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Abstract. The existing compressive sensing recovery algorithm has the
problems of poor robustness, low peak signal-to-noise ratio (PSNR) and
low applicability in images inpainting polluted by impulsive noise. In
this paper, we proposed a robust algorithm for image recovery in the
background of impulsive noise, called �p-ADMM algorithm. The pro-
posed algorithm uses �1-norm substitute �2-norm residual term of cost
function model to gain more image inpainting capability corrupted by
impulsive noise and uses generalized non-convex penalty terms to ensure
sparsity. The residual term of �1-norm is less sensitive to outliers in
the observations than �1-norm. And using the non-convex penalty func-
tion can solve the offset problem of the �1-norm (not differential at
zero point), so more accurate recovery can be obtained. The augmented
Lagrange method is used to transform the constrained objective function
model into an unconstrained model. Meanwhile, the alternating direction
method can effectively improve the efficiently of �p-ADMM algorithm.
Through numerical simulation results show that the proposed algorithm
has better image inpainting performance in impulse noise environment
by comparing with some state-of-the-art robust algorithms. Meanwhile,
the proposed algorithm has flexible scalability for large-scale problem,
which has better advantages for image progressing.
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1 Introduction

Compressive Sensing (CS) illuminates that if signal is sparse or compressible,
the measurement value of the target signal can be obtained by a non-adaptive
linear mapping method far below the sampling frequency required by Shannon-
Nyquist sampling theorem and recovering the signal from these measurement,
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which has been a hot research topic in recent years [1,2]. Sparse representation
of signals x ∈ R

N the basic premise of CS theory application, but in real envi-
ronment, many natural signals are not sparse in time domain. So it is necessary
to transform the signal into other domains to make it sparse. The observation
matrix A ∈ R

M×N “senses” the signal x to obtain the observation signal value
y = Ax ∈ R

M , which is obtained by inner product of the row vector of the
observation matrix and the signal. During the observation, it will be interfered
by Gaussian white noise, and its measured value is

y = Ax + n (1)

where n ∈ R
M is additive gauss white noise. The recovery process of Com-

pressed Sensing is the mapping process from low-dimensional data space to
high-dimensional data space. The best cost function model for this process is

min
x

‖x‖0 s.t :y = Ax (2)

‖x‖0 = |supp (x)| = # {i : x (i) �= 0}. supp (x) represents the support range of
x, |supp (x)| represents “cardinality”, that is to say, the number of non-zero
elements in the statistical vector x, but Solving sparse solution of formula (2)
will be NP-hard problem [3,4] with the increase of signal dimension. In order to
reduce computational complexity, Candes and Donoho prove that the �0 norm
model can be replaced by �1 norm under the condition that Restricted Isometry
Property (RIP) criterion is met, and the obtained solution is very similar to that
under �0 norm model. Many researchers have proposed the solution of formula
(2), such as basis-pursuit denoising (BPDN) [5] or LASSO [6], which minimizes
the �0-norm relaxes to the �1-norm.

min
x

‖x‖1 s.t : ‖Ax − y‖2 ≤ ε, (3)

For formula (3), the constrained optimization problem of formula (3) can be
converted into an unconstrained form by using Lagrange function

x̂ = arg min
x∈RN×1

{

‖Ax − y‖22 + λ‖x‖1
}

(4)

where λ > 0 is a regularization parameter, which balances the twin cost of
minimizing both error and sparsity. From a cost function model point of view,
it plays a trade-off role.

Although the use of �1-regularization in the cost function model has good
properties. The performance of the �1-regularization has two aspects drawbacks.
First, �1 norm is non-differentiable at zero. Second, it would lead to biased
estimation of large coefficients.

To address the above drawbacks, many improved methods have been pro-
posed, such as the �q quasi-norm is used as the sparse term of the objective
function, and its formula is modified to

x̂ = arg min
x∈RN×1

{

1
λ

‖Ax − y‖22 + ‖x‖q
q

}

, (5)
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where 0 ≤ q < 1, ‖·‖q
q is the �q quasi-norm defined as ‖x‖q

q =
∑N

i=0 |xi|q.
At present, estimation methods based on CS sparse recovery mainly focus

on robust denoising model under the Gaussian noise background. However, in
practical applications, the measurement values are not only affected by Gauss
noise, but also by non-gauss white noise. Impulse noise is discontinuous and the
characteristics of short duration and large amplitude irregular pulses. Impulsive
interfere may come from a sudden change in one bit of data during measurements
process [7], and many image & video processing works [8,9]. It is well-known that
�2-norm data-fitting is based on the least square method, so it is very sensitive
to outliers in observed values. Moreover, the data-fitting efficiency using �2 norm
is very low.

