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Abstract. In future wireless communications, there will be a large num-
ber of devices equipped with several different types of sensors need to
access networks with diverse quality of service requirements. In cellu-
lar network evolution, the long term evolution advanced (LTE-A) net-
works has standardized Machine-to-Machine (M2M) features. Such M2M
technology can provide a promising infrastructure for Internet of things
(IoT) sensing applications, which usually require real-time data report-
ing. However, LTE-A is not designed for directly supporting such low-
data-rate devices with optimized energy efficiency since it depends on
core technologies of LTE that are originally designed for high-data-rate
services. This paper investigate the maximum energy efficient data pack-
ets M2M transmission with uplink channels in LTE-A network. We for-
mulate it into a jointed problem of Modulation and-Coding Scheme
(MCS) assignment, resource allocation and power control, which can
be expressed as a NP-hard mixed-integer linear fractional programming
problem. Then we propose a global optimization scheme with Charnes-
Cooper transformation and Glover linearization. The numerical experi-
ment results show that with limited resource blocks, our algorithm can
maintain low data packets dropping ratios while achieving optimal energy
efficiency for a large number of M2M nodes, comparing with other typical
counterparts.

Supported in part by grants from the National Natural Science Foundation of China
(51877060), Fundamental Research Funds for the Central Universities, and ANHUI
Province Key Laboratory of Affective Computing & Advanced Intelligent Machine,
Grant No. ACAIM180102.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

V. C. M. Leung et al. (Eds.): 5GWN 2019, LNICST 278, pp. 124–140, 2019.

https://doi.org/10.1007/978-3-030-17513-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17513-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-17513-9_9


Energy Efficient Uplink Scheduling and Resource Allocation in M2M 125

Keywords: Energy efficiency ·
Machine-to-Machine (M2M) communication ·
Real-time data reporting · Resource allocation and scheduling

1 Introduction

Machine-to-Machine (M2M), also known as machine-type communication
(MTC) technology, emerging as a new communication technology, has recently
gained a great deal of attention [1]. It allows MTC devices (MTCDs) commu-
nicate with each other intelligently without or with very little human inter-
ventions. The technology has been utilized in a variety of M2M applications,
such as smart grids (SG), intelligent transportation system (ITS), e-healthcare,
industrial/home automation, and so on [2].

According to Cisco, it is predicted that M2M connections will increase to
12.2 billion by 2020, accounting for nearly half of the total global connections
[3]. To take advantages of the opportunities created by a global M2M communi-
cations over cellular networks, the 3rd Generation Partnership Project (3GPP)
Release 10 [4] first proposed service requirements for supporting MTC in LTE-A
cellular networks. LTE-A networks can offer higher capacity and more flexible
radio resource management (RRM) schemes than the existing packet access data
technologies [5]. In LTE-A network, evolved universal terrestrial radio access
(E-UTRA) NodeBs (eNBs), home eNBs (HeNBs), and relay nodes (RNs) can be
deployed to provide general wireless access in outdoor and indoor environments.

In LTE-A cellular networks, Orthogonal Frequency Division Multiple Access
(OFDMA) is chosen for the LTE’s downlink, while the Single-Carrier FDMA
(SC-FDMA) is chosen for the uplink. Advantages of such multi-carrier access
techniques include their robust communication and stable interference manage-
ment [6]. However, the OFDMA technique also introduces considerable chal-
lenges when it comes to designing RRM functionalities such as resource alloca-
tion and packet scheduling. In LTE networks, the radio resources are distributed
in both time and frequency domains. In the time domain, radio resources are
allocated on every Transmission Time Interval (TTI), which consists of two time
slots and has a duration of 1 ms. One LTE frame is composed by 20 slots or
10 TTIs. In the frequency domain, a full LTE system bandwidth (20 MHz) is
divided into 100 uplink sub-channel each including 12 subcarriers. Every sub-
channel has a bandwidth of 180 kHz and 7 symbols in the time domain constitute
a Resource Block (RB) as shown in Fig. 1.

