar (DRP4Dvar) is derived from the EnKF algo-
rithm and the 4DVar algorithm. The principle of the algorithm is to use a set of vectors
generated by a set of perturbation sets, and to perform the projection operation on the
basis vectors of the analysis increments of the model. After the projection is completed,
the solution of the objective function is transformed into the solution of the coefficients
of the set of basis vectors, which completes the projection of the model space to the
base vector [4, 5]. Because the dimension of the sample space is small, it will generally
not exceed 102, so the objective function dimension of the algorithm will not exceed
102. Therefore, theoretically the solution size of the algorithm will not exceed 102, and
because of the inherent parallelism of the ensemble, the algorithm has good parallel
efficiency. The improved objective function of DRP4DVar is formula (1).

JðwÞ ¼ 1
2
fwTwþ 1

2
½Y 0 � rbw�TO�1½Y 0 � rbw�g

Yo ¼ ðyo0; yo1; . . .; yoNÞT

FðxÞ ¼ ðH0 �Mt0�[t1ðxÞ;H1 �Mt0�[t2ðxÞ; . . .;Hn �Mt0�[tnðxÞÞT

8
>>><

>>>:

ð1Þ

In formula (1), the pattern space contains n samples, and n samples are represented
as vector x = ½x1; x2;; xn�, averaging all values of n samples to get xb as

Parallel Implementation and Optimization 307

background field, also called initial value. Yo is an observation vector containing an
assimilation time, and also known as an observation space vector. FðxÞ is the vector of
H0 �Mt0�[t1ðxÞ at each moment, also known as the analog observation vectors. Hi is
the observation operator at time ti, Mt0�[ti is the model forecast operator from t0
forecast to ti.O is the observation error covariance matrix. w ¼ ½w1;w2;w3; . . .;wn�T is
an n-dimensional coefficient vector. Y 0 ¼ Yo � FðxbÞ.

The sample ensemble vectors minus the background field vectors, which yield a
perturbed ensemble vectors in the pattern spaces:

b ¼ ½x0; x0;; x0� ¼ ½x1 � xb; x2 � xb;; xn � xb� ð2Þ

The perturbation vector dx can be expressed as a linear combination of column
vectors of b:

dx ¼ x� xb ¼ w1x
0
1 þw2x

0
2 þ . . .þwnx

0
n ¼ bw ð3Þ

The perturbation ensemble of the observation space is formula (4):

rb ¼ ½F x1ð Þ � FðxbÞ;Fðx2Þ � FðxbÞ; . . .;FðxnÞ � FðxbÞ� ð4Þ

Gradient of the cost function in formula (1):

DJðwÞ ¼ wþ rTb O
�1ðrbw� Y 0Þ ð5Þ

Let formula (5) equal to 0:

ðIþ rTb O
�1rbÞw ¼ rTb Y

0 ð6Þ

Solving the formula (6) can get the value of w, substituting the value of w into the
formula (3), and adding the dx to the background field xb to get the optimal analysis
value:

xa ¼ xb þ dx ð7Þ

The dimension of Eq. (6) is n, where n is the number of samples and does not
exceed 102 at most. Therefore, the formula (6) has a small dimension and the solution
is easy. However, similar to EnKF, the lack of sample will also result in insufficient
estimation of the background error covariance matrix, which will result in inaccurate
results. In order to alleviate the impact of insufficient samples, localization technology
is also needed [6, 7]. The coefficient matrix obtained by localization of the observation
space is py, the dimension is my� mb, mb is the localized modal number, my is the
number of observation points. The coefficient matrix obtained by localization of the
model space is px, and the dimension is mx� mb, mb is also the localized modal
number, mx is the number of grid points in the horizontal direction.