In recent years, various robust image processing methods have been proposed
to suppress the interference of outliers in measurement. In [10], the Lorentzian-
norm and Huber penalty function are used as residual terms of the objective
function, and the objective function is optimized to recover sparse signals. In [11]
the �1-norm is used as the residual term in the objective function and also as
the sparse term, and is called �1-LA with the formula:

x̂ = arg min
x∈RN×1

{‖Ax − y‖1 + λ‖x‖1} . (6)

It has been shown in [11] that the �1-norm cost function has better suppression
ability to impulse noise than �2-norm.

In this paper, using the �p quasi-norm (0 ≤ p ≤ 1), as sparsity regular term
of the objective function, the Eq. (6) can be rewritten as:

x̂ = arg min
x∈RN×1

{

‖Ax − y‖1 + λ‖x‖p
p

}

. (7)

In order to reduce the operation time of solving the objective function model
and improve the processing ability of high-dimensional data, the objective func-
tion of formula (7) is solved by efficient alternating direction methods, called
�p-ADMM. For more details about �p-ADMM algorithm, seen 4.1

2 Symmetric α-Stable (SαS) Distribution Model

α stable distribution does not have a unified and closed probability density
function (PDF) expression, but its characteristic function (CF) can be expressed
as [12]

ϕ (t) = {exp (jat − γα|t|α) [1 + jβsign (t) ω (t, α)]} . (8)

where sign(t) is sign function, 0 < α ≤ 2 is the characteristic exponent, a is
the location parameter, γ > 0 is the scale parameter, and ω(t, α) formulation is
expressed as

ω (t, α) =
{

tan (απ/2) , α �= 1
(2/π) log |t| , α = 1.

(9)
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In this paper, we just need to consider Symmetric α-Stable (SαS) distribu-
tion model when β = 0 in (8). There α-Stable distribution has two special cases.
When α = 2 and β = 0 is Gauss distribution; α = 1 and β = 0 is Cauchy
distribution.

3 Proximity Operator for �p-Norm Function

Consider the proximity operator of a function g (x) : x ∈ R
N with penalty η [13]

proxg,η (t) = arg min
x

{

a ‖x‖p
p +

η

2
‖x − t‖22

}

(10)

where 0 ≤ p ≤ 1 and a > 0.
Case 1: p = 0. The expression of proximity operator of formula (10) is:

proxg,η(t)i =
{

0, |ti| ≤ √

2a/η
ti, others

, i = 1, 2, · · · , N (11)

where ti is the i-th element of the vector t, and is well-known hard-thresholding
operator.

Case 2: 0 < p < 1. The proximity operator of formula (10) can be evaluated
as [15]

proxg,η(t)i =

⎧

⎨

⎩

0, |ti| < τ
{0, sign (ti) β} , |ti| = τ, i = 1, · · · , N

sign (ti) zi, |ti| > τ
(12)

where β = [2a (1 − p)/η]1/(2−p), τ = β+
(

apβp−1
)/

η, zi is the solution of h1 (z) =
pazp−1 + ηz − η |ti| = 0, z ≥ 0 [14].

Case 3: p = 1. This is the well-known soft-thresholding operator, which the
proximity operator can be written as:

proxg,η(t)i = Sa/η(t)i = sign (ti) max {|ti | − a/η, 0} (13)

4 Proposed �p-ADMM Algorithm

ADMM is parallel distributed algorithm, which is generally based on a convex
optimization model with separable variables and is suitable for large-scale prob-
lems in cloud computing and image processing [16]. ADMM takes the form of
a decomposition-coordination procedure, in which the solutions to small local
subproblems are coordinated to find a global solution. ADMM mainly blend
the benefits of dual decomposition and augmented Lagrangian methods for con-
strained optimization.

In the ADMM framework, the �1 loss term and the nonsmooth �p-
regularization term are naturally separated. Using an auxiliary variable v ∈ R

M ,
the formulation (7) can be rewritten as

min
x,v

{

1
λ

‖v‖1 + ‖x‖p
p

}

s.t.Ax − y = v. (14)
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The augmented Lagrangian function of formula (14) can be written as

Lρ (v,x,w) =
1
λ

‖v‖1 + ‖x‖p
p − 〈w,Ax − y − v〉 +

ρ

2
‖Ax − y − v‖22 (15)

where w is a the dual variable, ρ > 0 is a penalty parameter. Then, ADMM is
mainly consists of the following iterative steps:

vk+1 := arg min
v

(

1
λ

‖v‖1 +
ρ

2

∥

∥

∥

∥

Axk−y − v − wk

ρ

∥

∥

∥

∥

2

2

)