Originally, LTE-A networks were designed for human-to-human (H2H) com-
munications, where the amount of uplink traffic is normally lower than the
downlink traffic. However in many M2M applications, data reporting with Qual-
ity of Service (QoS) constraints is a typical requirement. For example, in the
e-healthcare application, each patient is equipped with smart device which can
sample several types of health-related data, such as heart beat rate, body
temperature, blood glucose levels and so on. The smart devices must upload
data in real time to the healthcare provider via eNB. With the reported data,
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Fig. 1. The LTE-A frame structure and resource blocks.

the healthcare provider can assess each patient’s health condition and react to
an emergency situation immediately. In such applications, M2M traffic is dis-
tinct from the H2H traffic, in which more application data will be generated in
uplink channels than that on downlink channels. Thus, congestion and packet
drop would happen due to concurrent transmit messages from massive MTCDs,
which leads to a low successful rate of random access (RA) [5,7]. Therefore,
different M2M applications impose challenges to the designs of efficient radio
resource allocation algorithms for M2M communications in LTE-A networks [8].
First, the radio resource allocation scheme should accommodate a large number
of MTCDs with finite resources and diverse requirements. Second, it should have
extreme low complexity to schedule the massive MTCDs efficiently. Finally, it
should also maximize the energy efficiency to keep the M2M network alive for at
least several years. In most of M2M application, usually an observation period is
defined for each type of sensory data due to the real-time constraint. A MTCD
must upload all the sampled data packets within the specified reporting period,
otherwise the data will be dropped. On the other hand, if a MTCD is not allo-
cated to transmit any data in a certain time slot, it can switch to sleep mode to
reduce its energy consumption.

Some research efforts have been made to design effective resource allocation
scheme [9]. [1,10] design scheduling algorithms for M2M communications wherein
devices report multiple types of real-time data. They investigated the energy min-
imized scheduling problem for real-time reporting of data critical M2M appli-
cations, and proposed heuristic energy efficient algorithms. However, the algo-
rithms only considered the data packets scheduling problem, without the resource
allocation and MCS selection, which are the important parts in LTE-A network.
In [11], the authors proposed two uplink scheduling algorithms in a MTCD/UE
hybrid network that scheduleMTCDbased on their delay tolerance.The algorithm
first allocated UE traffic, then allocated the remaining RBs to MTCDs. In [12],
a greedy algorithm for solving approximate optimal solution is proposed, which
effectively solves the NP-hard problem. [13] studied the joint optimization problem
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including the quality of service (QoS)-driven resource allocation and the layer
selection, and proposed a tabu search-based metaheuristic algorithm for resource
allocation. The authors in [14] presented a clustering-based approach to schedul-
ing devices in LTE-A network by clustering machines based on a their QoS require-
ments, with a scheduling period defined for each cluster and is adapted based on
jitter of clusters. Similar to [11], the algorithms are designed to accommodate with
a M2M/H2H hybrid network, is not suitable to a real-time M2M application. In
[15], the authors formulated the energy-optimal routing and multiple-sink aggre-
gation into a mixed-integer programming problem, and presented a throughput-
optimal scheduling algorithm to allocate the resource blocks under physical inter-
ference model in the pure aggregation case. However, as mentioned above, usually
several different types of sensors with different QoS constraints are equipped on
the MTCDs, which are not considered in [15].

Besides, although 3GPP has introduced some new enhanced power modes
and more energy efficient signaling techniques to better handel M2M communi-
cations based on the LTE infrastructure, the size of data packets is not consid-
ered in the Modulation and Coding Scheme (MCS) selection process. In general,
MCS is controlled by channel quality (e.g., receive power, Signal-to-Interference-
plus-Noise Ratio (SINR) and so on). Usually when the channel quality between
MTCD and eNB is good, a higher MCS selection can be used, or vice versa.
For a higher MCS selection, a larger transport block (TB) can be transmitted
in LTE-A [16], leading to a higher data rate. Obviously as the restriction of
receiver’s SINR and data packet size, a higher MCS may be over-qualified to
a certain MTCD, which would cause extra energy consumption. Therefore, the
resource allocation scheme in uplink M2M communications based on SC-FDMA
LTE-A network is a jointed problem of MCS assignment, resource allocation,
data scheduling and power control.