308 J. Li and W. Wu

py and rb do Shure product to get r0b, px and b do Shure product to get b0. Using r0b
instead of rb, b0 instead of b, in formula (3) and (6), we can get the following formulas:

dx ¼ b0w ð8Þ

ðIþðr0bÞTO�1ðr0bÞÞw ¼ r0Tb Y 0 ð9Þ

ðIþð rbffiffiffi
o

p Þ0Tð rbffiffiffi
o

p Þ0Þw ¼ ð rbffiffiffi
o

p Þ0TY 0 ð10Þ

Solve Eq. (10) using the modified conjugate gradient algorithm and solve it strictly
according to the mathematical formula. The detailed solution processes are as follows:

1. Given an initial value w0, d0 ¼ r0, computing r0 ¼ b� Aw0.
2. Compute ak ¼ \rk; dk [=\dk;Adk [.
3. Compute wkþ 1 ¼ wk þ akdk.
4. Compute rk þ 1 ¼ b� Awkþ 1.
5. Judge whether wkþ 1 meets the requirements, and if it does, stop the calculation,

otherwise, continue the subsequent steps.
6. Compute bk ¼ �\rkþ 1;Adk [=\dk;Adk [
7. Compute dkþ 1 ¼ rkþ 1 þ bkdk , return step 1 and continue.

However, localization must be added to reduce the influence of the false correlation
of the estimated background error covariance matrix on the analysis results due to the
lack of sample size. After localization, the dimensionality of the cost function formula
(10) is on the order of 1010. At this point, matrix A requires approximately 190 GB of
storage space, which has exceeded the memory size of the most processors. Therefore,
formula (10) cannot be calculated directly.

In order to solve the problem of matrix A storage difficulty, in view of the relatively
powerful computing power of the processor, computing is cheaper than storage, so a
serial implementation strategy is designed by exchanging computing for storage. The
core idea of this strategy is: When the matrix A is used in the algorithm, the inter-
mediate results that interact with A are processed first. The matrix A is not stored
directly, that is, only the form of the matrix A is retained, and the specific matrix A is
not stored. The strategy uses the processor’s powerful computing power in exchange
for storage of matrix A.

The core functions of formula (10) include: the grd function for calculating the
residual, the ax function for calculating Adk, the function ddot3 for the vector dot
multiplication operation, and the pybo operation function for calculating the right end
vector. The parallel implementation of the algorithm is: the above conjugate gradient
algorithm is solved on the root processor, and then the result is sent to all processors by
utilizing the MPI communication function to perform formula (7) and (8) calculation.

The storage space required for the above objective function implementation of the
DRP4DVar algorithm is greatly reduced, but it is less optimistic in the consumption
time of the calculation, especially when running a large-scale case, the consumption
time is longer, the real-time measurement under the high-resolution case about two

Parallel Implementation and Optimization 309

hours or more. In order to shorten the calculation time of the DRP4DVar algorithm,
optimization work is also required.

2.2 Optimization of DRP4DVar Algorithm

Based on the DRP4DVar algorithm in Sect. 2.1, in order to improve the computational
efficiency of the algorithm and shorten the running time, the algorithm is optimized.
After many tests, the function pybo, grd, and ax calculations take the most time, so the
optimization work is done for them.

After analyzing the three functions, the loop operations are similar, and the number
of loops is about nn� jpx� jpy� jpz� myb, where nn is the number of samples, and
the maximum is no more than 102, jpx, jpy, and jpz are the number of localization
coefficients in three directions of horizontal and vertical, respectively. The number of
coefficients does not exceed 102. The parameter myb indicates that the number of
observations is on the order of 105. Therefore, the loop magnitude is about 1011. At
present, the most processors have a frequency of 109, so each of these three operations
requires at least 100 s. Therefore, the purpose of optimization is to reduce the size of
the loop, which in turn will reduce the time-consumption.

The parallel implementation strategy in Sect. 2.2 is improved as follows:

(1) Filter the observation data according to the corresponding relationship with the
background field and remove the abnormal observation points.