(16)

xk+1 := arg min
x

(

‖x‖p
p +

ρ

2

∥

∥

∥

∥

Ax − y−vk+1 − wk

ρ

∥

∥

∥

∥

2

2

)

(17)

wk+1 := wk − ρ
(

Axk+1 − y − vk+1
)

(18)

The x-subproblem update step (17) actually resolved a penalized �1-�p prob-
lem. We use a basic method to speed up ADMM and approximate this sub-
problem. Let uk = y + vk+1 + wk

/

ρ, we can approximate the subproblem by
linearizing the quadratic term of its cost function at point xk, which is expanded
as follows:

1
2

∥

∥Ax − uk
∥

∥

2

2
≈ 1

2

∥

∥Axk − uk
∥

∥

2

2

+
〈

x − xk, d
(

xk
)〉

+ L1
2

∥

∥x − xk
∥

∥

2

2

(19)

where d
(

xk
)

= AT
(

Axk − uk
)

is the gradient of the quadratic term, L1 > 0
is a proximal parameter.

Based on the (19) approximation, the x-subproblem (17) becomes easy to
solve by proximity operator (10), which can be efficiently solved as

xk+1= prox‖x‖p
p,ρ

(

bk
)

=

⎧

⎨

⎩

solved as (10) , p = 0
solved as (11) , 0 < p < 1
solved as (12) , p = 1

(20)

with bk = xk − (1/L1)AT
(

Axk − uk
)

Table 1. PSNR of the recovery image under the SαS noise environment.

Algorithm L1LS-FISTA LqLS-ADMM

(q = 0.5)

YALL1 �p-ADMM

(p = 0.2)

�p-ADMM

(p = 0.5)

�p-ADMM

(p = 0.7)

Shepp-Logan 13.04 (dB) 12.94 (dB) 29.44 (dB) 41.29 (dB) 41.02 (dB) 39.83 (dB)

MRI 15.51 (dB) 15.47 (dB) 25.27 (dB) 26.71 (dB) 27.23 (dB) 27.39 (dB)

The v-update step (16) is a form of the proximity operator (13)

vk+1 = S1/(ρλ)

(

Axk − y − wk

ρ

)

(21)
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For convex cases, the convergence property of the ADMM has been well
solved. Recently, there are few explanations on the convergence of non-convex
case [17].

5 Recovery of Images in the Impulsive Noise
Environment

We evaluate recovery performance of the proposed algorithm in comparison with
L1LS-FISTA [18], YALL1 [11] and LqLS-ADMM [19]. L1LS-FISTA solves the �1-
Least Square formulation. YALL1 solves the �1-LA formulation (6). We mainly
conduct reconstruction on the simulated images.

This experiment evaluates the performance of �p-ADMM algorithm on the
image recovery under SαS impulsive noise environment. The test images are
mainly “Shepp-Logan” and MRI images. The size of each image is 265 × 256,
and this two-dimensional image is converted into one-dimensional image at the
same time, which are set to N = 65536 and M = round(0.4N). As shown in
Fig. 1. Sensing matrix A is composed of discrete cosine transformation matrix
as the measurement matrix and Haar wavelets as the basis functions. We only
consider SαS the case of impulsive noise, whose parameters are set to α = 1 and
γ = 10−4. PSNR is used to evaluate the recovery performance of the improved
algorithm on images.

Shepp-Logan MRI

Fig. 1. Using two 256 × 256 images as test images.

The simulation results are shown in Table 1. It can be seen that the output
PSNR of YALL1 algorithm for Logan and MRI images under SαS noise is higher
than that of L1LS-FISTA and LqLs-ADMM algorithms. This is because the
residual terms of L1LS-FISTA and LqLS-ADMM algorithms both adopt �2 norm,
while �2 norm only has good suppression effect on Gaussian white noise and is
very sensitive to noise. Therefore, L1LS-FISTA and LqLS-ADMM algorithms
have poor recovery performance on images affected by impulse noise. However
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L1LS-FISTA, 13.04 dB LqLS-ADMM, 12.94 dB YALL1, 29.44 dB

Lp-ADMM (p=0.2), 41.29 dB Lp-ADMM (p=0.5), 41.02 dB Lp-ADMM (p=0.7), 39.83 dB

(a)

L1LS-FISTA, 15.51 dB LqLS-ADMM, 15.47 dB YALL1, 25.27 dB

Lp-ADMM (p=0.2), 26.71 dB Lp-ADMM (p=0.5), 27.23 dB Lp-ADMM (p=0.7), 27.39 dB

(b)

Fig. 2. Recovery images performance of the compared algorithms in SαS noise; (a):
Averaged PSNR of Shepp-Logan for different algorithm; (b): Averaged PSNR of MRI
for different algorithm.