To the best of our knowledge, prior works have not proposed a resource
allocation scheme to jointly consider MCS assignment, resource allocation and
power control. Therefore, we present a resource allocation and data scheduling
scheme to maximize the overall energy efficiency which is defined by the ratio of
total transmitted data to the energy consumed. In this paper, we formulate the
joint allocation and scheduling scheme into a Mixed Integer Linear Programming
(MILP) problem, and then reconstruct it Charnes-Cooper transformation and
Glover linearization scheme to obtain the global optimum.

The remainder of this paper is organized as follows. Section 2 formulates the
energy efficiency optimization scheduling problem. Then, Sect. 3 introduces the
reconstruction method of the original NP-hard problem to obtain it’s global
optimum. In Sect. 4, we evaluate the performance of the proposed algorithm.
Finally, this paper is concluded in Sect. 5.

2 Problem Formulation

In this paper, we consider a typical scenario that consists of only one eNB and
a number of MTCDs, within the coverage area of the eNB. Different types of
sensors are equipped on each MTCD, which can sample data with different fixed
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intervals. The eNB can perform a scheduling procedure to decide the trans-
mission time of the sampled data. All the MTCDs will transmit data to eNB
according to the scheduling decision.

2.1 Assumptions

Without losses of generality, we make some assumptions in this paper. The
sampling time of each sensor is short and can be neglected compared with LTE
time slot. And each type of sensors will generate constant small size of data, and
can only be transmitted in one time slot. Due to different usages and applications
of different sensors, we assume different data packets can not be aggregated and
have to be transmitted separately.

2.2 Network Architecture and System Model

We consider the uplink channel in a single cell of a multiuser 3GPP LTE-A net-
work with SC-FDMA channel access for sensor data reporting, and the network
architecture is shown in Fig. 2.

Fig. 2. Network architecture.

There are N MTCDs in the network, and all the MTCDs are equipped with K
types of sensors and sample data. Let DSk is data packet size sampled by sensor
k, and Tk is sampling and reporting period of sensor k. Similar to [1], we also
define a observation period T (time slots), which is the Least Common Multiple
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(LCM) of the all the sampling periods of each sensor type in the networkwide.
Obviously, the data reporting of all the N MTCDs will repeat every T time slots,
thus eNB can perform a scheduling algorithm every T in a centralized manner.
Let dn,k,j denote the jth data packet sampled by sensor K in MTCD n, Y
the total RBs ready to allocate in every time slot, and M total MCS selections
available for each MTCD.

2.3 Problem Statement

In this paper, we consider how to determine an efficient reporting schedule and
resource allocation scheme which can maximize Energy Efficiency (EE) of all
the N MTCDs, in which EE is defined as a ratio of all the data packets (bytes)
transmitted to all the power (Joule) consumed. In a typical application all the
MTCDs are used to monitor some certain physical values collaboratively, which
makes EE a very important metric to evaluate the lifetime of the whole M2M
network [17]. Thus this energy efficiency maximized scheduling problem can be
formulated as follows:

(P0) max EE =

∑N
n=1

∑K
k=1

∑T/Tk

j=1 DSk
∑N

n=1

∑K
k=1

∑T/Tk

j=1

∑T
t=1

∑Y
b=1 (ϕn,k,j,t,b × Pn,k,j,t,b)

(1)

where ϕn,k,j,t,b is a binary variable, ϕn,k,j,t,b = 1 when the RB b in time slot t is
allocated to data dn,k,j , otherwise ϕn,k,j,t,b = 0. Pn,k,j,t,b is the consumed power
when transmitting data dn,k,j on RB b time slot t.