(2) In the root processor, observation data and background field data are divided in all
processors according to geographic location information.

3) The root processor uses the MPI sending policy to distribute the divided data to all
processors, so that each processor is allocated a reasonable amount of data,
avoiding the load imbalance on some processors. The improvement strategy
reduces the computational size on each processor, thereby reducing computational
time-consuming and improving the overall computational efficiency.

Through optimization operations, the time consumed by the DRP4DVar algorithm
is theoretically reduced by an order of magnitude compared to the pre-optimization.
Therefore, when calculating large-scale calculations, the time-consumption can also be
the ideal range.

3 Experimental Design and Analysis of Results

To evaluate the benefit of the optimized DRP4DVar, we design many experiments. The
experimental platform is a Linux cluster, which includes one login node and 16
computing nodes. Each compute node contains 2 physical CPU cores, and each
physical CPU has 6 physical cores. Therefore, the test platform can provide up to 192
cores of computing resources. The detailed parameters of the computing node are
shown in Table 1.

310 J. Li and W. Wu

3.1 Experimental Design

In order to test the effect of the optimized DRP4DVar algorithm, two kinds of examples
are designed: low-resolution case and high-resolution case. High-resolution case con-
tains more data, low-resolution case contains less data. The cases can test the calcu-
lation efficiency under different calculations.

Case 1 is a low-resolution case where the simulation area is 129 * 70 horizontal
grid points and 50 vertical layers. Case 2 is a high-resolution case where the simulation
area is a horizontal grid point is 409 * 369, 29 vertical layers. In Case 1, the number of
observations used for assimilation is 15729 and 2225 observations are used in Case 2.
The number of observations will affect the solution time of the core conjugate gradient
algorithm in the algorithm implementation, and the resolution will affect the calculation
time of the initial value increment of the model. Two different kinds of experiments
were set up according to two cases: low-resolution experiment and high-resolution
experiment. Low-resolution experiment uses the algorithm before and after optimiza-
tion to simulate case 1 under three parallel degrees on 32, 64, and 128 processors.
High-resolution experiment uses the number of processors in three parallel degrees 32,
64, and 128, simulating algorithm before and after optimization for case 2.

The following information can be obtained by analyzing the results of two groups
of experiments: Under low-resolution examples, the pre-optimization and post-
optimization algorithms achieve time-contrast information under the same degree of
parallelism. Similarly, under the high-resolution case. Under the same degree of par-
allelism, the time-consumption and results by the simulating case 1 and the case 2 are
compared between the pre-optimization and post-optimization algorithms.

3.2 Results Analysis

For the two kinds of experimental conditions designed in Sect. 3.1, the experimental
results were analyzed. The analysis includes the following two parts: the comparison of
the results between before and after optimization, the comparison of consumption time
between before and after optimization Therefore, this section is divided into correctness
analysis and performance analysis.

Table 1. Node parameters

Name Parameters

CPU Intel(R) Xeon(R) X5650@ 2.67 GHz
RAM 46 GB
Operating System Red Hat Enterprise Linux Server release 6.3 (Santiago)
System kernel 2.6.32–279.el6.x86_64
C compiler icc version 15.0.2
Fortran compiler ifort version 15.0.2
MPI version Intel(R) MPI Library 5.0

Parallel Implementation and Optimization 311

(1) Correctness analysis

Figures 1 and 2 are incremental graphs of the four assimilation variables T, U, V and
Q, respectively, in the serial implementation of the algorithm and the parallel imple-
mentation. It can be seen that the size of the increments of the four assimilation variables
in the two results is exactly the same, and the form of the field of each variable is also the
same. Therefore, the result of the algorithm optimization is exactly the same as the result
before the optimization, so the result after the optimization is correct.

(2) Performance analysis

The first is a low-resolution case where 32, 64, and 128 processors are used to
simulate case 1 respectively. Figure 3 is a comparison chart of the time consumed by
running the calculation case 1 between pre-optimization and post-optimization of the
algorithm.