Lp-ADMM algorithm using �p quasi-norm in sparse terms is better than that of
YALL1, because �p quasi-norm can solve the deficiency of �1 norm.

It can be seen from Fig. 2 that the improved algorithm proposed in this
paper has better recovery performance than other comparison algorithms under
the SαS noise environment. It can be seen that L1LS-FISTA and LqLS-ADMM
based on �2 norm as residual term have failed, while the �1-loss based algo-
rithm, YALL1 and �p-ADMM have work well. �p-ADMM algorithm performance
advantage over other algorithms. Furthermore, the simulation results show that
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in recovering the MRI image, for �p-ADMM, p = 0.7 yield better performance
than p = 0.2 and p = 0.5, which is different from the results of recovery “Shepp-
Logan”, where p = 0.2 PSNR significantly better performance than p = 0.5 and
p = 0.7. This is because images in real-life are not as sparse as synthetic images,
but compressible.

6 Conclusion

This paper presents a robust formula for images recovery in the SαS noise,
which improves the �1-LA formula by replacing �1-regularization with generalized
non-convex regularization (�p-norm, 0 < p < 1). In order to effectively solve
the non-convex and non-smooth minimization problem, a first-order algorithm
based on ADMM and approximation operator is proposed. Simulation results on
recovery images demonstrated that the proposed algorithm obtains considerable
performance gain over the other algorithms such as the L1-FISTA,YALL1 and
LqLS-ADMM in the SαS noise.

References

1. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information, pp. 489–509. IEEE
Press (2006)

2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

3. Donoho, D.L.: For most large underdetermined systems of linear equations the
minimal. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

4. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete
representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18
(2006)

5. Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and
inaccurate measurements (2006)

6. Knight, K., Fu, W.: Asymptotics for lasso-type estimators. Ann. Stat. 28, 1356
(2011)

7. Candès, E.J., Randall, P.A.: Highly robust error correction by convex program-
ming. IEEE Trans. Inf. Theory 54(7), 2829–2840 (2008)

8. Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted
by impulsive noise. IEEE Trans. Image Process. 16(4), 1101–1111 (2007)

9. Civicioglu, P.: Using uncorrupted neighborhoods of the pixels for impulsive noise
suppression with ANFIS. IEEE Trans. Image Process. 16(3), 759–773 (2007)

10. Carrillo, R.E., Barner, K.E.: Lorentzian iterative hard thresholding: robust com-
pressed sensing with prior information. IEEE Trans. Signal Process. 61(19), 4822–
4833 (2013)

11. Yang, J., Zhang, Y.: Alternating direction algorithms for l1-problems in compres-
sive sensing. SIAM J. Sci. Comput. 33, 250–278 (2011). Society for Industrial and
Applied Mathematics

12. Nolan, J.: Stable distributions: models for heavy-tailed data (2005). http://
Academic2.american.edu/jpnolan

http://Academic2.american.edu/jpnolan
http://Academic2.american.edu/jpnolan


�p-ADMM Algorithm for Sparse Image Recovery Under Impulsive Noise 9

13. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing.
In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H.
(eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
SOIA, vol. 49, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/
978-1-4419-9569-8 10

14. Wen, F., Liu, P., Liu, Y., et al.: Robust sparse recovery in impulsive noise via �p-�1
optimization. IEEE Trans. Signal Process. 65(1), 105–18 (2017)

15. Marjanovic, G., Solo, V.: On lq optimization and matrix completion. IEEE Trans.
Signal Process. 60(11), 5714–5724 (2012)

16. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

17. Hong, M., Luo, Z., Razaviyayn, M.: Convergence analysis of alternating direction
method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1),
337–364 (2016)

18. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

19. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex com-
posite optimization. SIAM J. Optim. 25(4), 2434–2460 (2014)

https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1007/978-1-4419-9569-8_10

	p-ADMM Algorithm for Sparse Image Recovery Under Impulsive Noise
	1 Introduction
	2 Symmetric -Stable (SS) Distribution Model
	3 Proximity Operator for p-Norm Function
	4 Proposed p-ADMM Algorithm
	5 Recovery of Images in the Impulsive Noise Environment
	6 Conclusion
	References