The constraints are:

Pn,k,j ≤ Pmax,∀n ∈ N, k ∈ K, j ∈ J (2)

ϕn,k,j,t,b1 × Pn,k,j,t,b1 = ϕn,k,j,t,b2 × Pn,k,j,t,b2 ,

∀n ∈ N, k ∈ K, j ∈ J, t ∈ T, b1 ∈ Y, b2 ∈ Y, and ϕn,k,j,t,b1 = ϕn,k,j,t,b2

(3)

Y∑

b=1

ϕn,k,j,t,b × R(mn,k,j,t) ≥ DSk,∀n ∈ N, k ∈ K, j ∈ J, t ∈ T (4)

Pn,k,j,t,b + 10 × log(
Y∑

b=1

ϕn,k,j,t,b) + (α − 1) × PLn − IoT ≥ SINR(mn,k,j,t) (5)

N∑

n=1

K∑

k=1

T/Tk∑

j=1

Y∑

b=1

ϕn,k,j,t,b ≤ Y, ∀t ∈ T (6)

⎧
⎨

⎩

ϕmax
n,k,j,t − ϕmin

n,k,j,t =
∑Y

b=1 ϕn,k,j,t,b − 1
ϕmax

n,k,j,t = max{b|ϕn,k,j,t,b = 1}
ϕmin

n,k,j,t = min{b|ϕn,k,j,t,b = 1}
(7)
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N∑

n=1

K∑

k=1

T/Tk∑

j=1

ϕn,k,j,t,b ≤ 1, ∀t ∈ T, b ∈ Y (8)

Constraint 2 means the total transmission power of MTCD n can not exceed
the maximum power Pmax.

Constraint 3 means transmission power on all the RBs allocated to data
dn,k,j should be equal, according to SC-FDMA uplink channel access protocol
in 3GPP LTE-A network.

Constraint 4 means data rate R(m) supported by MCS selection m should be
greater than transmitted data packet size, in which mn,k,j,t is the MCS assigned
to tranmsit data dn,k,j at time slot t.

Constraint 5 is the uplink channel power control model defined by 3GPP
LTE-A protocol [18], in which α is the cell-specific path-loss compensation factor
that can be set to 0.0 and from 0.4 to 1.0 in steps of 0.1. PLn is the downlink
path-loss measured by eNB, which can be considered as a constant value for
each static MTCD n, and IoT is the Interference over Thermal, which should
be equal to 0 in our single cell case. SINR(mn,k,j,t) is the SINR requirement of
MCS selection mn,k,j,t.

Constraint 6 means total RBs allocated in one time slot can not exceed Y .
Constraint 7 is the contiguity constraint, means all the RBs allocated to one

data packet should be adjacent, according to SC-FDMA uplink channel access
model.

Constraint 8 means one RB can only be allocated to one MTCD.
It can be proved that energy efficiency maximized scheduling problem P0 is

NP-hard with unlinear terms and constraints. Thus we can only perform exhaus-
tive search algorithm with exponential complexity to obtain global optimum.
However, with the rapidly development of IoT, the number of MTCDs could
be enormous, and it is impossible for eNB to perform optimal scheduling with
exhaustive search algorithm. Thus in this paper, we try to reformulate P0 into
an equivalent two-dimensional knapsack problem, and then reconstruct it into
a Mixed Integer Linear Programming (MILP) problem with Charnes-Cooper
transformation and Glover linearization scheme [19], to find the global optimum.

3 Problem Reformulation and Proposed Algorithm

3.1 Problem Reformulation

Given the K types of sensors, each type of sensory data will be transmitted
to the base-station N × DTk times. Then the total amount of data times is∑K

k=1(N × DTk). The total amount of wireless resource blocks is T × Y , and
there are M kinds of MCS selection methods to transmit data, which are mutual.
Thus this problem can be reformulated into a two dimensional knapsack problem.
We can consider the total resource blocks as a knapsack, and all the transmitted
data as the items. Each item has some contribution to the EE object, and for
each item there is only one method among M kinds organizations. Each data
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can only be inserted into the place t. If data dn,k,j is transmitted by m MCS at
time slot t, then

1. It’s capacity in the knapsack is (1,
⌈

DSn,k,j,m,t

Rn,k,j,m,t

⌉
)

2. It’s contribution to EE is DSn,k,j,m,t⌈
DSn,k,j,m,t
Rn,k,j,m,t

⌉
×Pn,k,j,m,t

Thus, we can define a binary variable xn,k,j,m,t. When the data dn,k,j is
transmitted at time slot t with MCS selection m, xn,k,j,m,t = 1, otherwise,
xn,k,j,m,t = 0.