Fig. 1. Incremental graph of four assimilation variables by DRP4DVar serial implementation

Fig. 2. Incremental graph of four assimilation variables by DRP4DVar parallel implementation

312 J. Li and W. Wu

From Fig. 3, it can be concluded that on the three processor numbers in case 1, the
consumption time between pre-optimization and post-optimization has been signifi-
cantly reduced.

On 32 processors, the time-consumption before optimization is about 18 times of
post-optimization, on 64 processors the times is about 26 and on 128 processors the
pre-optimization is about 33 times comparing with post-optimization.

Through analysis, it can be seen that the time of the optimized algorithm under the
low-resolution case 1 is greatly reduced. Under the three types of processors, the
optimized consumption time is about 1/26 of the time before the optimization, that is,
the parallel speedup approximately reaches 26.

It can be concluded from Fig. 4 that in the case of the three processors, the con-
sumption time before and after optimization is also significantly reduced. It can be seen
from the analysis that the simulation time of the optimized algorithm in the high-
resolution case 2 is reduced compared with the pre-optimization. Under the three
processor numbers, the consumption time of post-optimization is about 1/4 of the pre-
optimization. The speedup reaches about 4.

Fig. 3. Time-consumption of simulating case 1 between pre-optimization and post-optimization
under three parallel degrees

Fig. 4. Time-consumption of simulating case 2 between pre-optimization and post-optimization
under three parallel degrees

Parallel Implementation and Optimization 313

4 Conclusions

In this paper, the DRP4DVar algorithm in the hybrid data assimilation algorithm is
analyzed. Because of the serial implementation costing much time, the MPI parallel
programming model is used for parallel implementation and optimization to obtain an
efficient implementation of DRP4DVar. Then, the design test schemes verify the
optimized algorithm implementation. The experimental results show that the imple-
mentation of DRP4DVar algorithm is accurate and the time performance of the algo-
rithm is improved. In the low-resolution case, the parallel speedup is about 26, and the
speedup is about 4 in the high-resolution case.

Acknowledge. This work was supported by the National Key Research and Development Plan
of China under Grant No. 2016YFB0801004.

References

1. Miyoshi, T., Kondo, K., Terasaki, K.: Big ensemble data assimilation in numerical weather
prediction. Computer 48(11), 15–21 (2015)

2. Nerger, L., Hiller, W.: Software for ensemble-based data assimilation systems-
Implementation strategies and scalability. Comput. Geosci. 55(5), 110–118 (2013)

3. Ma, J., Qin, S.: The research status review of data assimilation algorithm. Adv. Earth Sci.
27(7), 747–757 (2012)

4. Wang, B., Liu, J., Wang, S., Cheng, W., et al.: An economical approach to four-dimensional
variational data assimilation. Adv. Atmos. Sci. 27(4), 715–727 (2010)

5. Liu, J., Wang, B., Xiao, Q.: An evaluation study of the DRP-4-DVar approach with the
Lorenz-96 model. Tellus Series A-Dyn. Meteorol. Oceanogr. 63(2), 256–262 (2011)

6. Han, P., Shu, H., Xu, J.: A comparative study of background error covariance localization in
EnKF data assimilation. Adv. Earth Sci. (2014)

7. Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implemen-
tation. Ocean Dyn. 53, 343–367 (2003)

314 J. Li and W. Wu

	Parallel Implementation and Optimization of a Hybrid Data Assimilation Algorithm
	Abstract
	1 Introduction
	2 Analysis, Parallel Implementation and Optimization of DRP4DVar
	2.1 Analysis and Implementation of DRP4DVar
	2.2 Optimization of DRP4DVar Algorithm

	3 Experimental Design and Analysis of Results
	3.1 Experimental Design
	3.2 Results Analysis

	4 Conclusions
	Acknowledge
	References