Thus, the EE optimization can be reformulated into a two dimensional knap-
sack problem.

(P1) max

∑N
n=1

∑K
k=1

∑DTk
j=1

∑M
m=1

∑T
t=1 xn,k,j,m,t ×DSn,k,j,m,t

∑N
n=1

∑K
k=1

∑DTk
j=1

∑M
m=1

∑T
t=1(xn,k,j,m,t ×

⌈
DSn,k,j,m,t

Rn,k,j,m,t

⌉
× Pn,k,j,m,t)

(9)

s.t.
N∑

n=1

K∑

k=1

DTk∑

j=1

M∑

m=1

(xn,k,j,m,t ×
⌈

DSn,k,j,m,t

Rn,k,j,m,t

⌉

) ≤ Y, ∀t ∈ T (10)

T∑

t=1

xn,k,j,m,t ≤ 1, ∀n ∈ N, k ∈ K, j ∈ J,m ∈ M (11)

Pn,k,j,m,t +10× log
⌈

DSn,k,j,m,t

Rn,k,j,m,t

⌉

+(α−1)×PLn − IoT ≥ SINRn,k,j,m,t (12)

Pn,k,j,m,t ×
⌈

DSn,k,j,m,t

Rn,k,j,m,t

⌉

≤ Pmax (13)

M∑

m=1

xn,k,j,m,t ≤ 1, ∀n ∈ N, k ∈ K, j ∈ J, t ∈ T (14)

M∑

m=1

T∑

t=1

xn,k,j,m,t ≤ 1, ∀n ∈ N, k ∈ K, j ∈ J (15)

xn,k,j,m,t ∈ {0, 1} (16)

The constraint 10 means the resource blocks allocated in one time slot can
not exceed Y . The constraint 11 means each item(data) can only be put in a
single time slot. The constraint 12 means the power allocated to a single RB has
to meet the MCS requirement. The constraint 13 means the total power allocated
to all RBs can not exceed the maximum power of the device. The constraint 14
means one data packet can only be transmitted with one MCS selection. And
the constraint 16 means xn,k,j,m,t is a binary variable.
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3.2 Mixed-Integer Linear Fractional Programming Reconstruction

Regarding to the problem (P1) defined in Eq. 9, first we can reconstruct the prob-
lem by simplifying the subscripts of parameters. Let l1 = �log2 N�, l2 = �log2 K�,
l3 = �log2 DTmax�, l4 = �log2 M�, l5 = �log2 T �. A, A1, A2, A3, A4, A5 are
binary numbers with length of l1 + l2 + l3 + l4 + l5, among which the first l1
bits in A1, the l1 + 1 to l2 bits in A2, the l2 + 1 to l3 bits in A3, the l3 + 1 to
l4 bits in A4, the L − 4 + 1 to l5 bits in A5 are ‘1’s, and the rest bits are ‘0’s.
Then the subscript n of xn,k,j,m,t can be placed at top l1 bits of A with binary
value. The subscript k of xn,k,j,m,t can be placed at l1 + 1 to l2 bits of A with
binary value. The subscript j can be placed at l2 + 1 to l3 bits of A with binary
value. The subscript m can be placed at l3 + 1 to l4 bits of A with binary value.
The subscript m can be placed at l3 + 1 to l4 bits of A with binary value. The
subscript t can be placed at l4 + 1 to l5 bits of A with binary value. Then we
can reconstruct (P1) into the following problem.

(P2) max
∑2l1+l2+l3+l4+l5

a=1 DSa × xa
∑2l1+l2+l3+l4+l5

a=1

⌈
DSa

Ra

⌉
× Pa × xa

(17)

s.t.

i×2l1+l2+l3+l4∑

a=1+(i−1)×2l1+l2+l3+l4

(
⌈

DSa

Ra

⌉

× xa) ≤ Y, ∀1 ≤ (A&A5) ≤ T, i = 1, 2, 3, · · · , 2l5

(18)

Pa + 10 × log(
⌈

DSa

Ra

⌉

) + (α − 1) × PLn − IOT ≥ SINRa (19)

Pa ×
⌈

DSa

Ra

⌉

≤ Pmax (20)

2l5∑

j=1

xi+(j−1)×2l1+l2+l3+l4 ≤ 1, i = 1, 2, 3, · · · , 2l1+l2+l3+l4

∀n ∈ N, k ∈ K, j ∈ J,m ∈ M

(21)

2l4∑

j=1

xi+(j−1)×2l1+l2+l3 ≤ 1,∀n ∈ N, k ∈ K, j ∈ J, t ∈ T

i = (h − 1) × 2l1+l2+l3+l4 + 1, (h − 1) × 2l1+l2+l3+l4 + 2, · · · ,

(h − 1) × 2l1+l2+l3+l4 + 2l1+l2+l3 , h = 1, 2, 3, · · · , 2l5

(22)

2l4+l5∑

j=1

xi+(j−1)×2l1+l2+l3 ≤ 1, i = 1, 2, 3, · · · , 2l1+l2+l3 ,

∀n ∈ N, k ∈ K, j ∈ J

(23)

xa ∈ {0, 1} (24)
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It can be seen that the objective function P2 is a ratio of two linear functions,
and all the constraints are linear. Thus P2 is a mixed-integer linear fractional
programming (MILFP) problem. Besides, it can be proven that P2 is a NP-hard
MILFP problem with quasi-convex and quasi-concave property, thus the local
optimal of P2 is the global optimal in feasible region.

3.3 The Proposed Algorithm

To obtain the global optimal in polynomial time, we propose a optimal algorithm
based on Charnes-Cooper transformation and Glover linearization, the former of
which can transform the original MILFP problem into a mixed-integer nonlinear
programming (MINLP) problem, while the later can convert MINLP problem
into an equivalent mixed-integer linear programming (MILP) problem.

First, we introduce a new positive variable u, and let

u =
1

∑2l1+l2+l3+l4+l5

a=1 ×Pa × xa

(25)

Obviously u > 0. Thus the fractional objective function in P0 can be trans-
formed into a linear function, i.e.

max
∑2l1+l2+l3+l4+l5

a=1 DSa × xa
∑2l1+l2+l3+l4+l5

a=1

⌈
DSa

Ra

⌉
× Pa × xa

= max
2l1+l2+l3+l4+l5∑

a=1

DSa × (xa × u)

(26)
As u is positive, we can multiply by u on both sides of Eqs. 18, 21 and 23,

and the following constraints can be obtained.

i×2l1+l2+l3+l4∑

a=1+(i−1)×2l1+l2+l3+l4

(
⌈

DSa

Ra

⌉

× xa × u) ≤ Y × u, i = 1, 2, 3, · · · , 2l5 (27)

2l5∑

j=1

xi+(j−1)×2l1+l2+l3+l4 × u ≤ u, i = 1, 2, 3, · · · , 2l1+l2+l3+l4 ,

∀n ∈ N, k ∈ K, j ∈ J,m ∈ M

(28)

2l4∑

j=1

xi+(j−1)×2l1+l2+l3 × u ≤ u, ∀n ∈ N, k ∈ K, j ∈ J, t ∈ T

i = (h − 1) × 2l1+l2+l3+l4 + 1, (h − 1) × 2l1+l2+l3+l4 + 2, · · · ,

(h − 1) × 2l1+l2+l3+l4 + 2l1+l2+l3 , h = 1, 2, 3, · · · , 2l5 ,

(29)

2l4+l5∑

j=1

xi+(j−1)×2l1+l2+l3 × u ≤ u, i = 1, 2, 3, · · · , 2l1+l2+l3 ,

∀n ∈ N, k ∈ K, j ∈ J

(30)
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xa × u ∈ {0, u} (31)

According to definition of u, Eq. 25 can be converted to

1 = u ×
2l1+l2+l3+l4+l5∑

a=1

⌈
DSa

Ra

⌉

× Pa × xa

=
2l1+l2+l3+l4+l5∑

a=1

⌈
DSa

Ra

⌉

× Pa × (xa × u)

(32)

Thus, the MILFP problem P2 can be transformed to an equivalent MINLP
problem P3.

(P3) max
2(l1+l2+l3+l4+l5)∑

a=1

DSa × (xa × u) (33)

The constraints are illustrated as Eqs. 19, 20, 27, 28, 29, 31 and 32.
The only unlinear item in MINLP problem P1 is the bilinear one xa × u,

which can be accuartely linearized by intro ducting some auxiliary variables and
constraints using the Glover linearzation scheme. By introducing wa = xa × u,
the MINLP problem P1 can be linearized to a mix-integer linear programming
(MILP) problem, i.e.

(PR) max Z =
2l1+l2+l3+l4+l5∑

a=1

DSa × wa, a ∈ B (34)

s.t.

i×2l1+l2+l3+l4∑

a=1+(i−1)×2l1+l2+l3+l4

(
⌈

DSa

Ra

⌉

× wa) ≤ Y × u, i = 1, 2, 3, · · · , 2l5 (35)

2l5∑

j=1

wi+(j−1)×2l1+l2+l3+l4 ≤ u, i = 1, 2, 3, · · · , 2l1+l2+l3+l4 (36)

2l4∑

j=1

wi+(j−1)×2l1+l2+l3 ≤ u,

i = (h − 1) × 2l1+l2+l3+l4 + 1, (h − 1) × 2l1+l2+l3+l4 + 2, · · · ,

(h − 1) × 2l1+l2+l3+l4 + 2l1+l2+l3 , h = 1, 2, 3, · · · , 2l5

(37)

2l4+l5∑

j=1

wi+(j−1)×2l1+l2+l3 ≤ u, i = 1, 2, 3, · · · , 2l1+l2+l3 (38)

Pa + 10 × log(
⌈

DSa

Ra

⌉

) + (α − 1) × PLn − IOT ≥ SINRa (39)
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1 =
2l1+l2+l3+l4+l5∑

a=1

⌈
DSa

Ra

⌉

× Pa × wa (40)

wa ∈ {0, u} (41)

Pa ×
⌈

DSa

Ra

⌉

≤ Pmax (42)

Obviously PR is a MILP problem equivalent to the original MILFP problem
P0, and it can be easily solved by the commercial linear programming toolbox.

4 Simulation and Performance Analysis

In this section, we evaluate the performance achieved by our scheduling and
allocation algorithm. The experiments are conducted using discrete-event simu-
lations, where the M2M communication network is considered to consist of one
eNB and N MTCDs, without considerable inter-cell interference. The position
of MTCDs are randomly generated in the range of [20, 300] to eNB. Table 1 lists
the detailed parameters used to evaluate the network performance. The param-
eter values comply with the 3GPP TS25.104 and TR36.814 standards [20]. The
channel gains for uplink and downlink are included in the transmit power and
receiver sensitivity, respectively. According to [16], there are 28 MCS selections
in physical uplink shared channel (PUSCH), and a sample of the data rate in
bits and SINR requirement defined is illustrated in Table 2.

For the sensory data, we assume there as many as 10 types of sensors equipped
on each MTCD. Obviously, the results of resource allocation and data scheduling
are dependent on data packet size and sampling periods. Thus we randomly
generate the data packet size of each type of sensor in the range of [10, 500]
bytes, and sampling periods in the range of [1, 120] s, which are practical in
typical M2M applications. Then the simulation is repeated for 100 times and
the results are averaged.

In the simulation, we use the open source lp solve toolbox to solve the MILP
problem PR.

To evaluate our proposed algorithm, we compare two classic resource allo-
cation and scheduling algorithms: Energy-Efficient Scheduling algorithm (EES)
[1], and Greedy algorithm as provided in [9]. The Greedy algorithm determines
the optimal pair of MCS and number of RBs, at which the transport block size
is sufficient to transmit sensing data within the minimum transmit power. In
addition, it can utilize the optimal MCS selections as main criteria for spectrum
allocation has been proposed for better adapting to the sensing node require-
ments. The EES algorithm is a heuristic one to schedule the transmissions of a
MTCD in one time slot with energy efficiency, while maintaining fairness and
low data dropping. The simulation results are presented in terms of EE and
packet dropping rate of all the MTCDs. With these metrics, we investigate the
impacts of the number of MTCDs and sensors.
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Table 1. Simulation parameters

Parameters Values

Network topology Random deployment

Number of MTCDs 1–80

Maximum transmit power 23 dBm

MTCD’s Receiver sensitivity −100 dBm

Path loss model 3GPP outdoor: PL(d) = 15.3 + 37.6 × log10(d)(dB)

Distances between MTCDs and eNB 20–300m

Bandwidth 20MHz

Number of RBs 100

α 0.9

Number of MCS selection 28

Number of sensor types on each MTCD 2–8

Sensory data size 10–500 bytes

Sampling period of each sensor 1–120 s

Table 2. A sample of supported data rate in bits defined in 3GPP TS 36.213 [16]

MCS selection Number of RBs

1 2 3 4 5 ...

... ... ... ... ... ... ...

7 104 224 328 472 584 ...

8 120 256 392 536 680 ...

9 136 296 456 616 776 ...

10 144 296 456 616 776 ...

11 176 328 504 680 872 ...

... ... ... ... ... ... ...

27 616 1256 1864 2536 3112 ...

28 712 1480 2216 2984 3752 ...

Figures 3, 4 and 5 show that our algorithm performs better than Greedy
in terms of energy efficiency with different number of sensor types. First, we
can observe that when N increases, the EE values of both the Greedy and our
proposed methods increase and then decrease. When N increases, the data trans-
missions from the same MTCD are scattered over more time slots, causing higher
energy consumption. Then as N keeps increasing, the available RBs is insuffi-
cient to transmit all the sensory data and some will be dropped. However, our
algorithm can effectively schedule data packets and allocate resources optimally
to all the MTCDs. Thus our algorithm can achieve higher energy efficiency, and
have less impact of resource insufficiency on energy consumption. However, it
can be seen that EES causes higher energy efficiency than ours. It is understand-
able as only data scheduling is considered in EES, without resource allocations.
Thus although some data packets are scheduled at certain time slots, there is no
sufficient RBs to transmit, leading to many infeasible scheduling.
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Fig. 3. Energy efficiency (K = 2) with different number of MTCDs.

Fig. 4. Energy efficiency (K = 4) with different number of MTCDs.

Fig. 5. Energy efficiency (K = 8) with different number of MTCDs.

Figures 6, 7 and 8 show the data packets dropping ratio of our algorithm and
the counterparts. Obviously, when the number of MTCDs is small, all the sensory
data can be transmitted. However, there will be no enough RBs to support the
enormous data packets generated by a larger number of M2M devices. Similar
to EE, without resource allocation EES can achieve slightly better in terms of
data dropping ratio.
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Fig. 6. Data dropping ratio (K = 2) with different number of MTCDs.

Fig. 7. Data dropping ratio (K = 4) with different number of MTCDs.

Fig. 8. Data dropping ratio (K = 8) with different number of MTCDs.

5 Conclusion

Although the LTE-A infrastructure introduces many benefits for the applications
of M2M communication sensing platforms, the challenges are also considerable,
especially in terms of energy efficiency ofwholeM2Mnetwork. In this paper,we for-
mulate the energy efficient M2M communications in SC-FDMA based LTE-A net-
works into a jointed problemofMCSassignment, resource allocation, data schedul-
ing and power control, which can be expressed as a NP-hard MILP problem.
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Then we reconstruct it with Charnes-Cooper transformation and Glover lineariza-
tion scheme to obtain the global optimum. Based on the optimal MCS, trans-
mission power and resource planning scheme, the sampled data packets can be
reported to eNB with maximum energy efficiency. We also compare the perfor-
mance of our scheme with other typical counterparts. The numerical experiment
results show that with limited resource blocks, our algorithm can maintain low
data packets dropping ratios while achieving optimal energy efficiency for a large
number of M2M nodes.
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